Comic Strip Master Command wanted to give me a break as I ready for the All 2020 A-to-Z. I appreciate the gesture, especially given the real-world events of the past week. I get to spend this week mostly just listing appearances, even if they don’t inspire deeper thought.
Gordon Bess’s vintage Redeye for the 24th has one of his Cartoon Indians being lousy at counting. Talking about his failures at arithmetic, with how he doesn’t count six shots off well. There’s a modest number of things that people are, typically, able to perceive at once. Six can be done, although it’s easy for a momentary loss of focus to throw you off. This especially for things that have to be processed in sequence, rather than perceived all together.
Wulff and Morgenthaler’s WuMo for the 24th shows a parent struggling with mathematics, billed as part of “the terrible result of homeschooling your kids”. It’s a cameo appearance. It’d be the same if Mom were struggling with history or English. This is just quick for the comic strip reader to understand.
Andrés J. Colmenares’s Wawawiwa for the 25th sets several plants in a classroom. They’re doing arithmetic. This, too, could be any course; it just happens to be mathematics.
Sam Hurt’s Eyebeam for the 25th is built on cosmology. The subject is a blend of mathematics, observation, and metaphysics. The blackboard full of mathematical symbols gets used as shorthand for describing the whole field, not unfairly. The symbols as expressed don’t come together to mean anything. I don’t feel confident saying they don’t mean anything, though.
The past week had a fair number of comic strips mentioning some aspect of mathematics. One of them is, really, fairly slight. But it extends a thread in the comic strip that I like and so that I will feature here.
Sam Hurt’s Eyebeam for the 11th uses heaps of mathematical expressions, graphs, charts, and Venn diagrams to represent the concept of “data”. It’s spilled all over to represent “sloppy data”. Usually by the term we mean data that we feel is unreliable. Measurements that are imprecise, or that are unlikely to be reliable. Precision is, roughly, how many significant digits your measurement has. Reliability is, roughly, if you repeated the measurement would you get about the same number?
Ryan North’s Dinosaur Comics for the 12th talks about immortality. And what the probability of events means when there are infinitely many opportunities for a thing to happen.
We’re accustomed in probability to thinking of the expectation value. This is the chance that something will happen, given some number N opportunities to happen, if at each opportunity it has the probability p of happening. Let me assume the probability is always the same number. If it’s not, our work gets harder, although it’s basically the same kind of work. But, then, the expectation value, the number of times we’d expect to see the thing happen, is N times p. Which, as Utahraptor points out, we can expect has to be at least 1 for any event, however unlikely, given enough chances. So it should be.
But, then, to take Utahraptor’s example: what is the probability that an immortal being never trips down the stairs? At least not badly enough to do harm? Why should we think that’s zero? It’s not as if there’s a physical law that compels someone to go to stairs and then to fall down them to their death. And, if there’s any nonzero chance of someone not dying this way? Then, if there are enough immortals, there’s someone who will go forever without falling down stairs.
That covers just the one way to die, of course. But the same reasoning holds for every possible way to die. If there’s enough immortals, there’s someone who would not die from falling down stairs and from never being struck by a meteor. And someone who’d never fall down stairs and never be struck by a meteor and never fall off a cliff trying to drop an anvil on a roadrunner. And so on. If there are infinitely many people, there’s at least one who’d avoid all possible accidental causes of death.
More. If there’s infinitely many immortals, then there are going to be a second and a third — indeed, an infinite number — of people who happen to be lucky enough to never die from anything. Infinitely many immortals die of accidents, sure, but somehow not all of them. We can’t even say that more immortals die of accidents than don’t.
My point is that probability gets really weird when you try putting infinities into it. Proceed with extreme caution. But the results of basic, incautious, thinking can be quite heady.
Bill Amend’s FoxTrot Classics for the 12th has Paige cramming for a geometry exam. Don’t cram for exams; it really doesn’t work. It’s regular steady relaxed studying that you need. That and rest. There is nothing you do that you do better for being sleep-deprived.
Bob Weber Jr and Jay Stephens’s Oh Brother for the 12th has Lily tease her brother with a story problem. I believe the strip’s a rerun, but it had been gone altogether for more than a year. It’s nice to see it returned anyway.
I think few will oppose me if I say the best part of March 2020 was that it ended. Let me close out nearly all my March business by getting through the last couple comic strips which mentioned some mathematics topic that month. I’ll still have my readership review, probably to post Friday, and then that finishes my participation in the month at last.
Connie Sun’s Connie to the for the 30th features the title character trying to explain what “exponential growth” is. She struggles. Appropriately, as it’s something we see very rarely in ordinary life.
They turn up in mathematics all the time. And mathematical physics, and such. Any process with a rate of change that’s proportional to the current amount of the thing tends to be exponential. This whether growing or decaying. Even circular motion, periodic motion, can be understood as exponential growth with imaginary numbers. So anyone doing mathematics gets trained to see, and expect, exponentials. They have great analytic properties, too. You can use them to solve differential equations. And differential equations are so much of science that it’s easy to forget they’re not.
In ordinary life, though? Well, yes, a lot of quantities will change at rates which depend on their current quantity. But in anything that’s been around a while, the quantity will usually be at, or near enough, an equilibrium. Some kind of balance. It may move away from that balance, but usually, it’ll move back towards it. (I am skipping some complicating factors. Don’t worry about them.) A mathematician will see the hidden exponentials in this. But to anyone else? The thing may start growing, but then it peters out and slows to a stop. Or it might collapse, but that change also peters out. Maybe it’ll hit a new equilibrium; maybe it’ll go back to the old. We rarely see something changing without the sorts of limits that tamp the change back down.
Even the growth of infection rates for Covid-19 will not stay exponential forever, even if there were no public health measures responding to it. There can’t be more people infected than there are people in the world. At some point, the curve representing number of infected people versus time would stop growing more and more, and would level out, from a pattern called the logistic equation. But the early stages of this are almost indistinguishable from exponential growth.
Samson’s Dark Side of the Horse for the 29th is a comforting counting-sheep joke, with half-sized sheep counted as fractions of a whole sheep. Comforting little bit of business here.
Todd Clark’s Lola for the 30th has a student asking what the end of mathematics is. And learning how after algebra comes geometry, trigonometry, calculus, topology, and more. All fair enough, though I’m surprised to see it put for that that of course someone who does enough mathematics will do topology. (I only have a casual brush with it myself, mostly in service to other topics.) But it’s nice to have it acknowledged that, if you want, you can go on learning new mathematics fields, practically without limit.
Ashleigh Brilliant’s Pot-Shots for the 30th just declares infinity to be a favorite number. Is it a number? … We have to be careful what exactly we mean by number. Allow that we are careful, though. It’s certainly at least number-adjacent.
Comic Strip Master Command apparently wants everybody to have a quiet time ahead of Christmas. How quiet? Quiet enough that I’m including a strip I skipped last week and probably shouldn’t have. Here goes.
Ruben Bolling’s Super-Fun-Pak Comix for the 15th was an installment of Uncle Cap’n’s Puzzle Pontoon, an activity puzzle that’s always about Uncle Cap’n running some low-competence scam. In this case the scam is bitcoins, which makes me wonder how old this particular panel rerun is. (I thought I saw a bitcoin joke in Barney Google, mind, although I can’t find the reference to prove it.)
I don’t feel confident that I understand the full mathematics behind the scheme, so I’ll pass on that. I can talk about the SHA-256 Hash Function and what it’s for, though. To be part of the bitcoin process your computer needs to do two things: it has to do some computing work, and it has to convince other computers that it’s done that. The trick is to prove it was done without giving the original work away. The answer is one that humans have known for centuries. Probably millennia. Possibly since the invention of secrets. To show you’re in on a secret, publicize something that makes no sense except to other people who know the secret. A hash is one way to do it.
It’s a function which matches a string of numbers that represent your original message to the real numbers. It should be easy to make the hash from the original string. But it should be hard to go from the hash back to the original string. So then you can publicize the hash of whatever your secret is. And someone else can know that they have the same secret by checking whether it hashes to the same number. (I’m reminded of how Galileo secured his priority of the discovery that Venus shows phases by writing a short sentence describing the phenomenon, and then publicizing an anagram of it. The anagram made no sense, but if you knew his original message you verify that yes, indeed, he did publicize that string of letters. I suppose that’s not properly a hash, but it serves much the same role.) It’s an easy enough way to add some authentication to a message, and to make it more tamper-proof. Hash functions for this kind of security are believed to be reasonably collision-proof. It might be possible to find two original messages with the same hash. But we believe it would take so long to do that it would be more effective to just break into your target’s house and steal their computer instead of counterfeiting the message.
Hilary Price’s Rhymes with Orange for the 17th is a joke about the uselessness of Algebra 2. It’s a joke of a kind with jokes about philosophy professors having jobs training students to be philosophy professors (a joke mathematicians get too, come to think of it). I’m a bit more sympathetic to joking about Algebra 2, rather than Algebra at all. There are some classes with a purpose that doesn’t seem quite clear. I’m more likely to name pre-algebra as a course whose purpose I can’t quite pin down. Algebra 2 I would, generically, expect to cover stuff like functions of several variables that you’re prepared for the first time you take Algebra, and you should be comfortable with before you start Calculus (or Pre-Calculus), but that aren’t essential to knowing algebra in the first place.
Sam Hurt’s Eyebeam for the 18th is the anthropomorphic numerals segment for this slow week and makes literal an ancient joke. Incidentally, has anyone else been seeing the follow-up joke on their social media feeds? I don’t remember seeing it before about two months ago. (The follow up is, why was it that seven ate nine? … Because one should eat three-square meals a day.)
If anything dominated the week in mathematically-themed comic strips it was Zach Weinersmith’s Saturday Morning Breakfast Cereal. I don’t know how GoComics selects the strips to (re?)print on their site. But there were at least four that seemed on-point enough for me to mention. So, okay. He’s got my attention. What’s he do with it?
On the 3rd of December is a strip I can say is about conditional probability. The mathematician might be right that the chance someone will be murdered by a serial killer are less than one in ten million. But that is the chance of someone drawn from the whole universe of human experiences. There are people who will never be near a serial killer, for example, or who never come to his attention or who evade his interest. But if we know someone is near a serial killer, or does attract his interest? The information changes the probability. And this is where you get all those counter-intuitive and somewhat annoying logic puzzles about, like, the chance someone’s other child is a girl if the one who just walked in was, and how that changes if you’re told whether the girl who just entered was the elder.
On the 5th is a strip about sequences. And built on the famous example of exponential growth from doubling a reward enough times. Well, you know these things never work out for the wise guy. The “Fibonacci Spiral” spoken of in the next-to-last panel is a spiral, like you figure. The dimensions of the spiral are based on those of golden-ratio rectangles. It looks a great deal like a logarithmic spiral to the untrained eye. Also to the trained eye, but you knew that. I think it’s supposed to be humiliating that someone would call such a spiral “random”. But I admit I don’t get that part.
The strip for the 6th has a more implicit mathematical content. It hypothesizes that mathematicians, given the chance, will be more interested in doing recreational puzzles than even in eating and drinking. It’s amusing, but I’ll admit I’ve found very few puzzles all that compelling. This isn’t to say there aren’t problems I keep coming back to because I’m curious about them, just that they don’t overwhelm my common sense. Don’t ask me when I last received actual pay for doing something mathematical.
And then on the 9th is one more strip, about logicians. And logic puzzles, such as you might get in a Martin Gardner collection. The problem is written out on the chalkboard with some shorthand logical symbols. And they’re symbols both philosophers and mathematicians use. The letter that looks like a V with a crossbar means “for all”. (The mnemonic I got was “it’s an A-for-all, upside-down”. This paired with the other common symbol, which looks like a backwards E and means there exists: “E-for-exists, backwards”. Later I noticed upside-down A and backwards E could both be just 180-degree-rotated A and E. But try saying “180-degree-rotated” in a quick way.) The curvy E between the letters ‘x’ and ‘S’ means “belongs to the set”. So that first line says “for all x that belong to the set S this follows”. Writing out “isLiar(x)” instead of, say, “L(x)”, is more a philosopher’s thing than a mathematician’s. But it wouldn’t throw anyway. And the T just means emphasizing that this is true.
And that is as much about Saturday Morning Breakfast Cereal as I have to say this week.
Sam Hurt’s Eyebeam for the 4th tells a cute story about twins trying to explain infinity to one another. I’m not sure I can agree with the older twin’s assertion that infinity means there’s no biggest number. But that’s just because I worry there’s something imprecise going on there. I’m looking forward to the kids learning about negative numbers, though, and getting to wonder what’s the biggest negative real number.
Percy Crosby’s Skippy for the 4th starts with Skippy explaining a story problem. One about buying potatoes, in this case. I’m tickled by how cranky Skippy is about boring old story problems. Motivation is always a challenge. The strip originally ran the 7th of October, 1930.
Dave Whamond’s Reality Check for the 6th uses a panel of (gibberish) mathematics as an example of an algorithm. Algorithms are mathematical, in origin at least. The word comes to us from the 9th century Persian mathematician Al-Khwarizmi’s text about how to calculate. The modern sense of the word comes from trying to describe the methods by which a problem can be solved. So, legitimate use of mathematics to show off the idea. The symbols still don’t mean anything.
Rick Detorie’s One Big Happy for the 7th of December, 2017. And some attention, please, for Ruthie there. She’s completely irrelevant to the action, but it makes sense for her to be there if Grandpa is walking them to school, and she adds action — and acting — to the scenes.
Rick Detorie’s One Big Happy for the 7th has Joe trying to get his mathematics homework done at the last minute. … And it’s caused me to reflect on how twenty multiplication problems seems like a reasonable number to do. But there’s only fifty multiplications to even do, at least if you’re doing the times tables up to the 10s. No wonder students get so bored seeing the same problems over and over. It’s a little less dire if you’re learning times tables up to the 12s, but not that much better. Yow.
Olivia Walch’s Imogen Quest for the 8th looks pretty legitimate to me. It’s going to read as gibberish to people who haven’t done parametric functions, though. Start with the plane and the familiar old idea of ‘x’ and ‘y’ representing how far one is along a horizontal and a vertical direction. Here, we’re given a dummy variable ‘t’, and functions to describe a value for ‘x’ and ‘y’ matching each value of ‘t’. The plot then shows all the points that ever match a pair of ‘x’ and ‘y’ coordinates for some ‘t’. The top drawing is a shape known as the cardioid, because it kind of looks like a Valentine-heart. The lower figure is a much more complicated parametric equation. It looks more anatomically accurate,
Still no sign of Mark Anderson’s Andertoons and the drought is worrying me, yes.