My 2018 Mathematics A To Z: Tiling


For today’s a to Z topic I again picked one nominated by aajohannas. This after I realized I was falling into a never-ending research spiral on Mr Wu, of Mathtuition’s suggested “torus”. I do have an older essay describing the torus, as a set. But that does leave out a lot of why a torus is interesting. Well, we’ll carry on.

Cartoon of a thinking coati (it's a raccoon-like animal from Latin America); beside him are spelled out on Scrabble titles, 'MATHEMATICS A TO Z', on a starry background. Various arithmetic symbols are constellations in the background.
Art by Thomas K Dye, creator of the web comics Newshounds, Something Happens, and Infinity Refugees. His current project is Projection Edge. And you can get Projection Edge six months ahead of public publication by subscribing to his Patreon. And he’s on Twitter as @Newshoundscomic.

Tiling.

Here is a surprising thought for the next time you consider remodeling the kitchen. It’s common to tile the floor. Perhaps some of the walls behind the counter. What patterns could you use? And there are infinitely many possibilities. You might leap ahead of me and say, yes, but they’re all boring. A tile that’s eight inches square is different from one that’s twelve inches square and different from one that’s 12.01 inches square. Fine. Let’s allow that all square tiles are “really” the same pattern. The only difference between a square two feet on a side and a square half an inch on a side is how much grout you have to deal with. There are still infinitely many possibilities.

You might still suspect me of being boring. Sure, there’s a rectangular tile that’s, say, six inches by eight inches. And one that’s six inches by nine inches. Six inches by ten inches. Six inches by one millimeter. Yes, I’m technically right. But I’m not interested in that. Let’s allow that all rectangular tiles are “really” the same pattern. So we have “squares” and “rectangles”. There are still infinitely many tile possibilities.

Let me shorten the discussion here. Draw a quadrilateral. One that doesn’t intersect itself. That is, there’s four corners, four lines, and there’s no X crossings. If you have that, then you have a tiling. Get enough of these tiles and arrange them correctly and you can cover the plane. Or the kitchen floor, if you have a level floor. It might not be obvious how to do it. You might have to rotate alternating tiles, or set them in what seem like weird offsets. But you can do it. You’ll need someone to make the tiles for you, if you pick some weird pattern. I hope I live long enough to see it become part of the dubious kitchen package on junk home-renovation shows.

Let me broaden the discussion here. What do I mean by a tiling if I’m allowing any four-sided figure to be a tile? We start with a surface. Usually the plane, a flat surface stretching out infinitely far in two dimensions. The kitchen floor, or any other mere mortal surface, approximates this. But the floor stops at some point. That’s all right. The ideas we develop for the plane work all right for the kitchen. There’s some weird effects for the tiles that get too near the edges of the room. We don’t need to worry about them here. The tiles are some collection of open sets. No two tiles overlap. The tiles, plus their boundaries, cover the whole plane. That is, every point on the plane is either inside exactly one of the open sets, or it’s on the boundary between one (or more) sets.

There isn’t a requirement that all these sets have the same shape. We usually do, and will limit our tiles to one or two shapes endlessly repeated. It seems to appeal to our aesthetics and our installation budget. Using a single pattern allows us to cover the plane with triangles. Any triangle will do. Similarly any quadrilateral will do. For convex pentagonal tiles — here things get weird. There are fourteen known families of pentagons that tile the plane. Each member of the family looks about the same, but there’s some room for variation in the sides. Plus there’s one more special case that can tile the plane, but only that one shape, with no variation allowed. We don’t know if there’s a sixteenth pattern. But then until 2015 we didn’t know there was a 15th, and that was the first pattern found in thirty years. Might be an opening for someone with a good eye for doodling.

There are also exciting opportunities in convex hexagons. Anyone who plays strategy games knows a regular hexagon will tile the plane. (Regular hexagonal tilings fit a certain kind of strategy game well. Particularly they imply an equal distance between the centers of any adjacent tiles. Square and triangular tiles don’t guarantee that. This can imply better balance for territory-based games.) Irregular hexagons will, too. There are three known families of irregular hexagons that tile the plane. You can treat the regular hexagon as a special case of any of these three families. No one knows if there’s a fourth family. Ready your notepad at the next overlong, agenda-less meeting.

There aren’t tilings for identical convex heptagons, figures with seven sides. Nor eight, nor nine, nor any higher figure. You can cover them if you have non-convex figures. See any Tetris game where you keep getting the ‘s’ or ‘t’ shapes. And you can cover them if you use several shapes.

There’s some guidance if you want to create your own periodic tilings. I see it called the Conway Criterion. I don’t know the field well enough to say whether that is a common term. It could be something one mathematics popularizer thought of and that other popularizers imitated. (I don’t find “Conway Criterion” on the Mathworld glossary, but that isn’t definitive.) Suppose your polygon satisfies a couple of rules about the shapes of the edges. The rules are given in that link earlier this paragraph. If your shape does, then it’ll be able to tile the plane. If you don’t satisfy the rules, don’t despair! It might yet. The Conway Criterion tells you when some shape will tile the plane. It won’t tell you that something won’t.

(The name “Conway” may nag at you as familiar from somewhere. This criterion is named for John H Conway, who’s famous for a bunch of work in knot theory, group theory, and coding theory. And in popular mathematics for the “Game of Life”. This is a set of rules on a grid of numbers. The rules say how to calculate a new grid, based on this first one. Iterating them, creating grid after grid, can make patterns that seem far too complicated to be implicit in the simple rules. Conway also developed an algorithm to calculate the day of the week, in the Gregorian calendar. It is difficult to explain to the non-calendar fan how great this sort of thing is.)

