Reading the Comics, June 16, 2018: No Panels Edition


My week got busier than I imagined, but it was in ways worthwhile. I apologize for running late, and for not having an essay I meant to put up here this week. But I should be back to something more normal next week. I keep saying that. Also, for what seems like a rarity, all the strips for this essay are comic strips. No panels. That won’t last, I know.

Johnny Hart’s Back to B.C. for the 14th features arithmetic as a demonstration of The Smartest Man in the World’s credentials. I understand using a bit of arithmetic as a quick check that someone has any intelligence at all. It seems to me that checking “two plus two” is more common than “one plus one”, and either is more common than, say, “one plus two” or “three plus five” or anything. I’m curious why that is, though. Might one plus one just seem too simple? Or is it the bias against odd numbers and feeling that two plus two is somehow more balanced? If only there were some smart person I could ask.

Peter(?) is by a sign reading 'The Smartest Man in the World'. Other Caveman (BC?): 'How much is 2 + 2?' Peter(?): 'Four.' BC: 'What makes day?' Peter: 'The sun.' BC: 'What made people?' (Peter looks frazzled.) BC: 'Here we go again.'
Johnny Hart’s Back to B.C. for the 14th of June, 2018. The strip originally ran the 17th of December, 1960. Thing to remember about Peter(?)’s claim is that at this time there’s like eight people in the world so, you know, yeah.

Jef Mallett’s Frazz for the 14th has a blackboard full of arithmetic as the icon of “doing a lot of school work”. Can’t say it’s age-inappropriate or anything. It’s just an efficient way to show a lot of work that’s kind of tiring to do has been done. … Also somehow one of the commenters didn’t understand the use of ‘flag’ as meaning to lose energy or enthusiasm. Huh.

[ In front of board full of multiplication problems. ] Mrs Olsen: 'Very good. Would you like to do a few more before the bell rings?' Student: 'No, thank you. It's flag day.' [ Later ] Frazz: 'What did that have to do with it?' Student: 'I was beginning to flag.'
Jef Mallett’s Frazz for the 14th of June, 2018. I apologize that I can’t remember this student’s name and I couldn’t find it on a reasonable search. Comic strip About pages need character names.

Jef Mallett’s Frazz for the 15th is a percentages joke, built on confusion between how to go from percentages to fractions and back again. Must say that I had thought 50 percent was tied well enough to one-half in ordinary language (or in phrases like splitting something fifty-fifty) that someone wouldn’t be confused by that. But everyone does miss some obvious things.

Student, to Mrs Olsen: 'If we're just going to forget 60% of this stuff over the summer, why not study only the half of it we'll remember?' [ Later ] Student: 'Annnnnd she doubled our homework.' Frazz: 'What percent of it is math now?'
Jef Mallett’s Frazz for the 15th of June, 2018. I have a similar apology for this student’s name, too. Shall happily accept information on this point.

Mark Pett’s Lucky Cow for the 16th is a probability strip. It is based on what seems obvious, that the fact of any person’s existing is an incredibly unlikely event. We can imagine restarting the universe, and letting it all develop again. And we’re forced to conclude there are so many other ways that galaxies might form and stars might come into being and planets might form and life might develop and evolution might proceed and people might meet and children might be born, and only one way that gets us here. So the chance of any of us existing is impossibly tiny. This is all consistent with the “frequentist” idea of what probability means. In that, we say the probability of a thing happening is all the ways that it could happen divided by all the ways that something could happen. (There are a bunch of technical points to go along with this.)

Clare: 'I need to win the lottery. That would solve all my problems!' Leticia: 'You know, Clare, if you think about it, we've all already *won* the lottery! Each one of us is here because of a long line of happy accidents! Eons ago, our ancestors happened to meet and have children and so on down to our parents! Really, the odds against you or me even being here are *astronomical*!' ... Clare: 'Now I see what they mean when they say winning the lottery can be a curse.'
Mark Pett’s Lucky Cow for the 16th of June, 2018. It originally ran the 20th of August, 2006.

But there are a lot of buried assumptions in there. Many of them seem reasonable. For example: could the universe unfold any differently? It seems obvious that, for example, the radius of the Earth’s orbit around the sun is arbitrary and might be anything in a band that could support life. And, surely, if the year had more or fewer days to it all human history would be different. But then this seems obvious: drop a bunch of short needles across a set of parallel straight lines. The number of needles that cross any of those lines should be arbitrary and unpredictable. Except that it is predictable; there’s a well-known formula that says how many of those needles have to cross those lines. The prediction can be lousy for a handful of needles. For millions of needles, though, it’ll be dead on. The universe won’t make sense any other way.

I can’t go so far as to say that it’s impossible for a universe to exist without me existing and just as I am. That seems egotistical. Even the needle-drop talk has room for variations on the universe. In ten million needle drops, one needle crossing more or less would not be an implausible difference. Ten or a thousand needles falling differently wouldn’t stand out. But, then, after enough needle drops? … If infinitely many needles dropped, I could say exactly what percentage of them crossed lines. (I am speaking so very casually about very difficult technical points. Please pretend I have clear answers for them.) There are deep philosophical questions about the idea of “other universes” that we have to ask if we want to take the subject seriously. But there are deep mathematical questions too.

X figure in a circle: 'DNA tests show I'm related to a Roman beauty by the name of Boderikus Maximus.' Woman: 'Good looking, was she?' X: 'Caesar himself called her a perfect 10.'
Bob Shannon’s Tough Town for the 16th of June, 2018. And the woman here is in nearly every strip and she’s not named either. The About page just talks about Rudolph, “a divorced reindeer working unhappily as a 4th grade teacher” and I think I remember him appearing in the strip back when it started. Oh, I guess that’s him in the title panel on the page, but not in the strip worth mentioning anymore.

Bob Shannon’s Tough Town for the 16th is more or less the anthropomorphized Roman Numerals joke for the week. I don’t know that there’s a strong consensus about why X was used to represent “ten”. Likely it’s impossible to prove any explanation is right. But X has settled into meaning ten, and to serve a host of other uses in typography and in symbols. Some of them are likely connected. Some are probably just coincidence.


If you’d like more of these Reading the Comics posts, you can find them in reverse chronological order at this link. If you’re interested in the comics mentioned particularly here, this page has the B.C. comics (both new and vintage). Frazz is on this page. The Lucky Cow strips are on this page. And Tough Town strips are here.

Advertisements

Reading the Comics, June 4, 2018: Weezer’s Africa Edition


Once again the name of this Reading the Comics edition has nothing to do with any of the strips. I’m just aware that Weezer’s cover of Africa is quite popular right now and who am I to deny people things they want? (I like the cover, but it’s not different enough for me to feel satisfied by it. I tend to like covers that highlight something minor in the original, or that go in a strange direction. Shifting a peppy song into a minor key doesn’t count anymore. But bear in mind, I’m barely competent at listening to music. Please now enjoy my eight hours of early electronica in which various beeps and whistles are passed off as music.)

Samson’s Dark Side of the Horse for the 3rd is the Roman numerals joke for the week. And a welcome return for Dark Side of the Horse. It feels like it’s been gone a while. I wouldn’t try counting by Roman numerals to lull myself to sleep; it seems like too much fussy detail work. But I suppose if you’ve gotten good at it, it’s easy.

Horace, counting sheep jumping over the fence: MCDXCVII; MCDXCIX and the sheep falls over the fence; MD and a sheep with a medical bag runs up to tend the fallen sheep.
Samson’s Dark Side of the Horse for the 3rd of June, 2018. Have to say that’s an adorable medical sheep in the third panel.

Jef Mallett’s Frazz for the 3rd builds on removing statistics from their context. It’s a common problem. It’s possible to measure so very many things. Without a clear idea of what we should expect as normal the measurement doesn’t tell us much. And it can be hard to know what the right context for something even is. Let me deconstruct Caulfield’s example. We’re supposed to reflect on and consider that 40% of all weekdays are Monday and Friday too. But it’s not only weekdays that people work. Even someone working a Sunday might take a sick day. Monday and Friday are a bit over 28% of the whole week. But more people do work Monday-to-Friday than do Saturdays and Sundays, so the Sunday sick day is surely rarer than the Monday. So even if we grant Caulfield’s premise, what does it tell us?

Caulfield: 'Did you know 40% of all sick days are taken on Mondays and Fridays?' Three panels of silence. Caulfield: 'Think about it. ... Did you know 60% of some comic strips is filler?' Frazz: 'If the cartoonist can still make it funny and get outside on the first nice day of spring, I'm cool.'
Jef Mallett’s Frazz for the 3rd of June, 2018. So Jef Mallett lives in the same metro area I do, which means I could in principle use this to figure out how far ahead of deadline he wrote this strip. Except that’s a fraud since we never had a first nice day of spring this year. We just had a duplicate of March for all of April and the first three weeks of May, and then had a week of late July before settling into early summer. Just so you know.

Jason Chatfield’s Ginger Meggs for the 3rd is a bit of why-learn-mathematics propaganda. Megg’s father has a good answer. But it does shift the question back one step. Also I see in the top row that Meggs has one of those comic-strip special editions where the name of the book is printed on the back cover instead. (I’m also skeptical of the photo and text layout on the newspaper Megg’s father is reading. But I don’t know the graphic design style of Australian, as opposed to United States, newspapers.)

Ginger Meggs: 'Dad, do I really need to know how to do maths?' Dad: 'Well, of course you need to know how to do mathematics, Ginger! Think about it! Without maths, you could never become an accountant!' (Ginger and his dog stand there stunned for a panel. Next panel, they're gone. Next panel after that ... ) Mom: 'I suppose you know you just blew it.'
Jason Chatfield’s Ginger Meggs for the 3rd of June, 2018. So … I guess Ginger Megg’s father is an accountant? I’m assuming because it makes the joke land better?

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 3rd may belong on some philosopher’s Reading the Comics blog instead. No matter. There’s some mathematical-enough talk going on here. There’s often many ways to approach the same problem. For example, approaching a system as a handful of items. Or as a huge number of them. Or as infinitely many things. Or as a continuum of things. There are advantages each way. A handful of things, for example, we can often model as interactions between pairs of things. We can model a continuum as a fluid. A vast number of things can let one’s computer numerically approximate a fluid. Or infinitely many particles if that’s more convenient.

Professor: 'Monists believe there is no distinction between mind and body.' (Writes 1/1.) 'Dualists believe mind and body are, in some sense, separate aspects of being.' (Writes 1/2.) 'There's a lively debate here, but the important thing to notice is that both are talking about the same human beings. This proves that you can add 1 to the quantity of aspects of being without altering the being itself.' (Writes 1/3, 1/4, 1/5, 1/6, ... ) 'By induction, you can be a monist, dualist, triplist, quadruplist, and so on. There are literally infinite permitted philosophies in ontology-space! Personally, I am a 10-to-the-27th-powerist, in that I believe every one of the atoms in my body is meaningfully distinct.' Student: 'You've taken a difficult philosophy problem and reduced it to a tractable but pointless math problem.' Professor: 'You may also be interested in my work on free will!'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 3rd of June, 2018. Also I’m not sure where the professor figures he’s going with this but my understanding is it’s rather key to our understanding of quantum mechanics that, say, every atom of Carbon-12 in our bodies is the same as every other atom. At least apart from accidental properties like which compound it might happen to be in at the moment and where it is in that compound. That is, if you swapped two of the same isotope there’d be no way to tell you had.

To describe all these different models as sharing an “ontology-space” is good mathematical jargon too. In this context the “-space” would mean the collection of all these things that are built by the same plan but with different values of whichever parameter matters.

Julian writes E = mc^2 on a blackboard. He tells Suzy, 'That's Einstein's theory.' Suzy: 'It's real cute, Julian!'
Bud Blake’s Tiger for the 6th of August, 1965. It was rerun the 4th of June, 2018. I confess I’m not sure exactly what the joke is. If it’s not that Suzy has no idea what’s being written but wants to say something nice about Julian’s work … all right, and I guess that’s an unremarkable attitude for a cartoonist to express in 1965, but it’s a weak joke.

Bud Blake’s Tiger for the 6th of August, 1965 features Einstein’s famous equation. I suppose it’s showing how well-informed Julian is, that he knows and can present such a big result. There is beauty in mathematics (and physics). Mathematicians (and physicists) find the subject beautiful to start with, and try to find attractive results. I’m curious what the lay reader makes of mathematical symbols, though, just as pieces of art. I remember as a child finding this beauty in a table of integrals in the front of one of my mother’s old college textbooks. All those parallel rows of integral symbols drew me in though nothing I’d seen in mathematics had prepared me to even read it. I still find that beautiful, but I can’t swear that I would even if I hadn’t formed that impression early in life. Are lay and professional readers’ views of mathematical-expression beauty similar? How are they different?

Reading the Comics, March 13, 2018: One Of My Assumptions Is Shaken Edition


I learn, from reading not-yet-dead Usenet group rec.arts.comics.strips, that Rick Stromoski is apparently ending the comic Soup To Nutz. This is sad enough. But worse, GoComics.com has removed all but the current day’s strip from its archives. I had trusted that GoComics.com links were reliable in a way that Comics Kingdom and Creators.com weren’t. Now I learn that maybe I need to include images of the comics I review and discuss here lest my essays become unintelligible in the future? That’s not a good sign. I can do it, mind you. I just haven’t got started. You’ll know when I swing into action.

Norm Feuti, of Retail, still draws Sunday strips for Gil. They’re to start appearing on GoComics.com soon, and I can talk about them from my regular sources after that. But for now I follow the strip on Twitter. And last Sunday he posted this one.

It’s sort of a protesting-the-problem question. It’s also a reaction a lot of people have to “explain how you found the answer” questions. In a sense, yeah, the division shows how the answer was found. But what’s wanted — and what’s actually worth learning — is to explain why you did this calculation. Why, in this case, 216 divided by 8? Why not 216 times 8? Why not 8 divided by 216? Why not 216 minus 8? “How you found your answer” is probably a hard question to make interesting on arithmetic, unfortunately. If you’re doing a long sheet of problems practicing division, it’s not hard to guess that dividing is the answer. And that it’s the big number divided by the small. It can be good training to do blocks of problems that use the same approach, for the same reason it can be good training to focus on any exercise a while. But this does cheat someone of the chance to think about why one does this rather than that.

Patrick Roberts’s Todd the Dinosaur for the 11th has mathematics as the thing Todd’s trying to get out of doing. (I suppose someone could try to argue the Y2K bug was an offshoot of mathematics, on the grounds that computer science has so much to do with mathematics. I wouldn’t want to try defending that, though.) I grant that most fraction-to-decimal conversion problems hit that sweet spot of being dull, tedious, and seemingly pointless. There’s some fun decimal expansions of fractions. The sevenths and the elevenths and 1/243 have charm to them. There’s some kid who’ll become a mathematician because at the right age she was told about \frac{1}{8991} . 3/16th? Eh.

Teacher: 'Who would like to come up here and work this converting-fractions-to-decimals problem on the board? Let's see ... how about you, Todd?' Todd: 'Look out! Y2K! AAAGH! This is terrible! Just terrible! It finally caught up with us! Goodbye, electricity! Goodbye, civilized society!' Todd: 'Nice try, Todd. Y2K never happened!' Todd: 'Uh, yeah, I knew that. I was just saying' that Y2K is the answer to that problem on the board!' Teacher: 'Also a nice try. Now get up here!'
Patrick Roberts’s Todd the Dinosaur for the 11th of March, 2018. I’m not sure that the loss of electricity would actually keep someone from doing chalkboard work, especially if there’s as many windows as we see here to let light in. I mean, yes, there’d be problems after school, but just during school? The end of civilization is not the cure-all people present it as being.

Mark Anderson’s Andertoons for the 11th is the Mark Anderson’s Andertoons for the week. I don’t remember seeing a spinny wheel like this used to introduce probability. It’s a good prop, though. I would believe in a class having it.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 11th is built on the Travelling Salesman Problem. It’s one of the famous unsolved and hard problems of mathematics. Weinersmith’s joke is a nice gag about one way to “solve” the problem, that of making it irrelevant. But even if we didn’t need to get to a collection of places efficiently mathematicians would still like to know good ways to do it. It turns out that finding the shortest (quickest, cheapest, easiest, whatever) route connecting a bunch of places is great problem. You can phrase enormously many problems about doing something as well as possible as a Travelling Salesman Problem. It’s easy conceptually to find the answer: try out all the possibilities and pick the best one. But if there’s more than a handful of cities, there are so many possible routes there’s no checking them all, not before you die of old age. We can do very well finding approximate answers, including by my specialization of Monte Carlo methods. In those you take a guess at an answer. Then make, randomly, a change. You’ll either have made things better or worse. If you’ve made it better, keep the change. If you’ve made it worse, usually you reject the change but sometimes you keep it. And repeat. In surprisingly little time you’ll get a really good answer. Maybe not the best possible, but a great answer for how straightforward setting it up was.

Dan Thompson’s Brevity for the 12th is a Rubik’s Cube joke. There’s not a lot of mathematics to that. But I do admire how Thompson was careful enough to draw a Rubik’s Cube that actually looks like the real article; it’s not just an isometric cube with thick lines partitioning it. Look at the corners of each colored sub-cube. I may be the only reader to notice this but I’m glad Thompson did the work.

Mason Mastroianni’s The Wizard of Id for the 12th gets Sir Rodney in trouble with the King for doing arithmetic. I haven’t read the comments on GoComics.com. I’d like to enter “three” as my guess for how many comments one would have to read before finding the “weapons of math instruction” joke in there.

Jef Mallett’s Frazz for the 13th has mathematics homework given as the thing lost by the time change. It’s just a cameo mention.

Steve Moore’s In The Bleachers for the 13th features a story problem as a test of mental acuity. When the boxer can’t work out what the heck the trains-leaving-Penn-Station problem even means he’s ruled unfit to keep boxing. The question is baffling, though. As put, the second train won’t ever overtake the first. The question: did Moore just slip up? If the first train were going 30 miles per hour and the second 40 there would be a perfectly good, solvable question in this. Or was Moore slipping in an extra joke, making the referee’s question one that sounds like it was given wrong? Don’t know, so I’ll suppose the second.

Reading the Comics, February 26, 2018: Possible Reruns Edition


Comic Strip Master Command spent most of February making sure I could barely keep up. It didn’t slow down the final week of the month either. Some of the comics were those that I know are in eternal reruns. I don’t think I’m repeating things I’ve already discussed here, but it is so hard to be sure.

Bill Amend’s FoxTrot for the 24th of February has a mathematics problem with a joke answer. The approach to finding the area’s exactly right. It’s easy to find areas of simple shapes like rectangles and triangles and circles and half-circles. Cutting a complicated shape into known shapes, finding those areas, and adding them together works quite well, most of the time. And that’s intuitive enough. There are other approaches. If you can describe the outline of a shape well, you can use an integral along that outline to get the enclosed area. And that amazes me even now. One of the wonders of calculus is that you can swap information about a boundary for information about the interior, and vice-versa. It’s a bit much for even Jason Fox, though.

Jef Mallett’s Frazz for the 25th is a dispute between Mrs Olsen and Caulfield about whether it’s possible to give more than 100 percent. I come down, now as always, on the side that argues it depends what you figure 100 percent is of. If you mean “100% of the effort it’s humanly possible to expend” then yes, there’s no making more than 100% of an effort. But there is an amount of effort reasonable to expect for, say, an in-class quiz. It’s far below the effort one could possibly humanly give. And one could certainly give 105% of that effort, if desired. This happens in the real world, of course. Famously, in the right circles, the Space Shuttle Main Engines normally reached 104% of full throttle during liftoff. That’s because the original specifications for what full throttle would be turned out to be lower than was ultimately needed. And it was easier to plan around running the engines at greater-than-100%-throttle than it was to change all the earlier design documents.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 25th straddles the line between Pi Day jokes and architecture jokes. I think this is a rerun, but am not sure.

Matt Janz’s Out of the Gene Pool rerun for the 25th tosses off a mention of “New Math”. It’s referenced as a subject that’s both very powerful but also impossible for Pop, as an adult, to understand. It’s an interesting denotation. Usually “New Math”, if it’s mentioned at all, is held up as a pointlessly complicated way of doing simple problems. This is, yes, the niche that “Common Core” has taken. But Janz’s strip might be old enough to predate people blaming everything on Common Core. And it might be character, that the father is old enough to have heard of New Math but not anything in the nearly half-century since. It’s an unusual mention in that “New” Math is credited as being good for things. (I’m aware this strip’s a rerun. I had thought I’d mentioned it in an earlier Reading the Comics post, but can’t find it. I am surprised.)

Mark Anderson’s Andertoons for the 26th is a reassuring island of normal calm in these trying times. It’s a student-at-the-blackboard problem.

Morrie Turner’s Wee Pals rerun for the 26th just mentions arithmetic as the sort of homework someone would need help with. This is another one of those reruns I’d have thought has come up here before, but hasn’t.

Reading the Comics, February 10, 2018: I Meant To Post This Thursday Edition


Ah, yes, so, in the midst of feeling all proud that I’d gotten my Reading the Comics workflow improved, I went out to do my afternoon chores without posting the essay. I’m embarrassed. But it really only affects me looking at the WordPress Insights page. It publishes this neat little calendar-style grid that highlights the days when someone’s posted and this breaks up the columns. This can only unnerve me. I deserve it.

Tom Thaves’s Frank and Ernest for the 8th of February is about the struggle to understand zero. As often happens, the joke has a lot of truth to it. Zero bundles together several ideas, overlapping but not precisely equal. And part of that is the idea of “nothing”. Which is a subtly elusive concept: to talk about the properties of a thing that does not exist is hard. As adults it’s easy to not notice this anymore. Part’s likely because mastering a concept makes one forget what it took to understand. Part is likely because if you don’t have to ponder whether the “zero” that’s “one less than one” is the same as the “zero” that denotes “what separates the count of thousands from the count of tens in the numeral 2,038” you might not, and just assume you could explain the difference or similarity to someone who has no idea.

John Zakour and Scott Roberts’s Maria’s Day for the 8th has maria and another girl bonding over their hatred of mathematics. Well, at least they’re getting something out of it. The date in the strip leads me to realize this is probably a rerun. I’m not sure just when it’s from.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th proposes a prank based on mathematical use of the word “arbitrarily”. This is a word that appears a lot in analysis, and the strip makes me realize I’m not sure I can give a precise definition. An “arbitrarily large number”, for example, would be any number that’s large enough. But this also makes me realize I’m not sure precisely what joke Weinersmith is going for. I suppose that if someone were to select an arbitrarily large number they might pick 53, or a hundred, or million billion trillion. I suppose Weinersmith’s point is that in ordinary speech an arbitrarily made choice is one selection from all the possible alternatives. In mathematical speech an arbitrarily made choice reflects every possible choice. To speak of an arbitrarily large number is to say that whatever selection is made, we can go on to show this interesting stuff is true. We’d typically like to prove the most generically true thing possible. But picking a single example can be easier to prove. It can certainly be easier to visualize. 53 is probably easier to imagine than “every number 52 or larger”, for example.

Quincy: 'Someday I'm gonna write a book, Gran.' Grandmom: 'Wonderful. Will you dedicate it to me?' Quincy: 'Sure. In fact, if you want, I'll dedicate this math homework to you.'
Ted Shearer’s Quincy for the 16th of December, 1978 and reprinted the 9th of February, 2018. I’m not sure just what mathematics homework Quincy could be doing to inspire him to write a book, but then, it’s not like my mind doesn’t drift while doing mathematics either. And book-writing’s a common enough daydream that most people are too sensible to act on.

Ted Shearer’s Quincy for the 16th of December, 1978 was rerun the 9th of February. It just shows Quincy at work on his mathematics homework, and considering dedicating it to his grandmother. Mathematics books have dedications, just as any other book does. I’m not aware of dedications of proofs or other shorter mathematics works, but there’s likely some. There’s often a note of thanks, usually given to people who’ve made the paper’s writers think harder about the subjects. But I don’t think there’s any reason a paper wouldn’t thank someone who provided “mere” emotional support. I just don’t have examples offhand.

Jef Mallet’s Frazz for the 9th looks like one of those creative-teaching exercises I sometimes see in Mathematics Education Twitter: the teacher gives answers and the students come up with story problems to match. That’s not a bad project. I’m not sure how to grade it, but I haven’t done anything that creative when I’ve taught. I’m sorry I haven’t got more to say about it since the idea seems fun.

Redeye: 'C'mon, Pokey. Time for your lessons. Okay, what do you get when you divide 5,967,342 by 973 ... ?' Pokey: 'A headache!'
Gordon Bess’s Redeye for the 30th of September, 1971 and reprinted the 10th of February, 2018. I realized I didn’t know the father’s name and looked it up, and Wikipedia revealed to me that he’s named Redeye. You know, like the comic strip implies right there in the title. Look, I just read the comics, I can’t be expected to think about the comics too.

Gordon Bess’s Redeye for the 30th of September, 1971 was rerun the 10th. It’s a bit of extremely long division and I don’t blame Pokey for giving up on that problem. Starting from 5,967,342 divided by 973 I’d say, well, that’s about six million divided by a thousand, so the answer should be near six thousand. I don’t think the last digits of 2 and 3 suggest anything about what the final digit should be, if this divides evenly. So the only guidance I have is that my answer ought to be around six thousand and then we have to go into actually working. It turns out that 973 doesn’t go into 5,967,342 a whole number of times, so I sympathize more with Pokey. The answer is a little more than 6,132.9311.

Reading the Comics, January 20, 2018: Increased Workload Edition


It wasn’t much of an increased workload, really. I mean, none of the comics required that much explanation. But Comic Strip Master Command donated enough topics to me last week that I have a second essay for the week. And here it is; sorry there’s no pictures.

Mark Anderson’s Andertoons for the 17th is the Mark Anderson’s Andertoons we’ve been waiting for. It returns to fractions and their frustrations for its comic point.

Jef Mallet’s Frazz for the 17th talks about story problems, although not to the extent of actually giving one as an example. It’s more about motivating word-problem work.

Mike Thompson’s Grand Avenue for the 17th is an algebra joke. I’d call it a cousin to the joke about mathematics’s ‘x’ not coming back and we can’t say ‘y’. On the 18th was one mentioning mathematics, although in a joke structure that could have been any subject.

Lorrie Ransom’s The Daily Drawing for the 18th is another name-drop of mathematics. I guess it’s easier to use mathematics as the frame for saying something’s just a “problem”. I don’t think of, say, identifying the themes of a story as a problem in the way that finding the roots of a quadratic is.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 18th is an anthropomorphic-geometric-figures joke that I’m all but sure is a rerun I’ve shared here before. I’ll try to remember to check before posting this.

Mikael Wulff and Anders Morgenthaler’s WuMo for the 20th gives us a return of the pie chart joke that seems like it’s been absent a while. Worth including? Eh, why not.

Reading the Comics, January 16, 2017: Better Workflow Edition


So one little secret of my Reading the Comics posts is I haven’t been writing them in a way that makes sense to me. To me, I should take each day’s sufficiently relevant comics, describe them in a paragraph or two, and then have a nice pile of text all ready for the posting Sunday and, if need be, later. I haven’t been doing that. I’ve let links pile up until Friday or Saturday, and then try to process them all, and if you’ve ever wondered why the first comic of the week gets 400 words about some subtlety while the last gets “this is a comic that exists”, there you go. This time around, let me try doing each day’s strips per day and see how that messes things up.

Jef Mallett’s Frazz for the 14th of January is another iteration of the “when will we ever use mathematics” complaint. The answer of “you’ll use it on the test” is unsatisfactory. But somehow, the answer of “you’ll use it to think deeply about something you had never considered before” also doesn’t satisfy. Anyway I’d like to see the idea that education is job-training abolished; I think it should be about making a person conversant with the history of human thought. That can’t be done perfectly, and we might ask whether factoring 32 is that important a piece, but it should certainly be striven for.

Ham’s Life on Earth for the 14th is a Gary Larsonesque riff on that great moment of calculus and physics history, Newton’s supposition that gravity has to follow a universally true law. I’m not sure this would have made my cut if I reviewed a week’s worth of strips at a time. Hm.

Mason Mastroianni’s B.C. for the 15th is a joke about story problem construction, and how the numbers in a story problem might be obvious nonsense. It’s also a cheap shot at animal hoarders, I suppose, but that falls outside my territory here.

Anthony Blades’s Bewley rerun for the 15th riffs on the natural number sense we all have. And we do have a number sense, remarkably. We might not be able to work out 9 times 6 instantly. But asked to pick from a list of possible values, we’re more likely to think that 58 is credible than that 78 or 38 are. It’s quite imprecise, but isn’t it amazing that it’s there at all?

Bill Amend’s FoxTrot Classics for the 15th is a story problem joke, in this case, creating one with a strong motivation for its solution to be found. The strip originally ran the 22nd of January, 1996.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 16th is maybe marginal to include, too. It’s about the kinds of logic puzzles that mathematicians grow up reading and like to pass around. And the way you can fake out someone by presenting a problem with too obvious a solution. It’s not just professors who’ll be stymied by having the answer look too obvious, by the way. Everyone’s similarly vulnerable. To see anything, including an abstract thing like the answer to a puzzle, you need some idea of what you are looking at. If you don’t think the answer could be something that simple, you won’t see it there.

Paw: 'It's four o'clock ... what time are we going to eat?' Maw :'About five.' Paw: 'Good! That gives me two hours to work with Pokey on his arithmeteic.'
Gordon Bess’s Redeye for the 6th of September, 1971. That’s the sort of punch line that really brings out the comically-anachronistic Old West theme.

Gordon Bess’s Redeye for the 6th of September, 1971, was reprinted the 17th. It’s about the fun of teaching a subject you aren’t all that good on yourself. The mathematics is a name-drop here, but the joke wouldn’t make sense if it were about social studies.

Popeye: 'King, they's one thing I wants to know. How much is a pezozee?' King Blozo: 'Why bring that up?' Popeye: 'Yer men hired me to help lick yer emeny at a thousing pezozees a week - tha's why I'd like to know what is a pezozee.' Blozo: 'A pezozee is two pazookas.' Popeye: 'What's a pazooky?' Blozo: 'A pazooka is two pazinkas.' Popeye: 'What's a pazinky?' Blozo: 'A pazinka is two pazoonies.' Popeye: 'What's a pazeenya?' Blozo: 'Phooey! I wish you would quit following me! A pazooney is two pazeenyas.' Popeye: 'what's a pazeenya?' Blozo: 'Two pazimees.' Popeye: 'Hey! What's a pazimee worth?' Blozo: 'Absolutely nothing!' Popeye: 'Blow me down, I'm glad I ain't gettin' paid in pazimees!'
Elzie Segar’s Thimble Theatre for the 10th of August, 1931. Not listed: the rate of exchange for paczki, which reappeared this week.

Elzie Segar’s Thimble Theatre for the 10th of August, 1931, was also reprinted the 17th. It’s an old gag, even back when it was first run. But I suppose there’s some numerical-conversion mathematics to wring out of it. Given the rate of exchange, a pezozee would seem to be 24 pazimees. I’m not sure we need so many units in-between the pazimee and the pezozee, but perhaps King Blozo’s land set its units in a time when fractions were less familiar to the public. The punch line depends on the pazimee being worth nothing and, taken literally, that has sad implications for the pezozee too. If you take the King as speaking roughly, though, sixteen times a small amount is … at least a less small amount. It wouldn’t take many doublings to go from an infinitesimally tiny sum to a respectable one.

And it turns out there were enough comic strips I need to split this into two segments. So I should schedule that to appear. It’s already written and everything.

Reading the Comics, January 3, 2018: Explaining Things Edition


There were a good number of mathematically-themed comic strips in the syndicated comics last week. Those from the first part of the week gave me topics I could really sink my rhetorical teeth into, too. So I’m going to lop those off into the first essay for last week and circle around to the other comics later on.

Jef Mallett’s Frazz started a week of calendar talk on the 31st of December. I’ve usually counted that as mathematical enough to mention here. The 1st of January as we know it derives, as best I can figure, from the 1st of January as Julius Caesar established for 45 BCE. This was the first Roman calendar to run basically automatically. Its length was quite close to the solar year’s length. It had leap days added according to a rule that should have been easy enough to understand (one day every fourth year). Before then the Roman calendar year was far enough off the solar year that they had to be kept in synch by interventions. Mostly, by that time, adding a short extra month to put things more nearly right. This had gotten all confusingly messed up and Caesar took the chance to set things right, running 46 BCE to 445 days long.

But why 445 and not, say, 443 or 457? And I find on research that my recollection might not be right. That is, I recall that the plan was to set the 1st of January, Reformed, to the first new moon after the winter solstice. A choice that makes sense only for that one year, but, where to set the 1st is literally arbitrary. While that apparently passes astronomical muster (the new moon as seen from Rome then would be just after midnight the 2nd of January, but hitting the night of 1/2 January is good enough), there’s apparently dispute about whether that was the objective. It might have been to set the winter solstice to the 25th of December. Or it might have been that the extra days matched neatly the length of two intercalated months that by rights should have gone into earlier years. It’s a good reminder of the difficulty of reading motivation.

Brian Fies’s The Last Mechanical Monster for the 1st of January, 2018, continues his story about the mad scientist from the Fleischer studios’ first Superman cartoon, back in 1941. In this panel he’s describing how he realized, over the course of his long prison sentence, that his intelligence was fading with age. He uses the ability to do arithmetic in his head as proof of that. These types never try naming, like, rulers of the Byzantine Empire. Anyway, to calculate the cube root of 50,653 in his head? As he used to be able to do? … guh. It’s not the sort of mental arithmetic that I find fun.

But I could think of a couple ways to do it. The one I’d use is based on a technique called Newton-Raphson iteration that can often be used to find where a function’s value is zero. Raphson here is Joseph Raphson, a late 17th century English mathematician known for the Newton-Raphson method. Newton is that falling-apples fellow. It’s an iterative scheme because you start with a guess about what the answer would be, and do calculations to make the answer better. I don’t say this is the best method, but it’s the one that demands me remember the least stuff to re-generate the algorithm. And it’ll work for any positive number ‘A’ and any root, to the ‘n’-th power.

So you want the n-th root of ‘A’. Start with your current guess about what this root is. (If you have no idea, try ‘1’ or ‘A’.) Call that guess ‘x’. Then work out this number:

\frac{1}{n}\left( (n - 1) \cdot x + \frac{A}{x^{n - 1}} \right)

Ta-da! You have, probably, now a better guess of the n-th root of ‘A’. If you want a better guess yet, take the result you just got and call that ‘x’, and go back calculating that again. Stop when you feel like your answer is good enough. This is going to be tedious but, hey, if you’re serving a prison term of the length of US copyright you’ve got time. (It’s possible with this sort of iterator to get a worse approximation, although I don’t think that happens with n-th root process. Most of the time, a couple more iterations will get you back on track.)

But that’s work. Can we think instead? Now, most n-th roots of whole numbers aren’t going to be whole numbers. Most integers aren’t perfect powers of some other integer. If you think 50,653 is a perfect cube of something, though, you can say some things about it. For one, it’s going to have to be a two-digit number. 103 is 1,000; 1003 is 1,000,000. The second digit has to be a 7. 73 is 343. The cube of any number ending in 7 has to end in 3. There’s not another number from 1 to 9 with a cube that ends in 3. That’s one of those things you learn from playing with arithmetic. (A number ending in 1 cubes to something ending in 1. A number ending in 2 cubes to something ending in 8. And so on.)

So the cube root has to be one of 17, 27, 37, 47, 57, 67, 77, 87, or 97. Again, if 50,653 is a perfect cube. And we can do better than saying it’s merely one of those nine possibilities. 40 times 40 times 40 is 64,000. This means, first, that 47 and up are definitely too large. But it also means that 40 is just a little more than the cube root of 50,653. So, if 50,653 is a perfect cube, then it’s most likely going to be the cube of 37.

Bill Watterson’s Calvin and Hobbes rerun for the 2nd is a great sequence of Hobbes explaining arithmetic to Calvin. There is nothing which could be added to Hobbes’s explanation of 3 + 8 which would make it better. I will modify Hobbes’s explanation of what the numerator. It’s ridiculous to think it’s Latin for “number eighter”. The reality is possibly more ridiculous, as it means “a numberer”. Apparently it derives from “numeratus”, meaning, “to number”. The “denominator” comes from “de nomen”, as in “name”. So, you know, “the thing that’s named”. Which does show the terms mean something. A poet could turn “numerator over denominator” into “the number of parts of the thing we name”, or something near enough that.

Hobbes continues the next day, introducing Calvin to imaginary numbers. The term “imaginary numbers” tells us their history: they looked, when first noticed in formulas for finding roots of third- and fourth-degree polynomials, like obvious nonsense. But if you carry on, following the rules as best you can, that nonsense would often shake out and you’d get back to normal numbers again. And as generations of mathematicians grew up realizing these acted like numbers we started to ask: well, how is an imaginary number any less real than, oh, the square root of six?

Hobbes’s particular examples of imaginary numbers — “eleventenn” and “thirty-twelve” — are great-sounding compositions. They put me in mind, as many of Watterson’s best words do, of a 1960s Peanuts in which Charlie Brown is trying to help Sally practice arithmetic. (I can’t find it online, as that meme with edited text about Sally Brown and the sixty grapefruits confounds my web searches.) She offers suggestions like “eleventy-Q” and asks if she’s close, which Charlie Brown admits is hard to say.

Cherry Trail: 'Good morning, honey! Where's Dad?' Mark Trail: 'He's out on the porch reading the paper!' Cherry: 'Rusty sure is excited about our upcoming trip to Mexico!' Mark: 'Did you get everything worked out with the school?' Cherry: 'Rusty will need to do some math assignments, but he'll get credit for his other subjects since it's an educational trip!'
James Allen’s Mark Trail for the 3rd of January, 2018. James Allen has changed many things about the comic strip since Jack Elrod’s retirement, as I have observed over on the other blog. There are less ruthlessly linear stories. There’s no more odd word balloon placement implying that giant squirrels are talking about the poachers. Mark Trail sometimes has internal thoughts. I’m glad that he does still choose to over-emphasize declarations like “[Your Dad]’s out on the porch reading the paper!” There are some traditions.

And finally, James Allen’s Mark Trail for the 3rd just mentions mathematics as the subject that Rusty Trail is going to have to do some work on instead of allowing the experience of a family trip to Mexico to count. This is of extremely marginal relevance, but it lets me include a picture of a comic strip, and I always like getting to do that.

Reading the Comics, December 30, 2017: Looking To 2018 Edition


The last full week of 2017 was also a slow one for mathematically-themed comic strips. You can tell by how many bits of marginally relevant stuff I include. In this case, it also includes a couple that just mention the current or the upcoming year. So you’ve been warned.

Mac King and Bill King’s Magic in a Minute activity for the 24th is a logic puzzle. I’m not sure there’s deep mathematics to it, but it’s some fun to reason out.

John Graziano’s Ripley’s Believe It Or Not for the 24th mentions the bit of recreational group theory that normal people know, the Rubik’s Cube. The group theory comes in from rotations: you can take rows or columns on the cube and turn them, a quarter or a half or a three-quarters turn. Which rows you turn, and which ways you turn them, form a group. So it’s a toy that inspires deep questions. Who wouldn’t like to know in how few moves a cube could be solved? We know there are at least some puzzles that take 18 moves to solve. (You can calculate the number of different cube arrangements there are, and how many arrangements you could make by shuffling a cube around with 17 moves. There’s more possible arrangements than there are ones you can get to in 17 moves; therefore, there must be at least one arrangement that takes 18 moves to solve.) A 2010 computer-assisted proof by Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge showed that at most 20 face turns are needed for every possible cube to be solved. I don’t know if there’s been any success figuring out whether 19 or even 18 is necessarily enough.

Griffith: 'Here we are, Zippy, back in the land of our childhood.' Zippy: 'Are we still in the ninth grade?' Griffith: 'Kind of ... although I still can't remember a thing about algebra.' Zippy: 'So many spitballs and paper airplanes ago!!' Griffith: 'Why did I act up so much in school, Zippy? Was it a Freudian thing?' Zippy: 'It was a cry for kelp.' Griffith: 'Don't you mean a cry for help? I don't think kelp was even a word I knew back in the 50s.' Zippy: 'Seaweed is the fifth dimension!'
Bill Griffith’s Zippy the Pinhead for the 26th of December, 2017. This is not as strongly a memoir or autobiographical strip as Griffith will sometimes do, which is a shame. Those are always captivating. I have fun reading Zippy the Pinhead and understand why people wouldn’t. But the memoir strips I recommend even to people who don’t care for the usual fare.

Bill Griffith’s Zippy the Pinhead for the 26th just mentions algebra as a thing that Griffith can’t really remember, even in one of his frequent nostalgic fugues. I don’t know that Zippy’s line about the fifth dimension is meant to refer to geometry. It might refer to the band, but that would be a bit odd. Yes, I know, Zippy the Pinhead always speaks oddly, but in these nostalgic fugue strips he usually provides some narrative counterpoint.

Larry Wright’s Motley Classics for the 26th originally ran in 1986. I mention this because it makes the odd dialogue of getting “a new math program” a touch less odd. I confess I’m not sure what the kid even got. An educational game? Something for numerical computing? The coal-fired, gear-driven version of Mathematica that existed in the 1980s? It’s a mystery, it is.

Ryan Pagelow’s Buni for the 27th is really a calendar joke. It seems to qualify as an anthropomorphic numerals joke, though. It’s not a rare sentiment either.

Jef Mallett’s Frazz for the 29th is similarly a calendar joke. It does play on 2017 being a prime number, a fact that doesn’t really mean much besides reassuring us that it’s not a leap year. I’m not sure just what’s meant by saying it won’t repeat for another 2017 years, at least that wouldn’t be just as true for (say) 2015 or 2019. But as Frazz points out, we do cling to anything that floats in times like these.

Reading the Comics, November 18, 2017: Story Problems and Equation Blackboards Edition


It was a normal-paced week at Comic Strip Master Command. It was also one of those weeks that didn’t have anything from Comics Kingdom or Creators.Com. So I’m afraid you’ll all just have to click the links for strips you want to actually see. Sorry.

Bill Amend’s FoxTrot for the 12th has Jason and Marcus creating “mathic novels”. They, being a couple of mathematically-gifted smart people, credit mathematics knowledge with smartness. A “chiliagon” is a thousand-sided regular polygon that’s mostly of philosophical interest. A regular polygon with a thousand equal sides and a thousand equal angles looks like a circle. There’s really no way to draw one so that the human eye could see the whole figure and tell it apart from a circle. But if you can understand the idea of a regular polygon it seems like you can imagine a chilagon and see how that’s not a circle. So there’s some really easy geometry things that can’t be visualized, or at least not truly visualized, and just have to be reasoned with.

Rick Detorie’s One Big Happy for the 12th is a story-problem-subversion joke. The joke’s good enough as it is, but the supposition of the problem is that the driving does cover fifty miles in an hour. This may not be the speed the car travels at the whole time of the problem. Mister Green is maybe speeding to make up for all the time spent travelling slower.

Brandon Sheffield and Dami Lee’s Hot Comics for Cool People for the 13th uses a blackboard full of equations to represent the deep thinking being done on a silly subject.

Shannon Wheeler’s Too Much Coffee Man for the 15th also uses a blackboard full of equations to represent the deep thinking being done on a less silly subject. It’s a really good-looking blackboard full of equations, by the way. Beyond the appearance of our old friend E = mc2 there’s a lot of stuff that looks like legitimate quantum mechanics symbols there. They’re at least not obvious nonsense, as best I can tell without the ability to zoom the image in. I wonder if Wheeler didn’t find a textbook and use some problems from it for the feeling of authenticity.

Samson’s Dark Side of the Horse for the 16th is a story-problem subversion joke.

Jef Mallett’s Frazz for the 18th talks about making a bet on the World Series, which wrapped up a couple weeks ago. It raises the question: can you bet on an already known outcome? Well, sure, you can bet on anything you like, given a willing partner. But there does seem to be something fundamentally different between betting on something whose outcome isn’t in principle knowable, such as the winner of the next World Series, and betting on something that could be known but happens not to be, such as the winner of the last. We see this expressed in questions like “is it true the 13th of a month is more likely to be Friday than any other day of the week?” If you know which month and year is under discussion the chance the 13th is Friday is either 1 or 0. But we mean something more like, if we don’t know what month and year it is, what’s the chance this is a month with a Friday the 13th? Something like this is at work in this World Series bet. (The Astros won the recently completed World Series.)

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th is also featured on some underemployed philosopher’s “Reading the Comics” WordPress blog and fair enough. Utilitarianism exists in an odd triple point, somewhere on the borders of ethics, economics, and mathematics. The idea that one could quantize the good or the utility or the happiness of society, and study how actions affect it, is a strong one. It fits very well the modern mindset that holds everything can be quantified even if we don’t know how to do it well just yet. And it appeals strongly to a mathematically-minded person since it sounds like pure reason. It’s not, of course, any more than any ethical scheme can be. But it sounds like the ethics a Vulcan would come up with and that appeals to a certain kind of person. (The comic is built on one of the implications of utilitarianism that makes it seem like the idea’s gone off the rails.)

There’s some mathematics symbols on The Utilitarian’s costume. The capital U on his face is probably too obvious to need explanation. The \sum u on his chest relies on some mathematical convention. For maybe a half-millennium now mathematicians have been using the capital sigma to mean “take a sum of things”. The things are whatever the expression after that symbol is. Usually, the Sigma will have something below and above which carries meaning. It says what the index is for the thing after the symbol, and what the bounds of the index are. Here, it’s not set. This is common enough, though, if this is understood from context. Or if it’s obvious. The small ‘u’ to the right suggests the utility of whatever’s thought about. (“Utility” being the name for the thing measured and maximized; it might be happiness, it might be general well-being, it might be the number of people alive.) So the symbols would suggest “take the sum of all the relevant utilities”. Which is the calculation that would be done in this case.

Reading the Comics, November 8, 2017: Uses Of Mathematics Edition


Was there an uptick in mathematics-themed comic strips in the syndicated comics this past week? It depends how tight a definition of “theme” you use. I have enough to write about that I’m splitting the week’s load. And I’ve got a follow-up to that Wronski post the other day, so I’m feeling nice and full of content right now. So here goes.

Zach Weinersmith’s Saturday Morning Breakfast Cereal posted the 5th gets my week off to an annoying start. Science and mathematics and engineering people have a tendency to be smug about their subjects. And to see aptitude or interest in their subjects as virtue, or at least intelligence. (If they see a distinction between virtue and intelligence.) To presume that an interest in the field I like is a demonstration of intelligence is a pretty nasty and arrogant move.

And yes, I also dislike the attitude that school should be about training people. Teaching should be about letting people be literate with the great thoughts people have had. Mathematics has a privileged spot here. The field, as we’ve developed it, seems to build on human aptitudes for number and space. It’s easy to find useful sides to it. Doesn’t mean it’s vocational training.

Lincoln Peirce’s Big Nate on the 6th discovered mathematics puzzles. And this gave him the desire to create a new mathematical puzzle that he would use to get rich. Good luck with that. Coming up with interesting enough recreational mathematics puzzles is hard. Presenting it in a way that people will buy is another, possibly greater, challenge. It takes luck and timing and presentation, just as getting a hit song does. Sudoku, for example, spent five years in the Dell Magazine puzzle books before getting a foothold in Japanese newspapers. And then twenty years there before being noticed in the English-speaking puzzle world. Big Nate’s teacher tries to encourage him, although that doesn’t go as Mr Staples might have hoped. (The storyline continues to the 11th. Spoiler: Nate does not invent the next great recreational mathematics puzzle.)

Jef Mallett’s Frazz for the 7th start out in a mathematics class, at least. I suppose the mathematical content doesn’t matter, though. Mallett’s making a point about questions that, I confess, I’m not sure I get. I’ll leave it for wiser heads to understand.

Mike Thompson’s Grand Avenue for the 8th is a subverted word-problem joke. And I suppose a reminder about the need for word problems to parse as things people would do, or might be interested in. I can’t go along with characterizing buying twelve candy bars “gluttonous” though. Not if they’re in a pack of twelve or something like that. I may be unfair to Grand Avenue. Mind, until a few years ago I was large enough my main method of getting around was “being rolled by Oompa-Loompas”, so I could be a poor judge.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 8th does a rounding joke. It’s not much, but I’ve included appearances of this joke before and it seems unfair to skip it this time.

Reading the Comics, September 24, 2017: September 24, 2017 Edition


Comic Strip Master Command sent a nice little flood of comics this week, probably to make sure that I transitioned from the A To Z project to normal activity without feeling too lost. I’m going to cut the strips not quite in half because I’m always delighted when I can make a post that’s just a single day’s mathematically-themed comics. Last Sunday, the 24th of September, was such a busy day. I’m cheating a little on what counts as noteworthy enough to talk about here. But people like comic strips, and good on them for liking them.

Norm Feuti’s Gil for the 24th sees Gil discover and try to apply some higher mathematics. There’s probably a good discussion about what we mean by division to explain why Gil’s experiment didn’t pan out. I would pin it down to eliding the difference between “dividing in half” and “dividing by a half”, which is a hard one. Terms that seem almost alike but mean such different things are probably the hardest part of mathematics.

Gil, eating cookies and doing mathematics. 'Dividing fractions. 1/2 divided by 1/2', which he works out to be 1. 'One half divided in half equals one? Wait a minute. If these calculations are correct, then that means ... ' And he takes a half-cookie and snaps it in half, to his disappointment. 'Humph. what's the point of this advanced math if it only works on paper?'
Norm Feuti’s Gil for the 24th of September, 2017, didn’t appear on Gocomics.com or Comics Kingdom, my usual haunts for these comics. But I started reading the strip when it was on Comics Kingdom, and keep reading its reruns. Feuti has continued the comic strip on his own web site, and posts it on Twitter. So it’s quite easy to pick the strip back up, if you have a Twitter account or can read RSS from it. I assume you can read RSS from it.

Russell Myers’s Broom Hilda looks like my padding. But the last panel of the middle row gets my eye. The squirrels talk about how on the equinox night and day “can never be of identical length, due to the angular size of the sun and atmospheric refraction”. This is true enough for the equinox. While any spot on the Earth might see twelve hours facing the sun and twelve hours facing away, the fact the sun isn’t a point, and that the atmosphere carries light around to the “dark” side of the planet, means daylight lasts a little longer than night.

Ah, but. This gets my mathematical modelling interest going. Because it is true that, at least away from the equator, there’s times of year that day is way shorter than night. And there’s times of year that day is way longer than night. Shouldn’t there be some time in the middle when day is exactly equal to night?

The easy argument for is built on the Intermediate Value Theorem. Let me define a function, with domain each of the days of the year. The range is real numbers. It’s defined to be the length of day minus the length of night. Let me say it’s in minutes, but it doesn’t change things if you argue that it’s seconds, or milliseconds, or hours, if you keep parts of hours in also. So, like, 12.015 hours or something. At the height of winter, this function is definitely negative; night is longer than day. At the height of summer, this function is definitely positive; night is shorter than day. So therefore there must be some time, between the height of winter and the height of summer, when the function is zero. And therefore there must be some day, even if it isn’t the equinox, when night and day are the same length

There’s a flaw here and I leave that to classroom discussions to work out. I’m also surprised to learn that my onetime colleague Dr Helmer Aslaksen’s grand page of mathematical astronomy and calendar essays doesn’t seem to have anything about length of day calculations. But go read that anyway; you’re sure to find something fascinating.

Mike Baldwin’s Cornered features an old-fashioned adding machine being used to drown an audience in calculations. Which makes for a curious pairing with …

Bill Amend’s FoxTrot, and its representation of “math hipsters”. I hate to encourage Jason or Marcus in being deliberately difficult. But there are arguments to make for avoiding digital calculators in favor of old-fashioned — let’s call them analog — calculators. One is that people understand tactile operations better, or at least sooner, than they do digital ones. The slide rule changes multiplication and division into combining or removing lengths of things, and we probably have an instinctive understanding of lengths. So this should train people into anticipating what a result is likely to be. This encourages sanity checks, verifying that an answer could plausibly be right. And since a calculation takes effort, it encourages people to think out how to arrange the calculation to require less work. This should make it less vulnerable to accidents.

I suspect that many of these benefits are what you get in the ideal case, though. Slide rules, and abacuses, are no less vulnerable to accidents than anything else is. And if you are skilled enough with the abacus you have no trouble multiplying 18 by 7, you probably would not find multiplying 17 by 8 any harder, and wouldn’t notice if you mistook one for the other.

Jef Mallett’s Frazz asserts that numbers are cool but the real insight is comparisons. And we can argue that comparisons are more basic than numbers. We can talk about one thing being bigger than another even if we don’t have a precise idea of numbers, or how to measure them. See every mathematics blog introducing the idea of different sizes of infinity.

Bill Whitehead’s Free Range features Albert Einstein, universal symbol for really deep thinking about mathematics and physics and stuff. And even a blackboard full of equations for the title panel. I’m not sure whether the joke is a simple absent-minded-professor joke, or whether it’s a relabelled joke about Werner Heisenberg. Absent-minded-professor jokes are not mathematical enough for me, so let me point once again to American Cornball. They’re the first subject in Christopher Miller’s encyclopedia of comic topics. So I’ll carry on as if the Werner Heisenberg joke were the one meant.

Heisenberg is famous, outside World War II history, for the Uncertainty Principle. This is one of the core parts of quantum mechanics, under which there’s a limit to how precisely one can know both the position and momentum of a thing. To identify, with absolutely zero error, where something is requires losing all information about what its momentum might be, and vice-versa. You see the application of this to a traffic cop’s question about knowing how fast someone was going. This makes some neat mathematics because all the information about something is bundled up in a quantity called the Psi function. To make a measurement is to modify the Psi function by having an “operator” work on it. An operator is what we call a function that has domains and ranges of other functions. To measure both position and momentum is equivalent to working on Psi with one operator and then another. But these operators don’t commute. You get different results in measuring momentum and then position than you do measuring position and then momentum. And so we can’t know both of these with infinite precision.

There are pairs of operators that do commute. They’re not necessarily ones we care about, though. Like, the total energy commutes with the square of the angular momentum. So, you know, if you need to measure with infinite precision the energy and the angular momentum of something you can do it. If you had measuring tools that were perfect. You don’t, but you could imagine having them, and in that case, good. Underlying physics wouldn’t spoil your work.

Probably the panel was an absent-minded professor joke.

Reading the Comics, September 22, 2017: Doughnut-Cutting Edition


The back half of last week’s mathematically themed comic strips aren’t all that deep. They make up for it by being numerous. This is how calculus works, so, good job, Comic Strip Master Command. Here’s what I have for you.

Mark Anderson’s Andertoons for the 20th marks its long-awaited return to these Reading The Comics posts. It’s of the traditional form of the student misunderstanding the teacher’s explanations. Arithmetic edition.

Marty Links’s Emmy Lou for the 20th was a rerun from the 22nd of September, 1976. It’s just a name-drop. It’s not like it matters for the joke which textbook was lost. I just include it because, what the heck, might as well.

Jef Mallett’s Frazz for the 21st uses the form of a story problem. It’s a trick question anyway; there’s really no way the Doppler effect is going to make an ice cream truck’s song unrecognizable, not even at highway speeds. Too distant to hear, that’s a possibility. Also I don’t know how strictly regional this is but the ice cream trucks around here have gone in for interrupting the music every couple seconds with some comical sound effect, like a “boing” or something. I don’t know what this hopes to achieve besides altering the timeline of when the ice cream seller goes mad.

Mark Litzler’s Joe Vanilla for the 21st I already snuck in here last week, in talking about ‘x’. The variable does seem like a good starting point. And, yeah, hypothesis block is kind of a thing. There’s nothing quite like staring at a problem that should be interesting and having no idea where to start. This happens even beyond grade school and the story problems you do then. What to do about it? There’s never one thing. Study it a good while, read about related problems a while. Maybe work on something that seems less obscure a while. It’s very much like writer’s block.

Ryan North’s Dinosaur Comics rerun for the 22nd straddles the borders between mathematics, economics, and psychology. It’s a problem about making forecasts about other people’s behavior. It’s a mystery of game theory. I don’t know a proper analysis for this game. I expect it depends on how many rounds you get to play: if you have a sense of what people typically do, you can make a good guess of what they will do. If everyone gets a single shot to play, all kinds of crazy things might happen.

Jef Mallet’s Frazz gets in again on the 22nd with some mathematics gibberish-talk, including some tossing around of the commutative property. Among other mistakes Caulfield was making here, going from “less is more to therefore more is less” isn’t commutation. Commutation is about binary operations, where you match a pair of things to a single thing. The operation commutes if it never matters what the order of the pair of things is. It doesn’t commute if it ever matters, even a single time, what the order is. Commutativity gets introduced in arithmetic where there are some good examples of the thing. Addition and multiplication commute. Subtraction and division don’t. From there it gets forgotten until maybe eventually it turns up in matrix multiplication, which doesn’t commute. And then it gets forgotten once more until maybe group theory. There, whether operations commute or not is as important a divide as the one between vertebrates and invertebrates. But I understand kids not getting why they should care about commuting. Early on it seems like a longwinded way to say what’s obvious about addition.

Michael Cavna’s Warped for the 22nd is the Venn Diagram joke for this round of comics.

Hugo: 'There's three of us and I have four doughnuts, it won't divide ... so I'll have to eat the extra one!' Punkinhead: 'Wait, Hugo, I can solve it, I'll go get my brother.'
Bud Blake’s Tiger rerun for the 23rd of September, 2017. Do have to wonder what’s going through Julian’s head. On the one hand, he’s getting one doughnut, come what may. On the other, he’s really not needed for the joke since it would play just as well with three doughnuts to split between Hugo and Punkinhead. I suppose cutting a doughnut in thirds is more unthinkable than cutting a doughnut in half, but neither one’s an easy thing for me to imagine.

Bud Blake’s Tiger rerun for the 23rd starts with a real-world example of your classic story problem. I like the joke in it, and I also like Hugo’s look of betrayal and anger in the second panel. A spot of expressive art will do so good for a joke.

Reading the Comics, July 22, 2017: Counter-mudgeon Edition


I’m not sure there is an overarching theme to the past week’s gifts from Comic Strip Master Command. If there is, it’s that I feel like some strips are making cranky points and I want to argue against their cases. I’m not sure what the opposite of a curmudgeon is. So I shall dub myself, pending a better idea, a counter-mudgeon. This won’t last, as it’s not really a good name, but there must be a better one somewhere. We’ll see it, now that I’ve said I don’t know what it is.

Rabbits at a chalkboard. 'The result is not at all what we expected, Von Thump. According to our calculations, parallel universes may exist, and we may also be able to link them with our own by wormholes that, in strictly mathematical terms, end up in a black top hat.'
Niklas Eriksson’s Carpe Diem for the 17th of July, 2017. First, if anyone isn’t thinking of that Pixar short then I’m not sure we can really understand each other. Second, ‘von Thump’ is a fine name for a bunny scientist and if it wasn’t ever used in the rich lore of Usenet group alt.devilbunnies I shall be disappointed. Third, Eriksson made an understandable but unfortunate mistake in composing this panel. While both rabbits are wearing glasses, they’re facing away from the viewer. It’s always correct to draw animals wearing eyeglasses, or to photograph them so. But we should get to see them in full eyeglass pelage. You’d think they would teach that in Cartoonist School or something.

Niklas Eriksson’s Carpe Diem for the 17th features the blackboard full of equations as icon for serious, deep mathematical work. It also features rabbits, although probably not for their role in shaping mathematical thinking. Rabbits and their breeding were used in the simple toy model that gave us Fibonacci numbers, famously. And the population of Arctic hares gives those of us who’ve reached differential equations a great problem to do. The ecosystem in which Arctic hares live can be modelled very simply, as hares and a generic predator. We can model how the populations of both grow with simple equations that nevertheless give us surprises. In a rich, diverse ecosystem we see a lot of population stability: one year where an animal is a little more fecund than usual doesn’t matter much. In the sparse ecosystem of the Arctic, and the one we’re building worldwide, small changes can have matter enormously. We can even produce deterministic chaos, in which if we knew exactly how many hares and predators there were, and exactly how many of them would be born and exactly how many would die, we could predict future populations. But the tiny difference between our attainable estimate and the reality, even if it’s as small as one hare too many or too few in our model, makes our predictions worthless. It’s thrilling stuff.

Vic Lee’s Pardon My Planet for the 17th reads, to me, as a word problem joke. The talk about how much change Marian should get back from Blake could be any kind of minor hassle in the real world where one friend covers the cost of something for another but expects to be repaid. But counting how many more nickels one person has than another? That’s of interest to kids and to story-problem authors. Who else worries about that count?

Fortune teller: 'All of your money problems will soon be solved, including how many more nickels Beth has than Jonathan, and how much change Marian should get back from Blake.'
Vic Lee’s Pardon My Planet for the 17th of July, 2017. I am surprised she had no questions about how many dimes Jonathan must have, although perhaps that will follow obviously from knowing the Beth nickel situation.

Jef Mallet’s Frazz for the 17th straddles that triple point joining mathematics, philosophy, and economics. It seems sensible, in an age that embraces the idea that everything can be measured, to try to quantify happiness. And it seems sensible, in age that embraces the idea that we can model and extrapolate and act on reasonable projections, to try to see what might improve our happiness. This is so even if it’s as simple as identifying what we should or shouldn’t be happy about. Caulfield is circling around the discovery of utilitarianism. It’s a philosophy that (for my money) is better-suited to problems like how ought the city arrange its bus lines than matters too integral to life. But it, too, can bring comfort.

Corey Pandolph’s Barkeater Lake rerun for the 20th features some mischievous arithmetic. I’m amused. It turns out that people do have enough of a number sense that very few people would let “17 plus 79 is 4,178” pass without comment. People might not be able to say exactly what it is, on a glance. If you answered that 17 plus 79 was 95, or 102, most people would need to stop and think about whether either was right. But they’re likely to know without thinking that it can’t be, say, 56 or 206. This, I understand, is so even for people who aren’t good at arithmetic. There is something amazing that we can do this sort of arithmetic so well, considering that there’s little obvious in the natural world that would need the human animal to add 17 and 79. There are things about how animals understand numbers which we don’t know yet.

Alex Hallatt’s Human Cull for the 21st seems almost a direct response to the Barkeater Lake rerun. Somehow “making change” is treated as the highest calling of mathematics. I suppose it has a fair claim to the title of mathematics most often done. Still, I can’t get behind Hallatt’s crankiness here, and not just because Human Cull is one of the most needlessly curmudgeonly strips I regularly read. For one, store clerks don’t need to do mathematics. The cash registers do all the mathematics that clerks might need to do, and do it very well. The machines are cheap, fast, and reliable. Not using them is an affectation. I’ll grant it gives some charm to antiques shops and boutiques where they write your receipt out by hand, but that’s for atmosphere, not reliability. And it is useful the clerk having a rough idea what the change should be. But that’s just to avoid the risk of mistakes getting through. No matter how mathematically skilled the clerk is, there’ll sometimes be a price entered wrong, or the customer’s money counted wrong, or a one-dollar bill put in the five-dollar bill’s tray, or a clerk picking up two nickels when three would have been more appropriate. We should have empathy for the people doing this work.

Reading the Comics, May 2, 2017: Puzzle Week


If there was a theme this week, it was puzzles. So many strips had little puzzles to work out. You’ll see. Thank you.

Bill Amend’s FoxTrot for the 30th of April tries to address my loss of Jumble panels. Thank you, whoever at Comic Strip Master Command passed along word of my troubles. I won’t spoil your fun. As sometimes happens with a Jumble you can work out the joke punchline without doing any of the earlier ones. 64 in binary would be written 1000000. And from this you know what fits in all the circles of the unscrambled numbers. This reduces a lot of the scrambling you have to do: just test whether 341 or 431 is a prime number. Check whether 8802, 8208, or 2808 is divisible by 117. The integer cubed you just have to keep trying possibilities. But only one combination is the cube of an integer. The factorial of 12, just, ugh. At least the circles let you know you’ve done your calculations right.

Steve McGarry’s activity feature Kidtown for the 30th plays with numbers some. And a puzzle that’ll let you check how well you can recognize multiles of four that are somewhere near one another. You can use diagonals too; that’s important to remember.

Mac King and Bill King’s Magic in a Minute feature for the 30th is also a celebration of numerals. Enjoy the brain teaser about why the encoding makes sense. I don’t believe the hype about NASA engineers needing days to solve a puzzle kids got in minutes. But if it’s believable, is it really hype?

Marty Links’s Emmy Lou from the 29th of October, 1963 was rerun the 2nd of May. It’s a reminder that mathematics teachers of the early 60s also needed something to tape to their doors.

Mel Henze’s Gentle Creatures rerun for the 2nd of May is another example of the conflating of “can do arithmetic” with “intelligence”.

Mark Litzler’s Joe Vanilla for the 2nd name-drops the Null Hypothesis. I’m not sure what Litzler is going for exactly. The Null Hypothesis, though, comes to us from statistics and from inference testing. It turns up everywhere when we sample stuff. It turns up in medicine, in manufacturing, in psychology, in economics. Everywhere we might see something too complicated to run the sorts of unambiguous and highly repeatable tests that physics and chemistry can do — things that are about immediately practical questions — we get to testing inferences. What we want to know is, is this data set something that could plausibly happen by chance? Or is it too far out of the ordinary to be mere luck? The Null Hypothesis is the explanation that nothing’s going on. If your sample is weird in some way, well, everything is weird. What’s special about your sample? You hope to find data that will let you reject the Null Hypothesis, showing that the data you have is so extreme it just can’t plausibly be chance. Or to conclude that you fail to reject the Null Hypothesis, showing that the data is not so extreme that it couldn’t be chance. We don’t accept the Null Hypothesis. We just allow that more data might come in sometime later.

I don’t know what Litzler is going for with this. I feel like I’m missing a reference and I’ll defer to a finance blogger’s Reading the Comics post.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 3rd is another in the string of jokes using arithmetic as source of indisputably true facts. And once again it’s “2 + 2 = 5”. Somehow one plus one never rates in this use.

Aaron Johnson’s W T Duck rerun for the 3rd is the Venn Diagram joke for this week. It’s got some punch to it, too.

Je Mallett’s Frazz for the 5th took me some time to puzzle out. I’ll allow it.

Reading the Comics, April 18, 2017: Give Me Some Word Problems Edition


I have my reasons for this installment’s title. They involve my deductions from a comic strip. Give me a few paragraphs.

Mark Anderson’s Andertoons for the 16th asks for attention from whatever optician-written blog reads the comics for the eye jokes. And meets both the Venn Diagram and the Mark Anderson’s Andertoons content requirements for this week. Good job! Starts the week off strong.

Lincoln Pierce’s Big Nate: First Class for the 16th, rerunning the strip from 1993, is about impossibly low-probability events. We can read the comic as a joke about extrapolating a sequence from a couple examples. Properly speaking we can’t; any couple of terms can be extended in absolutely any way. But we often suppose a sequence follows some simple pattern, as many real-world things do. I’m going to pretend we can read Jenny’s estimates of the chance she’ll go out with him as at all meaningful. If Jenny’s estimate of the chance she’d go out with Nate rose from one in a trillion to one in a billion over the course of a week, this could be a good thing. If she’s a thousand times more likely each week to date him — if her interest is rising geometrically — this suggests good things for Nate’s ego in three weeks. If she’s only getting 999 trillionths more likely each week — if her interest is rising arithmetically — then Nate has a touch longer to wait before a date becomes likely.

(I forget whether she has agreed to a date in the 24 years since this strip first appeared. He has had some dates with kids in his class, anyway, and some from the next grade too.)

J C Duffy’s Lug Nuts for the 16th is a Pi Day joke that ran late.

Jef Mallett’s Frazz for the 17th starts a little thread about obsolete references in story problems. It’s continued on the 18th. I’m sympathetic in principle to both sides of the story problem debate.

Is the point of the first problem, Farmer Joe’s apples, to see whether a student can do a not-quite-long division? Or is it to see whether the student can extract a price-per-quantity for something, and apply that to find the quantity to fit a given price? If it’s the latter then the numbers don’t make a difference. One would want to avoid marking down a student who knows what to do, and could divide 15 cents by three, but would freeze up if a more plausible price of, say, $2.25 per pound had to be divided by three.

But then the second problem, Mr Schad driving from Belmont to Cadillac, got me wondering. It is about 84 miles between the two Michigan cities (and there is a Reed City along the way). The time it takes to get from one city to another is a fair enough problem. But these numbers don’t make sense. At 55 miles per hour the trip takes an awful 1.5273 hours. Who asks elementary school kids to divide 84 by 55? On purpose? But at the state highway speed limit (for cars) of 70 miles per hour, the travel time is 1.2 hours. 84 divided by 70 is a quite reasonable thing to ask elementary school kids to do.

And then I thought of this: you could say Belmont and Cadillac are about 88 miles apart. Google Maps puts the distance as 86.8 miles, along US 131; but there’s surely some point in the one town that’s exactly 88 miles from some point in the other, just as there’s surely some point exactly 84 miles from some point in the other town. 88 divided by 55 would be another reasonable problem for an elementary school student; 1.6 hours is a reasonable answer. The (let’s call it) 1980s version of the question ought to see the car travel 88 miles at 55 miles per hour. The contemporary version ought to see the car travel 84 miles at 70 miles per hour. No reasonable version would make it 84 miles at 55 miles per hour.

So did Mallett take a story problem that could actually have been on an era-appropriate test and ancient it up?

Before anyone reports me to Comic Strip Master Command let me clarify what I’m wondering about. I don’t care if the details of the joke don’t make perfect sense. They’re jokes, not instruction. All the story problem needs to set up the joke is the obsolete speed limit; everything else is fluff. And I enjoyed working out variation of the problem that did make sense, so I’m happy Mallett gave me that to ponder.

Here’s what I do wonder about. I’m curious if story problems are getting an unfair reputation. I’m not an elementary school teacher, or parent of a kid in school. I would like to know what the story problems look like. Do you, the reader, have recent experience with the stuff farmers, drivers, and people weighing things are doing in these little stories? Are they measuring things that people would plausibly care about today, and using values that make sense for the present day? I’d like to know what the state of story problems is.

Lee: 'I'm developing a new theory about avocado intelligence.' Joules: 'You can't be serious.' Lee: 'Avocado, what is the square root of 8,649?' Avocado: 'That's easy. It's 92?' Lee: 'Wrong. It's 93.' Joules: 'See? It's just a dumb piece of fruit.' Lee: 'I honestly thought I was on to something.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 18th of April, 2017. Before you ask what exactly the old theory of avocado intelligence was remember that Edison Lee’s lab partner there is a talking rat. Just saying.

John Hambrock’s The Brilliant Mind of Edison Lee for the 18th uses mental arithmetic as the gauge of intelligence. Pretty harsly, too. I wouldn’t have known the square root of 8649 off the top of my head either, although it’s easy to tell that 92 can’t be right: the last digit of 92 squared has to be 4. It’s also easy to tell that 92 has to be about right, though, as 90 times 90 will be about 8100. Given this information, if you knew that 8,649 was a perfect square, you’d be hard-pressed to think of a better guess for its value than 93. But since most whole numbers are not perfect squares, “a little over 90” is the best I’d expect to do.

Reading the Comics, March 4, 2017: Frazz, Christmas Trees, and Weddings Edition


It was another of those curious weeks when Comic Strip Master Command didn’t send quite enough comics my way. Among those they did send were a couple of strips in pairs. I can work with that.

Samson’s Dark Side Of The Horse for the 26th is the Roman Numerals joke for this essay. I apologize to Horace for being so late in writing about Roman Numerals but I did have to wait for Cecil Adams to publish first.

In Jef Mallett’s Frazz for the 26th Caulfield ponders what we know about Pythagoras. It’s hard to say much about the historical figure: he built a cult that sounds outright daft around himself. But it’s hard to say how much of their craziness was actually their craziness, how much was just that any ancient society had a lot of what seems nutty to us, and how much was jokes (or deliberate slander) directed against some weirdos. What does seem certain is that Pythagoras’s followers attributed many of their discoveries to him. And what’s certain is that the Pythagorean Theorem was known, at least a thing that could be used to measure things, long before Pythagoras was on the scene. I’m not sure if it was proved as a theorem or whether it was just known that making triangles with the right relative lengths meant you had a right triangle.

Greg Evans’s Luann Againn for the 28th of February — reprinting the strip from the same day in 1989 — uses a bit of arithmetic as generic homework. It’s an interesting change of pace that the mathematics homework is what keeps one from sleep. I don’t blame Luann or Puddles for not being very interested in this, though. Those sorts of complicated-fraction-manipulation problems, at least when I was in middle school, were always slogs of shuffling stuff around. They rarely got to anything we’d like to know.

Jef Mallett’s Frazz for the 1st of March is one of those little revelations that statistics can give one. Myself, I was always haunted by the line in Carl Sagan’s Cosmos about how, in the future, with the Sun ageing and (presumably) swelling in size and heat, the Earth would see one last perfect day. That there would most likely be quite fine days after that didn’t matter, and that different people might disagree on what made a day perfect didn’t matter. Setting out the idea of a “perfect day” and realizing there would someday be a last gave me chills. It still does.

Richard Thompson’s Poor Richard’s Almanac for the 1st and the 2nd of March have appeared here before. But I like the strip so I’ll reuse them too. They’re from the strip’s guide to types of Christmas trees. The Cubist Fur is described as “so asymmetrical it no longer inhabits Euclidean space”. Properly neither do we, but we can’t tell by eye the difference between our space and a Euclidean space. “Non-Euclidean” has picked up connotations of being so bizarre or even horrifying that we can’t hope to understand it. In practice, it means we have to go a little slower and think about, like, what would it look like if we drew a triangle on a ball instead of a sheet of paper. The Platonic Fir, in the 2nd of March strip, looks like a geometry diagram and I doubt that’s coincidental. It’s very hard to avoid thoughts of Platonic Ideals when one does any mathematics with a diagram. We know our drawings aren’t very good triangles or squares or circles especially. And three-dimensional shapes are worse, as see every ellipsoid ever done on a chalkboard. But we know what we mean by them. And then we can get into a good argument about what we mean by saying “this mathematical construct exists”.

Mark Litzler’s Joe Vanilla for the 3rd uses a chalkboard full of mathematics to represent the deep thinking behind a silly little thing. I can’t make any of the symbols out to mean anything specific, but I do like the way it looks. It’s quite well-done in looking like the shorthand that, especially, physicists would use while roughing out a problem. That there are subscripts with forms like “12” and “22” with a bar over them reinforces that. I would, knowing nothing else, expect this to represent some interaction between particles 1 and 2, and 2 with itself, and that the bar means some kind of complement. This doesn’t mean much to me, but with luck, it means enough to the scientist working it out that it could be turned into a coherent paper.

'Has Carl given you any reason not to trust him?' 'No, not yet. But he might.' 'Fi ... you seek 100% certainty in people, but that doesn't exist. In the end,' and Dethany is drawn as her face on a pi symbol, 'we're *all* irrational numbers.'
Bill Holbrook’s On The Fastrack for the 3rd of March, 2017. Fi’s dress isn’t one of those … kinds with the complicated pattern of holes in it. She got it torn while trying to escape the wedding and falling into the basement.

Bill Holbrook’s On The Fastrack is this week about the wedding of the accounting-minded Fi. And she’s having last-minute doubts, which is why the strip of the 3rd brings in irrational and anthropomorphized numerals. π gets called in to serve as emblematic of the irrational numbers. Can’t fault that. I think the only more famously irrational number is the square root of two, and π anthropomorphizes more easily. Well, you can draw an established character’s face onto π. The square root of 2 is, necessarily, at least two disconnected symbols and you don’t want to raise distracting questions about whether the root sign or the 2 gets the face.

That said, it’s a lot easier to prove that the square root of 2 is irrational. Even the Pythagoreans knew it, and a bright child can follow the proof. A really bright child could create a proof of it. To prove that π is irrational is not at all easy; it took mathematicians until the 19th century. And the best proof I know of the fact does it by a roundabout method. We prove that if a number (other than zero) is rational then the tangent of that number must be irrational, and vice-versa. And the tangent of π/4 is 1, so therefore π/4 must be irrational, so therefore π must be irrational. I know you’ll all trust me on that argument, but I wouldn’t want to sell it to a bright child.

'Fi ... humans are complicated. Like the irrational number pi, we can go on forever. You never get to the bottom of us! But right now, upstairs, there are two variables who *want* you in their lives. Assign values to them.' Carl, Fi's fiancee, is drawn as his face with a y; his kid as a face on an x.
Bill Holbrook’s On The Fastrack for the 4th of March, 2017. I feel bad that I completely forgot Carl had a kid and that the face on the x doesn’t help me remember anything.

Holbrook continues the thread on the 4th, extends the anthropomorphic-mathematics-stuff to call people variables. There’s ways that this is fair. We use a variable for a number whose value we don’t know or don’t care about. A “random variable” is one that could take on any of a set of values. We don’t know which one it does, in any particular case. But we do know — or we can find out — how likely each of the possible values is. We can use this to understand the behavior of systems even if we never actually know what any one of it does. You see how I’m going to defend this metaphor, then, especially if we allow that what people are likely or unlikely to do will depend on context and evolve in time.

Reading the Comics, February 23, 2017: The Week At Once Edition


For the first time in ages there aren’t enough mathematically-themed comic strips to justify my cutting the week’s roundup in two. No, I have no idea what I’m going to write about for Thursday. Let’s find out together.

Jenny Campbell’s Flo and Friends for the 19th faintly irritates me. Flo wants to make sure her granddaughter understands that just because it takes people on average 14 minutes to fall asleep doesn’t mean that anyone actually does, by listing all sorts of reasons that a person might need more than fourteen minutes to sleep. It makes me think of a behavior John Allen Paulos notes in Innumeracy, wherein the statistically wise points out that someone has, say, a one-in-a-hundred-million chance of being killed by a terrorist (or whatever) and is answered, “ah, but what if you’re that one?” That is, it’s a response that has the form of wisdom without the substance. I notice Flo doesn’t mention the many reasons someone might fall asleep in less than fourteen minutes.

But there is something wise in there nevertheless. For most stuff, the average is the most common value. By “the average” I mean the arithmetic mean, because that is what anyone means by “the average” unless they’re being difficult. (Mathematicians acknowledge the existence of an average called the mode, which is the most common value (or values), and that’s most common by definition.) But just because something is the most common result does not mean that it must be common. Toss a coin fairly a hundred times and it’s most likely to come up tails 50 times. But you shouldn’t be surprised if it actually turns up tails 51 or 49 or 45 times. This doesn’t make 50 a poor estimate for the average number of times something will happen. It just means that it’s not a guarantee.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 19th shows off an unusually dynamic camera angle. It’s in service for a class of problem you get in freshman calculus: find the longest pole that can fit around a corner. Oh, a box-spring mattress up a stairwell is a little different, what with box-spring mattresses being three-dimensional objects. It’s the same kind of problem. I want to say the most astounding furniture-moving event I’ve ever seen was when I moved a fold-out couch down one and a half flights of stairs single-handed. But that overlooks the caged mouse we had one winter, who moved a Chinese finger-trap full of crinkle paper up the tight curved plastic to his nest by sheer determination. The trap was far longer than could possibly be curved around the tube. We have no idea how he managed it.

J R Faulkner’s Promises, Promises for the 20th jokes that one could use Roman numerals to obscure calculations. So you could. Roman numerals are terrible things for doing arithmetic, at least past addition and subtraction. This is why accountants and mathematicians abandoned them pretty soon after learning there were alternatives.

Mark Anderson’s Andertoons for the 21st is the Mark Anderson’s Andertoons for the week. Probably anything would do for the blackboard problem, but something geometry reads very well.

Jef Mallett’s Frazz for the 21st makes some comedy out of the sort of arithmetic error we all make. It’s so easy to pair up, like, 7 and 3 make 10 and 8 and 2 make 10. It takes a moment, or experience, to realize 78 and 32 will not make 100. Forgive casual mistakes.

Bud Fisher’s Mutt and Jeff rerun for the 22nd is a similar-in-tone joke built on arithmetic errors. It’s got the form of vaudeville-style sketch compressed way down, which is probably why the third panel could be made into a satisfying final panel too.

'How did you do on the math test?' 'Terrible.' 'Will your mom be mad?' 'Maybe. But at least she'll know I didn't cheat!'
Bud Blake’s Tiger for the 23rd of February, 2017. I want to blame the colorists for making Hugo’s baby tooth look so weird in the second and third panels, but the coloring is such a faint thing at that point I can’t. I’m sorry to bring it to your attention if you didn’t notice and weren’t bothered by it before.

Bud Blake’s Tiger rerun for the 23rd just name-drops mathematics; it could be any subject. But I need some kind of picture around here, don’t I?

Mike Baldwin’s Cornered for the 23rd is the anthropomorphic numerals joke for the week.

Reading the Comics, January 16, 2017: Numerals Edition


Comic Strip Master Command decreed that last week should be busy again. So I’m splitting its strips into two essays. It’s a week that feels like it had more anthropomorphic numerals jokes than usual, but see if I actually count these things.

2 asks 4: 'Six, six, six, can't you think of anything but six?'
Mike Peters’s Mother Goose and Grimm for the 15th of January, 2017. I understand that sometimes you just have to use the idea you have instead of waiting for something that can best use the space available, but really, a whole Sunday strip for a single panel? And a panel that’s almost a barren stage?

Mike Peters’s Mother Goose and Grimm for the 15th I figured would be the anthropomorphic numerals joke for the week. Shows what I know. It is an easy joke, but I do appreciate the touch of craft involved in picking the numerals. The joke is just faintly dirty if the numbers don’t add to six. If they were a pair of 3’s, there’d be the unwanted connotations of a pair of twins talking about all this. A 6 and a 0 would make at least one character weirdly obsessed. So it has to be a 4 and a 2, or a 5 and a 1. I imagine Peters knew this instinctively, at this point in his career. It’s one of the things you learn in becoming an expert.

Mason Mastroianni, Mick Mastroianni, and Perri Hart’s B.C. for the 15th is mostly physical comedy, with a touch of — I’m not sure what to call this kind of joke. The one where a little arithmetic error results in bodily harm. In this sort of joke it’s almost always something not being carried that’s the error. I suppose that’s a matter of word economy. “Forgot to carry the (number)” is short, and everybody’s done it. And even if they don’t remember making this error, the phrasing clarifies to people that it’s a little arithmetic mistake. I think in practice mistaking a plus for a minus (or vice-versa) is the more common arithmetic error. But it’s harder to describe that clearly and concisely.

Jef Mallett’s Frazz for the 15th puzzled me. I hadn’t heard this thing the kid says about how if you can “spew ten random lines from a classic movie” to convince people you’ve seen it. (I don’t know the kid’s name; it happens.) I suppose that it would be convincing, though. I certainly know a couple lines from movies I haven’t seen, what with living in pop culture and all that. But ten would be taxing for all but the most over-saturated movies, like any of the Indiana Jones films. (There I’m helped by having played the 90s pinball machine a lot.) Anyway, knowing ten random mathematics things isn’t convincing, especially since you can generate new mathematical things at will just by changing a number. But I would probably be convinced that someone who could describe what’s interesting about ten fields of mathematics had a decent understanding of the subject. That requires remembering more stuff, but then, mathematics is a bigger subject than even a long movie is.

In Bill Holbrook’s On The Fastrack for the 16th Fi speaks of tallying the pluses and minuses of her life. Trying to make life into something that can be counted is an old decision-making technique. I think Benjamin Franklin explained how he found it so useful. It’s not a bad approach if a choice is hard. The challenging part is how to weight each consideration. Getting into fractions seems rather fussy to me, but some things are just like that. There is the connotation here that a fraction is a positive number smaller than 1. But the mathematically-trained (such as Fi) would be comfortable with fractions larger than 1. Or also smaller than zero. “Fraction” is no more bounded than “real number”. So, there’s the room for more sweetness here than might appear to the casual reader.

'In a couple of weeks I'm getting married, so I'm taking stock of my life, adding up the pluses and minuses that factor into my goals.' 'Am I a positive or a negative integer?' 'You're a fraction.' 'How presumptuous of me.'
Bill Holbrook’s On The Fastrack for the 16th of January, 2017. Were I in Dethany’s position I would have asked about being a positive or negative number, but then that would leave Holbrook without a third panel. Dethany knows what her author needs most.

Scott Hilburn’s The Argyle Sweater for the 16th is the next anthropomorphic numerals joke for this week. I’m glad Hilburn want to be in my pages more. 5’s concern about figuring out x might be misplaced. We use variables for several purposes. One of them is as a name to give a number whose value we don’t know but wish to work out, and that’s how we first see them in high school algebra. But a variable might also be a number whose value we don’t particularly care about and will never try to work out. This could be because the variable is a parameter, with a value that’s fixed for a problem but not what we’re interested in. We don’t typically use ‘x’ for that, though; usually parameter are something earlier in the alphabet. That’s merely convention, but it is convention that dates back to René Descartes. Alternatively, we might use ‘x’ as a dummy variable. A dummy variable serves the same role that falsework on a building or a reference for an artistic sketch does. We use dummy variables to organize and carry out work, but we don’t care what its values are and we don’t even see the dummy variable in the final result. A dummy variable can be any name, but ‘x’ and ‘t’ are popular choices.

Terry LaBan and Patty LaBan’s Edge City rerun for the 16th plays on the idea that mathematics people talk in algebra. Funny enough, although, “the opposing defense is a variable of 6”? That’s an idiosyncratic use of “variable”. I’m going to suppose that Charles is just messing with Len’s head because, really, it’s fun doing a bit of that.

Reading the Comics, June 13, 2012


Because there weren’t many math-themed comic strips, that’s why I went so long without an update in my roster of comic strips that mention math subjects. After Mike Peters’s Mother Goose and Grimm put in the start of a binomial expression the comics pages — through King Features Syndicate and gocomics.com — decided to drop the whole subject pretty completely for the rest of May. It picked up a little in June.

Continue reading “Reading the Comics, June 13, 2012”