Tagged: Fibonacci sequence Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 6:00 pm on Thursday, 16 February, 2017 Permalink | Reply
    Tags: , , Crock, , Fibonacci sequence, Mr Lowe, , , ,   

    Reading the Comics, February 11, 2017: Trivia Edition 


    And now to wrap up last week’s mathematically-themed comic strips. It’s not a set that let me get into any really deep topics however hard I tried overthinking it. Maybe something will turn up for Sunday.

    Mason Mastroianni, Mick Mastroianni, and Perri Hart’s B.C. for the 7th tries setting arithmetic versus celebrity trivia. It’s for the old joke about what everyone should know versus what everyone does know. One might question whether Kardashian pet eating habits are actually things everyone knows. But the joke needs some hyperbole in it to have any vitality and that’s the only available spot for it. It’s easy also to rate stuff like arithmetic as trivia since, you know, calculators. But it is worth knowing that seven squared is pretty close to 50. It comes up when you do a lot of estimates of calculations in your head. The square root of 10 is pretty near 3. The square root of 50 is near 7. The cube root of 10 is a little more than 2. The cube root of 50 a little more than three and a half. The cube root of 100 is a little more than four and a half. When you see ways to rewrite a calculation in estimates like this, suddenly, a lot of amazing tricks become possible.

    Leigh Rubin’s Rubes for the 7th is a “mathematics in the real world” joke. It could be done with any mythological animals, although I suppose unicorns have the advantage of being relatively easy to draw recognizably. Mermaids would do well too. Dragons would also read well, but they’re more complicated to draw.

    Mark Pett’s Mr Lowe rerun for the 8th has the kid resisting the mathematics book. Quentin’s grounds are that how can he know a dated book is still relevant. There’s truth to Quentin’s excuse. A mathematical truth may be universal. Whether we find it interesting is a matter of culture and even fashion. There are many ways to present any fact, and the question of why we want to know this fact has as many potential answers as it has people pondering the question.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th is a paean to one of the joys of numbers. There is something wonderful in counting, in measuring, in tracking. I suspect it’s nearly universal. We see it reflected in people passing around, say, the number of rivets used in the Chrysler Building or how long a person’s nervous system would reach if stretched out into a line or ever-more-fanciful measures of stuff. Is it properly mathematics? It’s delightful, isn’t that enough?

    Scott Hilburn’s The Argyle Sweater for the 10th is a Fibonacci Sequence joke. That’s a good one for taping to the walls of a mathematics teacher’s office.

    'Did you ever take a date to a drive-in movie in high school?' 'Once, but she went to the concession stand and never came back.' 'Did you wonder why?' 'Yeah, but I kept on doing my math homework.'

    Bill Rechin’s Crock rerun for the 11th of February, 2017. They actually opened a brand-new drive-in theater something like forty minutes away from us a couple years back. We haven’t had the chance to get there. But we did get to one a fair bit farther away where yes, we saw Turbo, that movie about the snail that races in the Indianapolis 500. The movie was everything we hoped for and it’s just a shame Roger Ebert died too young to review it for us.

    Bill Rechin’s Crock rerun for the 11th is a name-drop of mathematics. Really anybody’s homework would be sufficiently boring for the joke. But I suppose mathematics adds the connotation that whatever you’re working on hasn’t got a human story behind it, the way English or History might, and that it hasn’t got the potential to eat, explode, or knock a steel ball into you the way Biology, Chemistry, or Physics have. Fair enough.

     
  • Joseph Nebus 6:00 pm on Thursday, 29 December, 2016 Permalink | Reply
    Tags: , China, , Fibonacci sequence, , , Mersenne numbers, , ,   

    The End 2016 Mathematics A To Z: Yang Hui’s Triangle 


    Today’s is another request from gaurish and another I’m glad to have as it let me learn things too. That’s a particularly fun kind of essay to have here.

    Yang Hui’s Triangle.

    It’s a triangle. Not because we’re interested in triangles, but because it’s a particularly good way to organize what we’re doing and show why we do that. We’re making an arrangement of numbers. First we need cells to put the numbers in.

    Start with a single cell in what’ll be the top middle of the triangle. It spreads out in rows beneath that. The rows are staggered. The second row has two cells, each one-half width to the side of the starting one. The third row has three cells, each one-half width to the sides of the row above, so that its center cell is directly under the original one. The fourth row has four cells, two of which are exactly underneath the cells of the second row. The fifth row has five cells, three of them directly underneath the third row’s cells. And so on. You know the pattern. It’s the one that pins in a plinko board take. Just trimmed down to a triangle. Make as many rows as you find interesting. You can always add more later.

    In the top cell goes the number ‘1’. There’s also a ‘1’ in the leftmost cell of each row, and a ‘1’ in the rightmost cell of each row.

