Reading the Comics, February 11, 2018: February 11, 2018 Edition


And it’s not always fair to say that the gods mock any plans made by humans, but Comic Strip Master Command has been doing its best to break me of reading and commenting on any comic strip with a mathematical theme. I grant that I could make things a little easier if I demanded more from a comic strip before including it here. But even if I think a theme is slight that doesn’t mean the reader does, and it’s easy to let the eye drop to the next paragraph if the reader does think it’s too slight. The anthology nature of these posts is part of what works for them. And then sometimes Comic Strip Master Command sends me a day like last Sunday when everybody was putting in some bit of mathematics. There’ll be another essay on the past week’s strips, never fear. But today’s is just for the single day.

Susan Camilleri Konar’s Six Chix for the 11th illustrates the Lemniscate Family. The lemniscate is a shape well known as the curve made by a bit of water inside a narrow tube by people who’ve confused it with a meniscus. An actual lemniscate is, as the chain of pointing fingers suggests, a figure-eight shape. You get — well, I got — introduced to them in prealgebra. They’re shapes really easy to describe in polar coordinates but a pain to describe in Cartesian coordinates. There are several different kinds of lemniscates, each satisfying slightly different conditions while looking roughly like a figure eight. If you’re open to the two lobes of the shape not being the same size there’s even a kind of famous-ish lemniscate called the analemma. This is the figure traced out by the sun if you look at its position from a set point on the surface of the Earth at the same clock time each day over the course of the year. That the sun moves north and south from the horizon is easy to spot. That it is sometimes east or west of some reference spot is a surprise. It shows the difference between the movement of the mean sun, the sun as we’d see it if the Earth had a perfectly circular orbit, and the messy actual thing. Dr Helmer Aslasken has a fine piece about this, and how it affects when the sun rises earliest and latest in the year.

At a restaurant: 'It was always a challenge serving the lemniscate family'. Nine people each pointing to neighbors and saying 'I'll have what s/he's having', in a sequence that would make a figure-eight as seen from above or below the tables.
Susan Camilleri Konar’s Six Chix for the 11th of February, 2018. It’s not really worse than some of the Carioid Institute dinners.

There’s also a thing called the “polynomial lemniscate”. This is a level curve of a polynomial. That is, what are all the possible values of the independent variable which cause the polynomial to evaluate to some particular number? This is going to be a polynomial in a complex-valued variable, in order to get one or more closed and (often) wriggly loops. A polynomial of a real-valued variable would typically give you a boring shape. There’s a bunch of these polynomial lemniscates that approximate the boundary of the Mandelbrot Set, that fractal that you know from your mathematics friend’s wall in 1992.

Mark Anderson’s Andertoons took care of being Mark Anderson’s Andertoons early in the week. It’s a bit of optimistic blackboard work.

Lincoln Pierce’s Big Nate features the formula for calculating the wind chill factor. Francis reads out what is legitimately the formula for estimating the wind chill temperature. I’m not going to get into whether the wind chill formula makes sense as a concept because I’m not crazy. The thinking behind it is that a windless temperature feels about the same as a different temperature with a particular wind. How one evaluates those equivalences offers a lot of room for debate. The formula as the National Weather Service, and Francis, offer looks frightening, but isn’t really hard. It’s not a polynomial, in terms of temperature and wind speed, but it’s close to that in form. The strip is rerun from the 15th of February, 2009, as Lincoln Pierce has had some not-publicly-revealed problem taking him away from the comic for about a month and a half now.

Jim Scancarelli’s Gasoline Alley included a couple of mathematics formulas, including the famous E = mc2 and the slightly less famous πr2, as part of Walt Wallet’s fantasy of advising scientists and inventors. (Scientists have already heard both.) There’s a curious stray bit in the corner, writing out 6.626 x 102 x 3 that I wonder about. 6.626 is the first couple digits of Planck’s Constant, as measured in Joule-seconds. (This is h, not h-bar, I say for the person about to complain.) It’d be reasonable for Scancarelli to have drawn that out of a physics book or reference page. But the exponent is all wrong, even if you suppose he mis-wrote 1023. It should be 6.626 x 10-34. So I don’t know whether Scancarelli got things very garbled, or if he just picked a nice sciencey-looking number and happened to hit on a significant one. (There’s enough significant science numbers that he’d have a fair chance of finding something.) The strip is a reprint from the 4th of February, 2007, as Jim Scancarelli has been absent for no publicly announced reason for four months now.

Greg Evans and Karen Evans’s Luann is not perfectly clear. But I think it’s presenting Gunther doing mathematics work to support his mother’s contention that he’s smart. There’s no working out what work he’s doing. But then we might ask how smart his mother is to have made that much food for just the two of them. Also that I think he’s eating a potato by hand? … Well, there are a lot of kinds of food that are hard to draw.

Greg Evans’s Luann Againn reprints the strip from the 11th of February (again), 1990. It mentions as one of those fascinating things of arithmetic an easy test to see if a number’s a multiple of nine. There are several tricks like this, although the only ones anybody can remember are finding multiples of 3 and finding multiples of 9. Well, they know the rules for something being a multiple of 2, 5, or 10, but those hardly look like rules, and there’s no addition needed. Similarly with multiples of 4.

Modular arithmetic underlies all these rules. Once you know the trick you can use it to work out your own add-up-the-numbers rules to find what numbers are multiples of small numbers. Here’s an example. Think of a three-digit number. Suppose its first digit is ‘a’, its second digit ‘b’, and its third digit ‘c’. So we’d write the number as ‘abc’, or, 100a + 10b + 1c. What’s this number equal to, modulo 9? Well, 100a modulo 9 has to be equal to whatever a modulo 9 is: (100 a) modulo 9 is (100) modulo 9 — that is, 1 — times (a) modulo 9. 10b modulo 9 is (10) modulo 9 — again, 1 — times (b) modulo 9. 1c modulo 9 is … well, (c) modulo 9. Add that all together and you have a + b + c modulo 9. If a + b + c is some multiple of 9, so must be 100a + 10b + 1c.

The rules about whether something’s divisible by 2 or 5 or 10 are easy to work with since 10 is a multiple of 2, and of 5, and for that matter of 10, so that 100a + 10b + 1c modulo 10 is just c modulo 10. You might want to let this settle. Then, if you like, practice by working out what an add-the-digits rule for multiples of 11 would be. (This is made a lot easier if you remember that 10 is equal to 11 – 1.) And if you want to show off some serious arithmetic skills, try working out an add-the-digits rule for finding whether something’s a multiple of 7. Then you’ll know why nobody has ever used that for any real work.

J C Duffy’s Lug Nuts plays on the equivalence people draw between intelligence and arithmetic ability. Also on the idea that brain size should have something particularly strong link to intelligence. Really anyone having trouble figuring out 15% of $10 is psyching themselves out. They’re too much overwhelmed by the idea of percents being complicated to realize that it’s, well, ten times 15 cents.

Reading the Comics, September 19, 2017: Visualization Edition


Comic Strip Master Command apparently doesn’t want me talking about the chances of Friday’s Showcase Showdown. They sent me enough of a flood of mathematically-themed strips that I don’t know when I’ll have the time to talk about the probability of that episode. (The three contestants spinning the wheel all tied, each spinning $1.00. And then in the spin-off, two of the three contestants also spun $1.00. And this after what was already a perfect show, in which the contestants won all six of the pricing games.) Well, I’ll do what comic strips I can this time, and carry on the last week of the Summer 2017 A To Z project, and we’ll see if I can say anything timely for Thursday or Saturday or so.

Jim Scancarelli’s Gasoline Alley for the 17th is a joke about the student embarrassing the teacher. It uses mathematics vocabulary for the specifics. And it does depict one of those moments that never stops, as you learn mathematics. There’s always more vocabulary. There’s good reasons to have so much vocabulary. Having names for things seems to make them easier to work with. We can bundle together ideas about what a thing is like, and what it may do, under a name. I suppose the trouble is that we’ve accepted a convention that we should define terms before we use them. It’s nice, like having the dramatis personae listed at the start of the play. But having that list isn’t the same as saying why anyone should care. I don’t know how to balance the need to make clear up front what one means and the need to not bury someone under a heap of similar-sounding names.

Mac King and Bill King’s Magic in a Minute for the 17th is another puzzle drawn from arithmetic. Look at it now if you want to have the fun of working it out, as I can’t think of anything to say about it that doesn’t spoil how the trick is done. The top commenter does have a suggestion about how to do the problem by breaking one of the unstated assumptions in the problem. This is the kind of puzzle created for people who want to motivate talking about parity or equivalence classes. It’s neat when you can say something of substance about a problem using simple information, though.

'How are you and David doing?' 'Better, with counseling.' (As Ben takes his drink bottle.) 'But sometimes he still clings to hope that Ben's autism is 'curable'. Admittedly, I've wondered that myself. Then Ben strips naked and solves a trigonometry problem.' 'Whoa.' (Ben throws his drink bottle in the air and says) 'A = (1/2)(4)(2) sin 45 deg.'
Terri Libenson’s Pajama Diaries for the 18th of September, 2017. When I first read this I assumed that of course the base of the triangle had length 4 and the second leg, at a 45-degree angle to that, had length 2, and I wondered if those numbers could be consistent for a triangle to exist. Of course they could, though. There is a bit of fun to be had working out whether a particular triangle could exist from knowing its side lengths, though.

Terri Libenson’s Pajama Diaries for the 18th uses trigonometry as the marker for deep thinking. It comes complete with a coherent equation, too. It gives the area of a triangle with two legs that meet at a 45 degree angle. I admit I am uncomfortable with promoting the idea that people who are autistic have some super-reasoning powers. (Also with the pop-culture idea that someone who spots things others don’t is probably at least a bit autistic.) I understand wanting to think someone’s troubles have some compensation. But people are who they are; it’s not like they need to observe some “balance”.

Lee Falk and Wilson McCoy’s The Phantom for the 10th of August, 1950 was rerun Monday. It’s a side bit of joking about between stories. And it uses knowledge of mathematics — and an interest in relativity — as signifier of civilization. I can only hope King Hano does better learning tensors on his own than I do.

Guest Woman: 'Did you know the King was having trouble controlling the young hotheads in his own tribe?' Phantom: 'Yes. He's an old friend of mine. He probably looks like an ignorant savage to you. Actually, he speaks seven languages, is an expert mathematician, and plays a fine hand of poker.' Guest Woman: 'What?' Cut to the King, in his hut, reading The Theory Of Relativity. 'Thank goodness that's over ... Now where was I?'
Lee Falk and Wilson McCoy’s The Phantom for the 10th of August, 1950 and rerun the 18th of September, 2017. For my money, just reading a mathematics book doesn’t take. I need to take notes, as if it were in class. I don’t quite copy the book, but it comes close.

Mike Thompson’s Grand Avenue for the 18th goes back to classrooms and stuff for clever answers that subvert the teacher. And I notice, per the title given this edition, that the teacher’s trying to make the abstractness of three minus two tangible, by giving it an example. Which pairs it with …

Will Henry’s Wallace the Brace for the 18th, wherein Wallace asserts that arithmetic is easier if you visualize real things. I agree it seems to help with stuff like basic arithmetic. I wouldn’t want to try taking the cosine of an apple, though. Separating the quantity of a thing from the kind of thing measured is one of those subtle breakthroughs. It’s one of the ways that, for example, modern calculations differ from those of the Ancient Greeks. But it does mean thinking of numbers in, we’d say, a more abstract way than they did, and in a way that seems to tax us more.

Wallace the Brave recently had a book collection published, by the way. I mention because this is one of a handful of comics with a character who likes pinball, and more, who really really loves the Williams game FunHouse. This is an utterly correct choice for favorite pinball game. It’s one of the games that made me a pinball enthusiast.

Ryan North’s Dinosaur Comics rerun for the 19th I mention on loose grounds. In it T-Rex suggests trying out an alternate model for how gravity works. The idea, of what seems to be gravity “really” being the shade cast by massive objects in a particle storm, was explored in the late 17th and early 18th century. It avoids the problem of not being able to quite say what propagates gravitational attraction. But it also doesn’t work, analytically. We would see the planets orbit differently if this were how gravity worked. And there’s the problem about mass and energy absorption, as pointed out in the comic. But it can often be interesting or productive to play with models that don’t work. You might learn something about models that do, or that could.

%d bloggers like this: