Reading the Comics, October 22, 2019: Bifurcated Week Edition


The past week started strong for mathematically-themed comics. Then it faded out into strips that just mentioned the existence of mathematics. I have no explanation for this phenomenon. It makes dividing up the week’s discussion material easy enough, though.

John Zakour and Scott Roberts’s Maria’s Day rerun for the 19th is a lottery joke. Maria’s come up with a scheme to certainly win the grand prize in a lottery. There’s no disputing that one could, on buying enough tickets, get an appreciable chance of winning. Even, in principle, get a certain win. There’s no guaranteeing a solo win, though. But sometimes lottery jackpots will grow large enough that even if you had to split the prize two or three ways it’d be worth it.

Maria: 'I'm a genius! For $40 million, I could win the lottery by playing every combination!' Joey: 'Where would you get $40 million? And if you had it, why would you need to win a lottery?' Maria: 'You'll never get anywhere in life if all you see is flaws.'
John Zakour and Scott Roberts’s Maria’s Day rerun for the 19th of October, 2019. It originally ran the 28th of July, 2012. The strip has gone into Sunday-only mode, I believe, but I’m still writing about Maria’s Day in essays gathered at this link.

Tom Horacek’s Foolish Mortals for the 21st plays on the common wisdom that mathematicians’ best work is done when they’re in their 20s. Or at least their most significant work. I don’t like to think that’s so, as someone who went through his 20s finding nothing significant. But my suspicion is that really significant work is done when someone with fresh eyes looks at a new problem. Young mathematicians are in a good place to learn, and are looking at most everything with fresh eyes, and every problem is new. Still, experienced mathematicians, bringing the habits of thought that served well one kind of problem, looking at something new will recreate this effect. We just need to find ideas to think about that we haven’t worn down.

Father, guiding a child in arithmetic: 'Nope, wrong again. But don't feel bad. Mathematicians usually peak in their twenties.'
Tom Horacek’s Foolish Mortals for the 21st of October, 2019. I wasn’t sure I ever wrote about this strip, but no, I have, and appearances by Foolish Mortals in these pages are here.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st has a petitioner asking god about whether P = NP. This is shorthand for a famous problem in the study of algorithms. It’s about finding solutions to problems, and how much time it takes to find the solution. This time usually depends on the size of whatever it is you’re studying. The question, interesting to mathematicians and computer scientists, is how fast this time grows. There are many classes of these problems. P stands for problems solvable in polynomial time. Here the number of steps it takes grows at, like, the square or the cube or the tenth power of the size of the thing. NP is non-polynomial problems, growing, like, with the exponential of the size of the thing. (Do not try to pass your computer science thesis defense with this description. I’m leaving out important points here.) We know a bunch of P problems, as well as NP problems.

Man, praying: 'God, does P = NP?' God: 'Hell no.' Man: 'Why?' God: 'Eve ate the fruit.' Man: 'You redesigned the structure of mathematics itself because a talking snake convinced a lady to eat an apple?' God: 'And ever after shall it be really hard to plan a long delivery route!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st of October, 2019. This strip I sometimes think I write about every essay. But Saturday Morning Breakfast Cereal essays are at this link.

Like, in this comic, God talks about the problem of planning a long delivery route. Finding the shortest path that gets to a bunch of points is an NP problem. What we don’t know about NP problems is whether the problem is we haven’t found a good solution yet. Maybe next year some bright young 68-year-old mathematician will toss of a joke on a Reddit subthread and then realize, oh, this actually works. Which would be really worth knowing. One thing we know about NP problems is there’s a big class of them that are all, secretly, versions of each other. If we had a good solution for one we’d have a solution for all of them. So that’s why a mathematician or computer scientist would like to hear God’s judgement on how the world is made.

Baldo, doing math work: 'Hey, Google, round 12.5861 to the nearest hundredth.' Sister Gracie '12.59!' Baldo, to his friend Cruz: 'Respect the brain. It can be very useful.'
Hector D. Cantú and Carlos Castellanos’s Baldo for the 22nd of October, 2019. This and other essays featuring Baldo are at this link.

Hector D. Cantú and Carlos Castellanos’s Baldo for the 22nd has Baldo asking his sister to do some arithmetic. I fancy he’s teasing her. I like doing some mental arithmetic. If nothing else it’s worth having an expectation of the answer to judge whether you’ve asked the computer to do the calculation you actually wanted.

Teacher: 'Today we're going to learn about Roman numerals.' Gabby: 'That will come in handy if I'm ever in ancient Rome. Seriously, when would I ever have the need to know Roman numerals?' Teacher: 'If you want to know which Super Bowl you're watching.' Gabby: 'Sports driving education? This isn't college!'
Mike Thompson’s Grand Avenue for the 22nd of October, 2019. And essays where I discuss Grand Avenue appear at this link.

Mike Thompson’s Grand Avenue for the 22nd has Gabby demanding to know the point of learning Roman numerals. As numerals, not much that I can see; they serve just historical and decorative purposes these days, mostly as a way to make an index look more fancy. As a way to learn that how we represent numbers is arbitrary, though? And that we can use different schemes if that’s more convenient? That’s worth learning, although it doesn’t have to be Roman numerals. They do have the advantage of using familiar symbols, though, which (say) the Babylonian sexagesimal system would not.

And that’s the comic strips with enough mathematics for me to discuss from the first half of last week. I plan tomorrow to at least mention the strips with just mentions of mathematics. And then Tuesday, The A-to-Z reaches the letter Q. I’m interested to see how that turns out too.

Reading the Comics, February 9, 2019: Garfield Outwits Me Edition


Comic Strip Master Command decreed that this should be a slow week. The greatest bit of mathematical meat came at the start, with a Garfield that included a throwaway mathematical puzzle. It didn’t turn out the way I figured when I read the strip but didn’t actually try the puzzle.

Jim Davis’s Garfield for the 3rd is a mathematics cameo. Working out a problem is one more petty obstacle in Jon’s day. Working out a square root by hand is a pretty good tedious little problem to do. You can make an estimate of this that would be not too bad. 324 is between 100 and 400. This is worth observing because the square root of 100 is 10, and the square root of 400 is 20. The square of 16 is 256, which is easy for me to remember because this turns up in computer stuff a lot. But anyway, numbers from 300 to 400 have square roots that are pretty close to but a little less than 20. So expect a number between 17 and 20.

Jon swipes his card at a supermarket checkout. The reader asks: 'Would you like to donate a dollar to charity today?' (Boop.) 'Enter PIN.' (boop boop boop boop.) 'Your total is $3.24. Is this correct?' (Boop.) 'What is the square root of 324? Please show your work.' Jon: 'ALL I WANT IS A BAG OF CHEESE DOODLES!' Garfield: 'DON'T WE ALL?!!'
Jim Davis’s Garfield for the 3rd of February, 2019. Other essays featuring Garfield would be at this link. But somehow this is the first time I’ve had something to write about based in Garfield. Huh.

But after that? … Well, it depends whether 324 is a perfect square. If it is a perfect square, then it has to be the square of a two-digit number. The first digit has to be 1. And the last digit has to be an 8, because the square of the last digit is 4. But that’s if 324 is a perfect square, which it almost certainly is … wait, what? … Uh .. huh. Well, that foils where I was going with this, which was to look at a couple ways to do square roots.

One is to start looking at factors. If a number is equal to the product of two numbers, then its square root is the product of the square roots of those numbers. So dividing your suspect number 324 by, say, 4 is a great idea. The square root of 324 would be 2 times the square root of whatever 324 ÷ 4 is. Turns out that’s 81, and the square root of 81 is 9 and there we go, 18 by a completely different route.

So that works well too. If it had turned out the square root was something like 2\sqrt{82} then we get into tricky stuff. One response is to leave the answer like that: 2\sqrt{82} is exactly the square root of 328. But I can understand someone who feels like they could use a numerical approximation, so that they know whether this is bigger than 19 or not. There are a bunch of ways to numerically approximate square roots. Last year I worked out a way myself, one that needs only a table of trigonometric functions to work out. Tables of logarithms are also usable. And there are many methods, often using iterative techniques, in which you make ever-better approximations until you have one as good as your situation demands.

Anyway, I’m startled that the cheese doodles price turned out to be a perfect square (in cents). Of course, the comic strip can be written to have any price filled in there. The joke doesn’t depend on whether it’s easy or hard to take the square root of 324. But that does mean it was written so that the problem was surprisingly doable and I’m amused by that.

T-Rex: 'Say the average person can expect to live for 81 years. That's a little over 2.5 billion seconds. 2.5 billion is not that much! I thought I'd compare the seconds in a life to the molecules in a glass of water, but even a gram of water has over ten sextillion molecules in it. Even if I measure my life in NANOSECONDS I'm still not on par with a gram of boring ol' WATER.' Dromiceiomimus: 'Molecules are super tiny, T-Rex! You should measure yourself in bigger units.' T-Rex: 'like ... cubic millimeters?' Utahraptor: 'That'd give you 2500 litres, that's a lot!' T-Rex: 'Dude, that's just a GIANT BATHTUB! I want to visualize my lifespan as something impressive!' Utahraptor: 'OK. 2.5 billion kilometers is enough to make a one-way trip to Saturn and get most of the way back before dying, OR to travel part of the way to Uranus, but again, dying well before you arrive.' LATER: T-Rex: 'Dear audio diary! Today I learned why we measure lifetimes in years and not in 'failed trips to Uranus where only corpses show up at the end'. It's, um, for the reasons you'd expect, basically.'
Ryan North’s Dinosaur Comics for the 4th of February, 2019. Some of the many essays inspired by Dinosaur Comics appear at this link.

Ryan North’s Dinosaur Comics for the 4th goes in some odd directions. But it’s built on the wonder of big numbers. We don’t have much of a sense for how big truly large numbers. We can approach pieces of that, such as by noticing that a billion seconds is a bit more than thirty years. But there are a lot of truly staggeringly large numbers out there. Our basic units for things like distance and mass and quantity are designed for everyday, tabletop measurements. The numbers don’t get outrageously large. Had they threatened to, we’d have set the length of a meter to be something different. We need to look at the cosmos or at the quantum to see things that need numbers like a sextillion. Or we need to look at combinations and permutations of things, but that’s extremely hard to do.

Tube Sock: a white cylinder with two blue stripes near the top. Inner Tube Sock: a white torus with two blue stripes around the narrow radius.
Tom Horacek’s Foolish Mortals for the 4th of February, 2019. This is a new tag. When I am next moved to write about Foolish Mortals the results should be this link. This might be a while. I can find some examples of writing about this strip in 2014, before I tagged the comic strips by name, but not since then.

Tom Horacek’s Foolish Mortals for the 4th is a marginal inclusion for this week’s strips, but it’s a low-volume week. The intended joke is just showing off a “tube sock” and an “inner tube sock”. But it happens to depict these as a cylinder and a torus and those are some fun shapes to play with. Particularly, consider this: it’s easy to go from a flat surface to a cylinder. You know this because you can roll a piece of paper up and get a good tube. And it’s not hard to imagine going from a cylinder to a torus. You need the cylinder to have a good bit of give, but it’s easy to imagine stretching it around and taping one end to the other. But now you’ve got a shape that is very different from a sheet of paper. The four-color map theorem, for example, no longer holds. You can divide the surface of the torus so it needs at least seven colors.

Wiley's Dictionary, as read by Peter: 'Logarithm. A downed tree with dance moves.'
Mastroianni and Hart’s B.C. for the 5th of February, 2019. Essays describing some aspect of B.C., whether the current run or the vintage 1960s reruns, appear at this link.

Mastroianni and Hart’s B.C. for the 5th is a bit of wordplay. As I said, this was a low-volume week around here. The word “logarithm” derives, I’m told, from the modern-Latin ‘logarithmus’. John Napier, who advanced most of the idea of logarithms, coined the term. It derives from ‘logos’, here meaning ‘ratio’, and ‘re-arithmos’, meaning ‘counting number’. The connection between ratios and logarithms might not seem obvious. But suppose you have a couple of numbers, and we’ll reach deep into the set of possible names and call them a, b, and c. Suppose a ÷ b equals b ÷ c. Then the difference between the logarithm of a and the logarithm of b is the same as the difference between the logarithm of b and the logarithm of c. This lets us change calculations on numbers to calculations on the ratios between numbers and this turns out to often be easier work. Once you’ve found the logarithms. That can be tricky, but there are always ways to do it.

Mother: 'Maggot, help Otis with his math homework. Explain fractions to him.' Maggot, to Otis: 'Well, it's like when you drop a beer bottle and it breaks into a lot of pieces.'
Bill Rechin’s Crock rerun for the 8th of February, 2019. I have no information about when this strip previously appeared. Essays based on things mentioned in Crock appear at this link. Somehow this isn’t the first time I’ve tagged this comic.

Bill Rechin’s Crock for the 8th is not quite a bit of wordplay. But it mentions fractions, which seem to reliably confuse people. Otis’s father is helpless to present a concrete, specific example of what fractions mean. I’d probably go with change, or with slices of pizza or cake. Something common enough in a child’s life.

And I grant there have been several comic strips here of marginal mathematics value. There was still one of such marginal value. Mark Parisi’s Off The Mark for the 7th has anthropomorphized numerals, in service of a temperature joke.


These are all the mathematically-themed comic strips for the past week. Next Sunday, I hope, I’ll have more. Meanwhile please come around here this week to see what, if anything, I think to write about.