    What of interior cells? The number for those we work out by looking to the row above. Take the cells to the immediate left and right of it. Add the values of those together. So for example the center cell in the third row will be ‘1’ plus ‘1’, commonly regarded as ‘2’. In the third row the leftmost cell is ‘1’; it always is. The next cell over will be ‘1’ plus ‘2’, from the row above. That’s ‘3’. The cell next to that will be ‘2’ plus ‘1’, a subtly different ‘3’. And the last cell in the row is ‘1’ because it always is. In the fourth row we get, starting from the left, ‘1’, ‘4’, ‘6’, ‘4’, and ‘1’. And so on.

    It’s a neat little arithmetic project. It has useful application beyond the joy of making something neat. Many neat little arithmetic projects don’t have that. But the numbers in each row give us binomial coefficients, which we often want to know. That is, if we wanted to work out (a + b) to, say, the third power, we would know what it looks like from looking at the fourth row of Yanghui’s Triangle. It will be 1\cdot a^4 + 4\cdot a^3 \cdot b^1 + 6\cdot a^2\cdot b^2 + 4\cdot a^1\cdot b^3 + 1\cdot b^4 . This turns up in polynomials all the time.

    Look at diagonals. By diagonal here I mean a line parallel to the line of ‘1’s. Left side or right side; it doesn’t matter. Yang Hui’s triangle is bilaterally symmetric around its center. The first diagonal under the edges is a bit boring but familiar enough: 1-2-3-4-5-6-7-et cetera. The second diagonal is more curious: 1-3-6-10-15-21-28 and so on. You’ve seen those numbers before. They’re called the triangular numbers. They’re the number of dots you need to make a uniformly spaced, staggered-row triangle. Doodle a bit and you’ll see. Or play with coins or pool balls.

    The third diagonal looks more arbitrary yet: 1-4-10-20-35-56-84 and on. But these are something too. They’re the tetrahedronal numbers. They’re the number of things you need to make a tetrahedron. Try it out with a couple of balls. Oranges if you’re bored at the grocer’s. Four, ten, twenty, these make a nice stack. The fourth diagonal is a bunch of numbers I never paid attention to before. 1-5-15-35-70-126-210 and so on. This is — well. We just did tetrahedrons, the triangular arrangement of three-dimensional balls. Before that we did triangles, the triangular arrangement of two-dimensional discs. Do you want to put in a guess what these “pentatope numbers” are about? Sure, but you hardly need to. If we’ve got a bunch of four-dimensional hyperspheres and want to stack them in a neat triangular pile we need one, or five, or fifteen, or so on to make the pile come out neat. You can guess what might be in the fifth diagonal. I don’t want to think too hard about making triangular heaps of five-dimensional hyperspheres.

    There’s more stuff lurking in here, waiting to be decoded. Add the numbers of, say, row four up and you get two raised to the third power. Add the numbers of row ten up and you get two raised to the ninth power. You see the pattern. Add everything in, say, the top five rows together and you get the fifth Mersenne number, two raised to the fifth power (32) minus one (31, when we’re done). Add everything in the top ten rows together and you get the tenth Mersenne number, two raised to the tenth power (1024) minus one (1023).

    Or add together things on “shallow diagonals”. Start from a ‘1’ on the outer edge. I’m going to suppose you started on the left edge, but remember symmetry; it’ll be fine if you go from the right instead. Add to that ‘1’ the number you get by moving one cell to the right and going up-and-right. And then again, go one cell to the right and then one cell up-and-right. And again and again, until you run out of cells. You get the Fibonacci sequence, 1-1-2-3-5-8-13-21-and so on.

    We can even make an astounding picture from this. Take the cells of Yang Hui’s triangle. Color them in. One shade if the cell has an odd number, another if the cell has an even number. It will create a pattern we know as the Sierpiński Triangle. (Wacław Sierpiński is proving to be the surprise special guest star in many of this A To Z sequence’s essays.) That’s the fractal of a triangle subdivided into four triangles with the center one knocked out, and the remaining triangles them subdivided into four triangles with the center knocked out, and on and on.

    By now I imagine even my most skeptical readers agree this is an interesting, useful mathematical construct. Also that they’re wondering why I haven’t said the name “Blaise Pascal”. The Western mathematical tradition knows of this from Pascal’s work, particularly his 1653 Traité du triangle arithmétique. But mathematicians like to say their work is universal, and independent of the mere human beings who find it. Constructions like this triangle give support to this. Yang lived in China, in the 12th century. I imagine it possible Pascal had hard of his work or been influenced by it, by some chain, but I know of no evidence that he did.

    And even if he had, there are other apparently independent inventions. The Avanti Indian astronomer-mathematician-astrologer Varāhamihira described the addition rule which makes the triangle work in commentaries written around the year 500. Omar Khayyám, who keeps appearing in the history of science and mathematics, wrote about the triangle in his 1070 Treatise on Demonstration of Problems of Algebra. Again so far as I am aware there’s not a direct link between any of these discoveries. They are things different people in different traditions found because the tools — arithmetic and aesthetically-pleasing orders of things — were ready for them.

    Yang Hui wrote about his triangle in the 1261 book Xiangjie Jiuzhang Suanfa. In it he credits the use of the triangle (for finding roots) was invented around 1100 by mathematician Jia Xian. This reminds us that it is not merely mathematical discoveries that are found by many peoples at many times and places. So is Boyer’s Law, discovered by Hubert Kennedy.

     
    • gaurish 6:46 pm on Thursday, 29 December, 2016 Permalink | Reply

      This is first time that I have read an article about Pascal triangle without a picture of it in front of me and could still imagine it in my mind. :)

      Like

      • Joseph Nebus 5:22 am on Thursday, 5 January, 2017 Permalink | Reply

        Thank you; I’m glad you like it. I did spend a good bit of time before writing the essay thinking about why it is a triangle that we use for this figure, and that helped me think about how things are organized and why. (The one thing I didn’t get into was identifying the top row, the single cell, as row zero. Computers may index things starting from zero and there may be fair reasons to do it, but that is always going to be a weird choice for humans.)

        Liked by 1 person

  • Joseph Nebus 6:00 pm on Tuesday, 11 October, 2016 Permalink | Reply
    Tags: Fibonacci sequence, , ,   

    Reading the Comics, October 8, 2016: Split Week Edition Part 2 


    And now I can finish off last week’s comics. It was a busy week. The first few days of this week have been pretty busy too. Meanwhile, Dave Kingsbury has recently read a biography of Lewis Carroll, and been inspired to form a haiku/tanka project. You might enjoy.

    Susan Camilleri Konar is a new cartoonist for the Six Chix collective. Her first strip to get mentioned around these parts is from the 5th. It’s a casual mention of the Fibonacci sequence, which is one of the few sequences that a normal audience would recognize as something going on forever. And yes, I noticed the spiral in the background. That’s one of the common visual representations of the Fibonacci sequence: it starts from the center. The rectangles inside have dimensions 1 by 2, then 2 by 3, then 3 by 5, then 5 by 8, and so on; the spiral connects vertices of these rectangles. It’s an attractive spiral and you can derive the overrated Golden Ratio from the dimensions of larger rectangles. This doesn’t make the Golden Ratio important or anything, but it is there.

    'It seems like Fibonacci's been entering his password for days now.'

    Susan Camilleri Konar ‘s Six Chix for the 5th of October, 2016. And yet what distracts me is both how much food Fibonacci has on his desk and how much of it is hidden behind his computer where he can’t get at it. He’s going to end up spilling his coffee on something important fiddling around like that. And that’s not even getting at his computer being this weird angle relative to the walls.

    Ryan North’s Dinosaur Comics for the 6th is part of a story about T-Rex looking for certain truth. Mathematics could hardly avoid coming up. And it does offer what look like universal truths: given the way deductive logic works, and some starting axioms, various things must follow. “1 + 1 = 2” is among them. But there are limits to how much that tells us. If we accept the rules of Monopoly, then owning four railroads means the rent for landing on one is a game-useful $200. But if nobody around you cares about Monopoly, so what? And so it is with mathematics. Utahraptor and Dromiceiomimus point out that the mathematics we know is built on premises we have selected because we find them interesting or useful. We can’t know that the mathematics we’ve deduced has any particular relevance to reality. Indeed, it’s worse than North points out: How do we know whether an argument is valid? Because we believe that its conclusions follow from its premises according to our rules of deduction. We rely on our possibly deceptive senses to tell us what the argument even was. We rely on a mind possibly upset by an undigested bit of beef, a crumb of cheese, or a fragment of an underdone potato to tell us the rules are satisfied. Mathematics seems to offer us absolute truths, but it’s hard to see how we can get there.

    Rick Stromoskis Soup to Nutz for the 6th has a mathematics cameo in a student-resisting-class-questions problem. But the teacher’s question is related to the figure that made my first fame around these parts.

    Mark Anderson’s Andertoons for the 7th is the long-awaited Andertoon for last week. It is hard getting education in through all the overhead.

    Bill Watterson’s Calvin and Hobbes rerun for the 7th is a basic joke about Calvin’s lousy student work. Fun enough. Calvin does show off one of those important skills mathematicians learn, though. He does do a sanity check. He may not know what 12 + 7 and 3 + 4 are, but he does notice that 12 + 7 has to be something larger than 3 + 4. That’s a starting point. It’s often helpful before starting work on a problem to have some idea of what you think the answer should be.