This has all gotten to periodic tilings. That is, these patterns might be complicated. But if need be, we could get them printed on a nice square tile and cover the floor with that. Almost as beautiful and much easier to install. Are there tilings that aren’t periodic? Aperiodic tilings?

Well, sure. Easily. Take a bunch of tiles with a right angle, and two 45-degree angles. Put any two together and you have a square. So you’re “really” tiling squares that happen to be made up of a pair of triangles. Each pair, toss a coin to decide whether you put the diagonal as a forward or backward slash. Done. That’s not a periodic tiling. Not unless you had a weird run of luck on your coin tosses.

All right, but is that just a technicality? We could have easily installed this periodically and we just added some chaos to make it “not work”. Can we use a finite number of different kinds of tiles, and have it be aperiodic however much we try to make it periodic? And through about 1966 mathematicians would have mostly guessed that no, you couldn’t. If you had a set of tiles that would cover the plane aperiodically, there was also some way to do it periodically.

And then in 1966 came a surprising result. No, not Penrose tiles. I know you want me there. I’ll get there. Not there yet though. In 1966 Robert Berger — who also attended Rensselaer Polytechnic Institute, thank you — discovered such a tiling. It’s aperiodic, and it can’t be made periodic. Why do we know Penrose Tiles rather than Berger Tiles? Couple reasons, including that Berger has to use 20,426 distinct tile shapes. In 1971 Raphael M Robinson simplified matters a bit and got that down to six shapes. Roger Penrose in 1974 squeezed the set down to two, although by adding some rules about what edges may and may not touch one another. (You can turn this into a pure edges thing by putting notches into the shapes.) That really caught the public imagination. It’s got simplicity and accessibility to combine with beauty. Aperiodic tiles seem to relate to “quasicrystals”, which are what the name suggests and do happen in some materials. And they’ve got beauty. Aperiodic tiling embraces our need to have not too much order in our order.

I’ve discussed, in all this, tiling the plane. It’s an easy surface to think about and a popular one. But we can form tiling questions about other shapes. Cylinders, spheres, and toruses seem like they should have good tiling questions available. And we can imagine “tiling” stuff in more dimensions too. If we can fill a volume with cubes, or rectangles, it’s natural to wonder what other shapes we can fill it with. My impression is that fewer definite answers are known about the tiling of three- and four- and higher-dimensional space. Possibly because it’s harder to sketch out ideas and test them. Possibly because the spaces are that much stranger. I would be glad to hear more.


I’m hoping now to have a nice relaxing weekend. I won’t. I need to think of what to say for the letter ‘U’. On Tuesday I hope that it will join the rest of my A to Z essays at this link.

Advertisements

Playful Mathematics Education Blog Carnival #121


Greetings one and all! Come, gather round! Wonder and spectate and — above all else — tell your friends of the Playful Mathematics Blog Carnival! Within is a buffet of delights and treats, fortifications for the mind and fire for the imagination.

121 is a special number. When I was a mere tot, growing in the wilds of suburban central New Jersey, it stood there. It held a spot of privilege in the multiplication tables on the inside front cover of composition books. On the forward diagonal, yet insulated from the borders. It anchors the safe interior. A square number, eleventh of that set in the positive numbers.

Cartoon of several circus tents, with numbered flags above them and balloons featuring arithmetic symbols. The text, in a carnival-poster font, is 'PLAYFUL MATH EDUCATION CARNIVAL'.
Art by Thomas K Dye, creator of the web comics Newshounds, Something Happens, and Infinity Refugees. His current project is Projection Edge. And you can get Projection Edge six months ahead of public publication by subscribing to his Patreon. And he’s on Twitter as @Newshoundscomic.

The First Tent

The first wonder to consider is Iva Sallay’s Find the Factors blog. She brings each week a sequence of puzzles, all factoring challenges. The result of each, done right, is a scrambling of the multiplication tables; it’s up to you the patron to find the scramble. She further examines each number in turn, finding its factors and its interesting traits. And furthermore, usually, when beginning a new century of digits opens a horserace, to see which of the numbers have the greatest number of factorizations. She furthermore was the host of this Playful Mathematics Education Carnival for August of 2018.

121 is more than just a square. It is the lone square known to be the sum of the first several powers of a prime number: it is 1 + 3 + 3^2 + 3^3 + 3^4 , a fantastic combination. If there is another square that is such a sum of primes, it is unknown to any human — and must be at least 35 digits long.

We look now for a moment at some astounding animals. From the renowned Dr Nic: Introducing Cat Maths cards, activities, games and lessons — a fine collection of feline companions, such toys as will enterain them. A dozen attributes each; twenty-seven value cards. These cats, and these cards, and these activity puzzles, promise games and delights, to teach counting, subtraction, statistics, and inference!

Next and no less incredible is the wooly Mathstodon. Christian Lawson-Perfect hosts this site, an instance of the open-source Twitter-like service Mastodon. Its focus: a place for people interested in mathematicians to write of what they know. To date over 1,300 users have joined, and have shared nearly 25,000 messages. You need not join to read many of these posts — your host here has yet to — but may sample its wares as you like.


The Second Tent

121 is one of only two perfect squares known to be four less than the cube of a whole number. The great Fermat conjectured that 4 and 121 are the only such numbers; no one has found a counter-example. Nor a proof.

Friends, do you know the secret to popularity? There is an astonishing truth behind it. Elias Worth of the MathSection blog explains the Friendship Paradox. This mind-warping phenomenon tells us your friends have more friends than you do. It will change forever how you look at your followers and following accounts.

And now to thoughts of learning. Stepping forward now is Monica Utsey, @Liveonpurpose47 of Chocolate Covered Boy Joy. Her declaration: “I incorporated Montessori Math materials with my right brain learner because he needed literal representations of the work we were doing. It worked and we still use it.” See now for yourself the representations, counting and comparing and all the joys of several aspects of arithmetic.

Take now a moment for your own fun. Blog Carnival patron and organizer Denise Gaskins wishes us to know: “The fun of mathematical coloring isn’t limited to one day. Enjoy these coloring resources all year ’round!” Happy National Coloring Book Day offers the title, and we may keep the spirit of National Coloring Book Day all the year round.

Confident in that? Then take on a challenge. Can you scroll down faster than Christian Lawson-Perfect’s web site can find factors? Prove your speed, prove your endurance, and see if you can overcome this infinite scroll.


The Third Tent

121 is a star number, the fifth of that select set. 121 identical items can be tiled to form a centered hexagon. You may have seen it in the German game of Chinese Checkers, as the board of that has 121 holes.

We come back again to teaching. “Many homeschoolers struggle with teaching their children math. Here are some tips to make it easier”, offers Denise Gaskins. Step forth and benefit from this FAQ: Struggling with Arithmetic, a collection of tips and thoughts and resources to help make arithmetic the more manageable.

Step now over to the arcade, and to the challenge of Pac-Man. This humble circle-inspired polygon must visit the entirety of a maze, and avoid ghosts as he does. Matthew Scroggs of Chalk Dust Magazine here seeks and shows us Optimal Pac-Man. Graph theory tells us there are thirteen billion different paths to take. Which of them is shortest? Which is fastest? Can it be known, and can it help you through the game?

And now a recreation, one to become useful if winter arrives. Think of the mysteries of the snowball rolling down a hill. How does it grow in size? How does it speed up? When does it stop? Rodolfo A Diaz, Diego L Gonzalez, Francisco Marin, and R Martinez satisfy your curiosity with Comparative kinetics of the snowball respect to other dynamical objects. Be warned! This material is best suited for the college-age student of the mathematical snow sciences.


The Fourth Tent

121 is furthermore the sixth of the centered octagonal numbers. 121 of a thing may be set into six concentric octagons of one, then two, then three, then four, then five, and then six of them on a side.

To teach is to learn! And we have here an example of such learning. James Sheldon writing for the American Mathematical Society Graduate Student blog offers Teaching Lessons from a Summer of Taking Mathematics Courses. What secrets has Sheldon to reveal? Come inside and learn what you may.

And now step over to the games area. The game Entanglement wraps you up in knots, challenging you to find the longest knot possible. David Richeson of Division By Zero sees in this A game for budding knot theorists. What is the greatest score that could be had in this game? Can it ever be found? Only Richeson has your answer.

Step now back to the amazing Mathstodon. Gaze in wonder at the account @dudeney_puzzles. Since the September of 2017 it has brought out challenges from Henry Ernest Dudeney’s Amusements in Mathematics. Puzzles given, yes, with answers that follow along. The impatient may find Dudeney’s 1917 book on Project Gutenberg among other places.


The Fifth Tent

Sum the digits of 121; you will find that you have four. Take its prime factors, 11 and 11, and sum their digits; you will find that this is four again. This makes 121 a Smith number. These marvels of the ages were named by Albert Wilansky, in honor of his brother-in-law, a man known to history as Harold Smith, and whose telephone number of 4,937,775 was one such.

Now let us consider terror. What is it to enter a PhD program? Many have attempted it; some have made it through. Mathieu Besançon gives to you a peek behind academia’s curtain. A year in PhD describes some of this life.

And now to an astounding challenge. Imagine an assassin readies your death. Can you protect yourself? At all? Tai-Danae Bradley invites you to consider: Is the Square a Secure Polygon? This question takes you on a tour of geometries familiar and exotic. Learn how mathematicians consider how to walk between places on a torus — and the lessons this has for a square room. The fate of the universe itself may depend on the methods described herein — the techniques used to study it relate to those that study whether a physical system can return to its original state. And then J2kun turned this into code, Visualizing an Assassin Puzzle, for those who dare to program it.

Have you overcome this challenge? Then step into the world of linear algebra, and this delight from the Mathstodon account of Christian Lawson-Perfect. The puzzle is built on the wonders of eigenvectors, those marvels of matrix multiplication. They emerge from multiplication longer or shorter but unchanged in direction. Lawson-Perfect uses whole numbers, represented by Scrabble tiles, and finds a great matrix with a neat eigenvalue. Can you prove that this is true?


The Sixth Tent

Another wonder of the digits of 121. Take them apart, then put them together again. Contorted into the form 112 they represent the same number. 121 is, in the base ten commonly used in the land, a Friedman Number, second of that line. These marvels, in the Arabic, the Roman, or even the Mayan numerals schemes, are named for Erich Friedman, a figure of mystery from the Stetson University.

We draw closer to the end of this carnival’s attractions! To the left I show a tool for those hoping to write mathematics: Donald E Knuth, Tracy Larrabee, and Paul M Roberts’s Mathematical Writing. It’s a compilation of thoughts about how one may write to be understood, or to avoid being misunderstood. Either would be a marvel for the ages.

To the right please see Gregory Taylor’s web comic Any ~Qs. Taylor — @mathtans on Twitter — brings a world of math-tans, personifications of mathematical concepts, together for adventures and wordplay. And if the strip is not to your tastes, Taylor is working on ε Project, a serialized written story with new installments twice a month.

If you will look above you will see the marvels of curved space. On YouTube, Eigenchris hopes to learn differential geometry, and shares what he has learned. While he has a series under way he suggested Episode 15, ‘Geodesics and Christoffel Symbols as one that new viewers could usefully try. Episode 16, ‘Geodesic Examples on Plane and Sphere, puts this work to good use.

And as we reach the end of the fairgrounds, please take a moment to try Find the Factors Puzzle number 121, a challenge from 2014 that still speaks to us today!

And do always stop and gaze in awe at the fantastic and amazing geometrical constructs of Robert Loves Pi. You shall never see stellations of its like elsewhere!


The Concessions Tent

With no thought of the risk to my life or limb I read the newspaper comics for mathematical topics they may illuminate! You may gape in awe at the results here. And furthermore this week and for the remainder of this calendar year of 2018 I dare to explain one and only one mathematical concept for each letter of our alphabet! I remind the sensitive patron that I have already done not one, not two, not three, but four previous entries all finding mathematical words for the letter “X” — will there be one come December? There is but one way you might ever know.

Denise Gaskins coordinates the Playful Mathematics Education Blog Carnival. Upcoming scheduled carnivals, including the chance to volunteer to host it yourself, or to recommend your site for mention, are listed here. And October’s 122nd Playful Mathematics Education Blog Carnival is scheduled to be hosted by Arithmophobia No More, and may this new host have the best of days!

What I Haven’t Had Time To Read (Late March)


So here’s a couple things I haven’t had the time to read and think about, but that I want someone to, possibly even me. First, a chain reference:

Paulos’s link in that URL was mistaken and in one of the responses to it he posted a correction. But it’s about this:

And ultimately about what seems a ridiculously impossible condition. Suppose that you have two games, both of which you expect to lose. Or two strategies to play a game, both of which you expect will lose. How do you apply them so that you maximize your chance of winning? Indeed, under the right circumstances, how can you have a better than 50% chance of winning? I have actually read this, but what I haven’t had is the chance to think about it. It may come in handy for pinball league though.

Here, MikesMathPage posts A simplified version of the Banach-Tarski paradox for kids. The Banach-Tarski paradox is one of those things I’m surprised isn’t more common in pop mathematics. It offers this wondrous and absolutely anti-intuitive consequence. Take a sphere the size of a golf ball. Slice it perfectly, using mathematically precise tools that could subdivide atoms, that is, more perfectly than mere matter could ever do. Cut it into pieces and take them apart. Then reassemble the pieces. You have two spheres, and they’re both the size of a planet. You can see why when you get this as a mathematics major the instinct is the say you’ve heard something wrong. There being as many rationals as whole numbers, sure. There being more irratonal numbers than rationals, that’s fine. There being as many points in a one-segment line segment as in an infinitely large ten-dimensional volume of space? Shaky but all right. But this? This? Still, you can kind of imagine that well, maybe there’s some weird thing where you make infinitely many cuts into uncountably infinitely many pieces and then you find out you just need five slices. Four, if you don’t use the point at the very center of the golf ball. Then you get cranky. Anyway the promise of the title, forming a version of this that kids will be comfortable with, is a big one.

This one I’m pretty sure I ended up from by way of Analysis Fact of the day. John D Cook’s Cover time of a graph: cliques, chains, and lollipops is about graphs. I mean graph theory graphs, which look kind of like those circuit-board mass transit diagrams. All dots and lines connecting them. Cook’s question: how long does it take to visit every point in one of these graphs, if you take a random walk? That is, each time you’re at a stop, you take one of the paths randomly? With equal chance of taking any of the paths connected there? There’s some obviously interesting shapes and Cook looks into how you walk over them.

That should do for now. I really need to get caught up on my reading. Please let me know if I’ve made a disastrous mistake with any of this.

Reading the Comics, September 1, 2017: Getting Ready For School Edition


In the United States at least it’s the start of the school year. With that, Comic Strip Master Command sent orders to do back-to-school jokes. They may be shallow ones, but they’re enough to fill my need for content. For example:

Bill Amend’s FoxTrot for the 27th of August, a new strip, has Jason fitting his writing tools to the class’s theme. So mathematics gets to write “2” in a complicated way. The mention of a clay tablet and cuneiform is oddly timely, given the current (excessive) hype about that Babylonian tablet of trigonometric values, which just shows how even a nearly-retired cartoonist will get lucky sometimes.

Dan Collins’s Looks Good On Paper for the 27th does a collage of school stuff, with mathematics the leading representative of the teacher-giving-a-lecture sort of class.

Olivia Walch’s Imogen Quest for the 28th uses calculus as the emblem of stuff that would be put on the blackboard and be essential for knowing. It’s legitimate formulas, so far as we get to see, the stuff that would in fact be in class. It’s also got an amusing, to me at least, idea for getting students’ attention onto the blackboard.

Tony Carrillo’s F Minus for the 29th is here to amuse me. I could go on to some excuse about how the sextant would be used for the calculations that tell someone where he is. But really I’m including it because I was amused and I like how detailed a sketch of a sextant Carrillo included here.

Jim Meddick’s Monty for the 29th features the rich obscenity Sedgwick Nuttingham III, also getting ready for school. In this case the summer mathematics tutoring includes some not-really-obvious game dubbed Integer Ball. I confess a lot of attempts to make games out of arithmetic look to me like this: fun to do but useful in practicing skills? But I don’t know what the rules are or what kind of game might be made of the integers here. I should at least hear it out.

Michael Cavna’s Warped for the 30th lists a top ten greatest numbers, spoofing on mindless clickbait. Cavna also, I imagine unintentionally, duplicates an ancient David Letterman Top Ten List. But it’s not like you can expect people to resist the idea of making numbered lists of numbers. Some of us have a hard time stopping.

Todd: 'If I'm gonna get a good job someday, I've decided I'm gonna have to buckle down and get serious with my studies!' 'Good for you, Todd!' 'When I get to Junior High and High School, I'm gonna take stuff like trickanometree, calculatorius and alge-brah! Hee hee! Snicker! Snicker!' 'What?' 'I said Bra! Hee! Hee!' 'Better keep buckling down, bub.'
Patrick Roberts’s Todd the Dinosaur for the 1st of September, 2017. So Paul Dirac introduced to quantum mechanics a mathematical construct known as the ‘braket’. It’s written as a pair of terms, like, < A | B > . These can be separated into pieces, with < A | called the ‘bra’ and | B > the ‘ket’. We’re told in the quantum mechanics class that this was a moment of possibly “innocent” overlap between what’s a convenient mathematical name and, as a piece of women’s clothing, unending amusement to male physics students. I do not know whether that’s so. I don’t see the thrill myself except in the suggestion that great physicists might be aware of women’s clothing.

Patrick Roberts’s Todd the Dinosaur for the 1st of September mentions a bunch of mathematics as serious studies. Also, to an extent, non-serious studies. I don’t remember my childhood well enough to say whether we found that vaguely-defined thrill in the word “algebra”. It seems plausible enough.

Reading the Comics, August 12, 2016: Skipping Saturday Edition


I have no idea how many or how few comic strips on Saturday included some mathematical content. I was away most of the day. We made a quick trip to the Michigan’s Adventure amusement park and then to play pinball in a kind-of competitive league. The park turned out to have every person in the world there. If I didn’t wave to you from the queue on Shivering Timbers I apologize but it hasn’t got the greatest lines of sight. The pinball stuff took longer than I expected too and, long story short, we got back home about 4:15 am. So I’m behind on my comics and here’s what I did get to.

Tak Bui’s PC and Pixel for the 8th depicts the classic horror of the cleaning people wiping away an enormous amount of hard work. It’s a primal fear among mathematicians at least. Boards with a space blocked off with the “DO NOT ERASE” warning are common. At this point, though, at least, the work is probably savable. You can almost always reconstruct work, and a few smeared lines like this are not bad at all.

The work appears to be quantum mechanics work. The tell is in the upper right corner. There’s a line defining E (energy) as equal to something including \imath \hbar \frac{\partial}{\partial t}\phi(r, t) . This appears in the time-dependent Schrödinger Equation. It describes how probability waveforms look when the potential energies involved may change in time. These equations are interesting and impossible to solve exactly. We have to resort to approximations, including numerical approximations, all the time. So that’s why the computer lab would be working on this.

Mark Anderson’s Andertoons! Where would I be without them? Besides short on content. The strip for the 10th depicts a pollster saying to “put the margin of error at 50%”, guaranteeing the results are right. If you follow elections polls you do see the results come with a margin of error, usually of about three percent. But every sampling technique carries with it a margin of error. The point of a sample is to learn something about the whole without testing everything in it, after all. And probability describes how likely it is the quantity measured by a sample will be far from the quantity the whole would have. The logic behind this is independent of the thing being sampled. It depends on what the whole is like. It depends on how the sampling is done. It doesn’t matter whether you’re sampling voter preferences or whether there are the right number of peanuts in a bag of squirrel food.

So a sample’s measurement will almost never be exactly the same as the whole population’s. That’s just requesting too much of luck. The margin of error represents how far it is likely we’re off. If we’ve sampled the voting population fairly — the hardest part — then it’s quite reasonable the actual vote tally would be, say, one percent different from our poll. It’s implausible that the actual votes would be ninety percent different. The margin of error is roughly the biggest plausible difference we would expect to see.

Except. Sometimes we do, even with the best sampling methods possible, get a freak case. Rarely noticed beside the margin of error is the confidence level. This is what the probability is that the actual population value is within the sampling error of the sample’s value. We don’t pay much attention to this because we don’t do statistical-sampling on a daily basis. The most normal people do is read election polling results. And most election polls settle for a confidence level of about 95 percent. That is, 95 percent of the time the actual voting preference will be within the three or so percentage points of the survey. The 95 percent confidence level is popular maybe because it feels like a nice round number. It’ll be off only about one time out of twenty. It also makes a nice balance between a margin of error that doesn’t seem too large and that doesn’t need too many people to be surveyed. As often with statistics the common standard is an imperfectly-logical blend of good work and ease of use.

For the 11th Mark Anderson gives me less to talk about, but a cute bit of wordplay. I’ll take it.

Anthony Blades’s Bewley for the 12th is a rerun. It’s at least the third time this strip has turned up since I started writing these Reading The Comics posts. For the record it ran also the 27th of April, 2015 and on the 24th of May, 2013. It also suggests mathematicians have a particular tell. Try this out next time you do word problem poker and let me know how it works for you.

Julie Larson’s The Dinette Set for the 12th I would have sworn I’d seen here before. I don’t find it in my archives, though. We are meant to just giggle at Larson’s characters who bring their penny-wise pound-foolishness to everything. But there is a decent practical mathematics problem here. (This is why I thought it had run here before.) How far is it worth going out of one’s way for cheaper gas? How much cheaper? It’s simple algebra and I’d bet many simple Javascript calculator tools. The comic strip originally ran the 4th of October, 2005. Possibly it’s been rerun since.

Bill Amend’s FoxTrot Classics for the 12th is a bunch of gags about a mathematics fighting game. I think Amend might be on to something here. I assume mathematics-education contest games have evolved from what I went to elementary school on. That was a Commodore PET with a game where every time you got a multiplication problem right your rocket got closer to the ASCII Moon. But the game would probably quickly turn into people figuring how to multiply the other person’s function by zero. I know a game exploit when I see it.

The most obscure reference is in the third panel one. Jason speaks of “a z = 0 transform”. This would seem to be some kind of z-transform, a thing from digital signals processing. You can represent the amplification, or noise-removal, or averaging, or other processing of a string of digits as a polynomial. Of course you can. Everything is polynomials. (OK, sometimes you must use something that looks like a polynomial but includes stuff like the variable z raised to a negative power. Don’t let that throw you. You treat it like a polynomial still.) So I get what Jason is going for here; he’s processing Peter’s function down to zero.

That said, let me warn you that I don’t do digital signal processing. I just taught a course in it. (It’s a great way to learn a subject.) But I don’t think a “z = 0 transform” is anything. Maybe Amend encountered it as an instructor’s or friend’s idiosyncratic usage. (Amend was a physics student in college, and shows his comfort with mathematics-major talk often. He by the way isn’t even the only syndicated cartoonist with a physics degree. Bud Grace of The Piranha Club was also a physics major.) I suppose he figured “z = 0 transform” would read clearly to the non-mathematician and be interpretable to the mathematician. He’s right about that.

Reading the Comics, April 2, 2016: Keeping Me Busy Edition


After I made a little busy work for myself posting a Reading the Comics entry the other day, Comic Strip Master Command sent a rush of mathematics themes into the comics. So it goes.

Chris Browne’s Hagar the Horrible for the 31st of March happens to be funny-because-it’s-true. It’s supposed to be transgressive to see a gambler as the best mathematician available. But quite a few of the great pioneering minds of mathematics were also gamblers looking for an edge. It may shock you to learn that mathematicians in past centuries didn’t have enough money, and would look for ways to get more. And, as ever, knowing something secret about the way cards or dice or any unpredictable event might happen gives one an edge. The question of whether a 9 or a 10 is more likely to be thrown on three dice was debated for centuries, by people as familiar to us as Galileo. And by people as familiar to mathematicians as Gerolamo Cardano.

Hagar: 'I brought a math tutor for Hamlet!' Helga: 'Great! Does he know his stuff?' Hagar: 'Are you kidding? He's the BEST card counter in the kingdom!'
It’s funny because this it’s anachronistic for Blaise Pascal to be in this setting.

Gambling blends imperceptibly into everything people want to do. The question of how to fairly divide the pot of an interrupted game may seem sordid. But recast it as the problem of how to divide the assets of a partnership which had to halt — say, because one of the partners had to stop participating — and we have something that looks respectable. And gambling blends imperceptibly into security. The result of any one project may be unpredictable. The result of many similar ones, on average, often is. Card games or joint-stock insurance companies; the mathematics is the same. A good card-counter might be the best mathematician available.

Tony Cochran’s Agnes for the 31st name-drops Diophantine equations. It’s in the service of a student resisting class joke. Diophantine equations are equations for which we only allow integer, whole-number, answers. The name refers to Diophantus of Alexandria, who lived in the third century AD. His Arithmetica describes many methods for solving equations, a prototype to algebra as we know it in high school today. Generally, a Diophantine equation is a hard problem. It’s impossible, for example, to say whether an arbitrary Diophantine equation even has a solution. Finding what it might be is another bit of work. Fermat’s Last Theorem is a Diophantine equation, and that took centuries to work out that there isn’t generally an answer.

Mind, we can say for specific cases whether a Diophantine equation has a solution. And those specific cases can be pretty general. If we know integers a and b, then we can find integers x and y that make “ax + by = 1” true, for example.

Graham Harrop’s Ten Cats for the 31st hurts mathematicians’ feelings on the way to trying to help a shy cat. I’m amused anyway.

And Jonathan Lemon’s Rabbits Against Magic for the 1st of April mentions Fermat’s Last Theorem. The structure of the joke is fine. If we must ask an irrelevant question of the Information Desk mathematics has got plenty of good questions. The choice makes me suspect Lemon’s showing his age, though. The imagination-capturing power of Fermat’s Last Theorem as a great unknown has to have been diminished since the first proof was found over two decades ago. It’d be someone who grew up knowing there was this mystery about xn plus yn equalling zn who’d jump to this reference.

Tom Toles’s Randolph Itch, 2 am for the 2nd of April mentions “zero-sum games”. The term comes from the mathematical theory of games. The field might sound frivolous, but that’s because you don’t know how much stuff the field considers to be “games”. Mathematicians who study them consider “games” to be sets of decisions. One or more people make choices, and gain or lose as a result of those choices. That is a pretty vague description. It covers playing solitaire and multiplayer Civilization V. It also covers career planning and imperial brinksmanship. And, for that matter, business dealings.

“Zero-sum” games refer to how we score the game’s objectives. If it’s zero-sum, then anything gained by one player must be balanced by equal losses by the other player or players. For example, in a sports league’s season standings, one team’s win must balance another team’s loss. The total number of won games, across all the teams, has to equal the total number of lost games. But a game doesn’t have to be zero-sum. It’s possible to create games in which all participants gain something, or all lose something. Or where the total gained doesn’t equal the total lost. These are, imaginatively, called non-zero-sum games. They turn up often in real-world applications. Political or military strategy often is about problems in which both parties can lose. Business opportunities are often intended to see the directly involved parties benefit. This is surely why Randolph is shown reading the business pages.

Reading the Comics, August 10, 2015: How People Think Edition


Today’s installment of Reading the Comics has a bunch of strips that seem to touch on human psychology. That properly could always be said; what we know of mathematics is what humans have thought about. But sometimes the link between a mathematical topic and human psychology is more obvious.

Wes Molebash’s Molebashed (August 5) is a reminder that one can find interesting mental arithmetic problems anywhere. This does not mean they’re always welcome. But they can still be fun to do. For example while walking through a parking lot I noticed another state’s license plate and wondered how many six-letter combinations you could get. Well, that’s 266, obviously, but how big a number is that? Working out that sort of thing is why people have to repeat what they’re saying to me.

Mark Pett’s Mr Lowe (August 6, rerun from sometime in 2000) has a student complaining the mathematics books are two years old. The complaint is absurd but also kind of sensible. Mathematical truths are immortal, or at least they are once they’re proven. Whether something is proven is, to an extent, a cultural construct: it takes an incredible load of work to actually prove something rigorously with every step in place. We usually are content if we show enough reasoning to be confident that every step could be filled in if need be. More a matter of taste, though, is whether these truths are interesting. As an example, I mentioned just a few posts ago the versine function. There are computations which, if you’re doing them by hand, are best done with the versine function or a table of values of the versine function. But we don’t need to do that sort of work anymore, and the versine function has plunged into obscurity. Nothing that we knew about versines has stopped being true. But we’d be eccentric, at least, to make it a part of a trigonometry course in the way someone 150 years ago might have. Mathematics is not culturally neutral. Few interesting things are.

Kieran Meehan's Pros and Cons for the 7th of August, 2015.
Kieran Meehan’s Pros and Cons for the 7th of August, 2015.

Kieran Meehan’s Pros and Cons (August 7) is a probability joke. As often happens, the probability joke is built on the gambler’s fallacy. The fallacy in this case is the supposition that if one hasn’t had an accident in an unusually long while, then one must be due. Properly, though, we should ask whether accidents are independent events. If they are independent — if the chance of having an accident does not change based on whether you had an accident yesterday, or in the past week, or in the past year, or so on — then it’s silly to say you’re “due” for one. If your rate of accidents is lower than expected, you’re just having a lucky streak is all. However, I can imagine the chance of having an accident not being independent. I can imagine going a long time without accidents making someone careless about normal risks, or inexperienced in judging new ones, and that might make an accident more likely that one expects. It’s difficult to answer a probability question without understanding human psychology.

John Graziano’s Ripley’s Believe It or Not (August 7) claims there are over 26,000 possible outcomes of tic-tac-toe. I think the claim is poorly worded, though. If by an “outcome” of a tic-tac-toe game we mean the arrangement of X and O marks then there are at most 19,683 outcomes — each of the nine cells contains an X, an O, or is left blank. That’s an overestimate, though. A grid of nine X’s can’t be a legal outcome of a game, after all; nor can one that has two X’s, one O, and six blank spaces. There have to be at least three X’s and at least two O’s, and at most four blank spaces. The number of X’s can be equal to or one greater than the number of O’s. This removes a lot of possibilities.

I think what Graziano’s Ripley’s wants to claim is there are over 26,000 different tic-tac-toe games. This I can more readily believe. There are 9 possible spaces the first player can take on the first turn; there are 8 choices for the second player on the first turn. There are 7 choices for the first player on the second turn; there are 6 choices for the second player on the second turn. And so on. So there are at most 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1 possible ways to play out the game; that’s a total of 362,880 possibilities. But not all those possibilities are needed. If a game’s won after two and a half turns, it stops, and a lot of possible continuations are voided. I don’t have a good estimate of how many those are. And we might choose to rule out symmetries. The game in which X fills out the top row while O tries the center isn’t really different to the game in which X fills out the bottom row while O takes the center. For that matter, it’s not different to the one where X fills in the right column while O fills in the center column. If you don’t count symmetries like this as different games, then we have fewer games altogether. So if that is what Graziano means, then 26,000 may be a fair estimate of tic-tac-toe games.

That, by the way, is the strip that gave me the most to think about of this set.

Hammy is tricked into summer math again. (He's asked how many cookies he and three friends would have in total, if they each got two cookies. He gets the answer correct.)
Rick Kirkman and Jerry Scott’s Baby Blues for the 8th of August, 2015.

Rick Kirkman and Jerry Scott’s Baby Blues (August 8) is another installment of Kids Doing Mathematics During Summer Vacation. This is almost the theme of the summer in mathematics comics. Possibly it’s the theme of every summer.

Bill Amend’s FoxTrot (August 9) is one of those odd jokes that also is a pretty good business opportunity. Jason Fox proposes some of the many shapes that could, in principle, hold ice cream. I believe hemispheres at least are available, actually, at least to restaurants. But some of these shapes, such as pyramids or dodecahedrons or such, seem like they could be made and just happen not to have been. (Well, half-dodecahedrons, anyway.) That probably reflects that a cone or similarly narrow-based shape forces more of a given amount of ice cream to overflow the top of the cone, suggesting abundance. Geometric possibilities must give way to making the product look bigger.

Reading the Comics, July 12, 2015: Chuckling At Hart Edition


I haven’t had the chance to read the Gocomics.com comics yet today, but I’d had enough strips to bring up anyway. And I might need something to talk about on Tuesday. Two of today’s strips are from the legacy of Johnny Hart. Hart’s last decades at especially B.C., when he most often wrote about his fundamentalist religious views, hurt his reputation and obscured the fact that his comics were really, really funny when they start. His heirs and successors have been doing fairly well at reviving the deliberately anachronistic and lightly satirical edge that made the strips funny to begin with, and one of them’s a perennial around here. The other, Wizard of Id Classics, is literally reprints from the earliest days of the comic strip’s run. That shows the strip when it was earning its place on every comics page everywhere, and made a good case for it.

Mason Mastroianni, Mick Mastroianni, and Perri Hart’s B.C. (July 8) shows how a compass, without straightedge, can be used to ensure one’s survival. I suppose it’s really only loosely mathematical but I giggled quite a bit.

Ken Cursoe’s Tiny Sepuku (July 9) talks about luck as being just the result of probability. That’s fair enough. Random chance will produce strings of particularly good, or bad, results. Those strings of results can look so long or impressive that we suppose they have to represent something real. Look to any sport and the argument about whether there are “hot hands” or “clutch performers”. And Maneki-Neko is right that a probability manipulator would help. You can get a string of ten tails in a row on a fair coin, but you’ll get many more if the coin has an eighty percent chance of coming up tails.

Brant Parker and Johnny Hart’s Wizard of Id Classics (July 9, rerun from July 12, 1965) is a fun bit of volume-guessing and logic. So, yes, I giggled pretty solidly at both B.C. and The Wizard of Id this week.

Mell Lazarus’s Momma (July 11) identifies “long division” as the first thing a person has to master to be an engineer. I don’t know that this is literally true. It’s certainly true that liking doing arithmetic helps one in a career that depends on calculation, though. But you can be a skilled songwriter without being any good at writing sheet music. I wouldn’t be surprised if there are skilled engineers who are helpless at dividing fourteen into 588.

In the panel of interest, Loretta says the numbers (presumably the bills) don't add up, but they subtract down fine.
Bunny Hoest and John Reiner’s Lockhorns for the 12th of July, 2015.

Bunny Hoest and John Reiner’s Lockhorns (July 12) includes an example of using “adding up” to mean “make sense”. It’s a slight thing. But the same idiom was used last week, in Eric Teitelbaum and Bill Teitelbaum’s Bottomliners. I don’t think Comic Strip Master Command is ordering this punch line yet, but you never know.

And finally, I do want to try something a tiny bit new, and explicitly invite you-the-readers to say what strip most amused you. Please feel free to comment about your choices, r warn me that I set up the poll wrong. I haven’t tried this before.

Playful Mathematics: Sweet Add-A-Line


Last weekend I visited the Vintage Flipper World pinball museum just outside Ann Arbor, Michigan. Among the games there was Gottleib’s 1955 table Sweet Add-A-Line. It’s a peculiar table by modern standards, since nearly all the playfield is a bunch of lanes, channels through which the pinball might roll. But …

Gottlieb's 1955 pinball table _Sweet Add-A-Line_. 'It figgers!' says the backglass. It shows an underdressed 'patio secretary' on the adding machine, while a portly Mr Dithers-esque guy walks on the beach wearing striped swimming costume and holding a ledger. Also some guys in the background are singing, because the game's name demands it.
In this round of Sweet Add-A-Line I managed to get the 9, 7, 15, and 2 rollovers, lighting up the total of 33 on the lower-left adding tape. And scored overall 1,840,000 points. See the lights at the bottom. Unanswered question: so, “patio secretary” was a thing in 1955? I guess?

I apologize for the Coors sign reflected in the back glass. I didn’t even see it when I was taking the picture.

Each of the lanes is numbered. Rolling one down lights up that number in the backglass, as above. And if you roll all the numbers in one of the eight strips of tape, the game opens up bonus opportunities. It’s a fun game and certainly one of the top adding-machine-themed pinball machines I’ve ever played. I grant this is of marginal mathematical content, but, heck, I smiled.

The Internet Pinball Database has a scan of the game’s advertising flyer, which I like if nothing else for its defensive “Amusement Pinballs: as American as Baseball and Hot Dogs!” slogan.

Monopoly Chances


While the whole world surely heard about it before, I just today ran across a web page purporting to give the probabilities and expected incomes for the various squares on a Monopoly board. There are many similar versions of this table around — the Monopoly app for iPad even offers the probability that your opponents will land on any given square in the next turn, which is superlatively useful if you want to micromanage your building — and I wouldn’t be surprised if there are little variations and differences between tables.

What’s interesting to me is that the author, Truman Collins, works out the answers by two different models, and considers the results to probably be fairly close to correct because the different models of the game agree fairly well. There are some important programming differences between Collins’s two models (both of which are shown, in code written in C, so it won’t compile on your system without a lot of irritating extra work), but the one that’s most obvious is that in one model the effect of being tossed into jail after rolling three doubles in a row is modelled, while in the other it’s ignored.

Does this matter? Well, it matters a bit, since one is closer to the true game than the other, but at the cost of making a more complicated simulation, which is the normal sort of trade-off someone building a model has to make. Any simulation simplifies the thing being modelled, and a rule like the jail-on-three-doubles might be too much bother for the improvement in accuracy it offers.

Here’s another thing to decide in building the model: when you land in jail, you can either pay a $50 fine and get out immediately, or can try to roll doubles. If there are a lot of properties bought by your opponents, sitting in jail (as the rolling-doubles method implies) can be better, as it reduces the chance you have to pay rent to someone else. That’s likely the state in the later part of the game. If there are a lot of unclaimed properties, you want to get out and buy stuff. Collins simulates this by supposing that in the early game one buys one’s way out, and in the late game one rolls for doubles. But even that’s a simplification: suppose you owned much of the sides of the board after jail. (You’re likely crushing me, in that case.) Why not get out and get closer to Go the sooner, as long as it’s not likely to cost you?

That Collins tries different models and gets similar results suggest that these estimates are tolerably close to right, and often, that’s the best one can really know about how well a model of a complicated thing represents the reality.