     
    • davekingsbury 5:57 pm on Wednesday, 12 October, 2016 Permalink | Reply

      Thank you for the mention. Good advice about starting work on a problem knowing roughly what the answer is … though my post demonstrated the opposite!

      Like

      • Joseph Nebus 3:43 am on Saturday, 15 October, 2016 Permalink | Reply

        Quite welcome. And, well, usually having an idea what answer you expect helps. Sometimes it misfires, I admit. But all rules of thumb sometimes misfire. If your expectation misfires it’s probably because you expect the answer to be something that’s not just wrong, but wrong in a significant way. That is, not wrong because you’re thinking 12 when it should be 14, but rather wrong because you’re thinking 12 when you should be thinking of doughnut shapes. But figuring that out is another big learning experience.

        Liked by 1 person

  • Joseph Nebus 7:21 pm on Tuesday, 14 July, 2015 Permalink | Reply
    Tags: Fibonacci sequence, , , scarves,   

    Fibonacci’s Biased Scarf 


    Here is a neat bit of crochet work with a bunch of nice recreational-mathematics properties. The first is that the distance between yellow rows, or between blue rows, represents the start of the Fibonacci sequence of numbers. I’m not sure if the Fibonacci sequence is the most famous sequence of whole numbers but it’s certainly among the most famous, and it’s got interesting properties and historical context.

    The second recreational-mathematics property is that the pattern is rotationally symmetric. Rotate it 180 degrees and you get back the original pattern, albeit with blue and yellow swapped. You can form a group out of the ways that it’s possible to rotate an object and get back something that looks like the original. Symmetry groups can be things of simple aesthetic beauty, describing scarf patterns and ways to tile floors and the like. They can also describe things of deep physical significance. Much of the ability of quantum chromodynamics to describe nuclear physics comes from these symmetry groups.

    The logo at top of the page is of a trefoil knot, which I’d mentioned a couple weeks back. A trefoil knot isn’t perfectly described by its silhouette. Where the lines intersect you have to imagine the string (or whatever makes up the knot) passing twice, once above and once below itself. If you do that crossing-over and crossing-under consistently you get the trefoil knot, the simplest loop that isn’t an unknot, that can’t be shaken loose into a simple circle.

    Liked by 1 person

    Knot Theorist

    FibonacciScarf

    This scarf is totally biased. That’s not to say that it’s prejudiced, but that it was worked in the diagonal direction of the cloth.

    My project was made from Julie Blagojevich’s free pattern Fibonacci’s Biased using Knit Picks Curio. The number of rows in each stripe is according to the numbers of the Fibonacci sequence up to 34. In other words, if you start at the blue side of the scarf and work your way right, the sequence of the number of yellow rows is 1, 1, 2, 3, 5, 8, 13, 21, 34. The sequence of the blue stripes are the same, but in the opposite direction. The effect is a rotationally symmetric scarf with few color changes at the edges and frequent color changes in the center. As I frequently tell my friends, math is beautiful.

    If my geekiness hasn’t scared you away yet, here’s a random fun…

    View original post 46 more words

     
  • Joseph Nebus 2:21 am on Sunday, 26 February, 2012 Permalink | Reply
    Tags: Barbary Coast, British Museum, , , Fibonacci sequence, , Ottoman, rare coins, sequins,   

    Fibonacci, a Comic Strip, and Venice 


    The comic strip Frazz, by Jef Mallett, touches another bit of mathematics humor. I imagine if I were better-organized I’d gather all the math comic strips I see over a whole week and report on them all at once, but, I’m still learning the rules of this blog, other than that anyone writing about mathematics has to bring up Fibonacci whether they want to or not.

    The association that sequins brings up for me now, though, and has ever since a book I read about the United States’s war on the Barbary Coast pirates, is that the main coin of Venice for over 500 years of its existence as an independent republic was the sequin, giving me notions of financial transactions being all sparkly and prone to blowing away in a stiff breeze. It wasn’t that kind of sequin, of course or even any sort of particularly small coin. The Venetian sequin was a rather average-looking gold coin, weighing at least nominally three and a half grams, and the name was a mutation of “zecchino”, after the name of Venice’s mint. But, apparently, the practice of sewing coins like this into women’s clothing or accessories lead to the attaching of small, shiny objects into clothing or accessories, and so gave us sequins after all.

    A listing on a coin collectors site tells me the Venetian sequin was about two centimeters in diameter, which isn’t ridiculously tiny at least. I’m not sure if that is a reliable guide to the size, although since it’s trying to sell me rare coins, probably it’s not too far off. Unfortunately most of the top couple pages of Google hits on “Venetian sequin coin size” brings up copies of Wikipedia’s report, which fails to mention physical size. An Ottoman sequin at the British Museum’s web site lists its diameter as 2.4 centimeters, but its weight at four and a third grams.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: