Today’s essay is just to mention the comic strips which, last week, said mathematics but in some incidental way. Or some way that I can’t write a reasonable blog entry for.

Jim Meddick’s Monty for the 29th has the time-travelling Professor Xemit (get it?) show a Times Square Ball Drop of the future. The ball gets replaced with a “demihypercube”, the idea being that the future will have some more complicated geometry than a mere “ball”. There is no such thing as “a” demihypercube, in the same way there is not “a” pentagon. There is a family of shapes, all called demihypercubes. There’s a variety of ways to represent them. A reasonable one, though, is a roughly spherical shape made of pointy triangles all over. It wouldn’t look absurd. There are probably time ball drops that use something like a demihypercube already.

Also this coming Sunday I should look at more mathematically-themed comic strips. That should appear at this link, unless something urgent commands my attention first. Thank you.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st of April, 2018 would have gone in last week if I weren’t preoccupied on Saturday. The joke is aimed at freshman calculus students and then intro Real Analysis students. The talk about things being “arbitrarily small” turns up a lot in these courses. Why? Well, in them we usually want to show that one thing equals another. But it’s hard to do that. What we can show is some estimate of how different the first thing can be from the second. And if you can show that that difference can be made small enough by calculating it correctly, great. You’ve shown the two things are equal.

Delta and epsilon turn up in these a lot. In the generic proof of this you say you want to show the difference between the thing you can calculate and the thing you want is smaller than epsilon. So you have the thing you can calculate parameterized by delta. Then your problem becomes showing that if delta is small enough, the difference between what you can do and what you want is smaller than epsilon. This is why it’s an appropriately-formed joke to show someone squeezed by a delta and an epsilon. These are the lower-case delta and epsilon, which is why it’s not a triangle on the left there.

For example, suppose you want to know how long the perimeter of an ellipse is. But all you can calculate is the perimeter of a polygon. I would expect to make a proof of it look like this. Give me an epsilon that’s how much error you’ll tolerate between the polygon’s perimeter and the ellipse’s perimeter. I would then try to find, for epsilon, a corresponding delta. And that if the edges of a polygon are never farther than delta from a point on the ellipse, then the perimeter of the polygon and that of the ellipse are less than epsilon away from each other. And that’s Calculus and Real Analysis.

John Zakour and Scott Roberts’s Maria’s Day for the 22nd is the anthropomorphic numerals joke for this week. I’m curious whether the 1 had a serif that could be wrestled or whether the whole number had to be flopped over, as though it were a ruler or a fat noodle.

Dave Whamond’s Reality Check for the 23rd is designed for the doors of mathematics teachers everywhere. It does incidentally express one of those truths you barely notice: that statisticians and mathematicians don’t seem to be quite in the same field. They’ve got a lot of common interest, certainly. But they’re often separate departments in a college or university. When they do share a department it’s named the Department of Mathematics and Statistics, itself an acknowledgement that they’re not quite the same thing. (Also it seems to me it’s always Mathematics-and-Statistics. If there’s a Department of Statistics-and-Mathematics somewhere I don’t know of it and would be curious.) This has to reflect historical influence. Statistics, for all that it uses the language of mathematics and that logical rigor and ideas about proofs and all, comes from a very practical, applied, even bureaucratic source. It grew out of asking questions about the populations of nations and the reliable manufacture of products. Mathematics, even the mathematics that is about real-world problems, is different. A mathematician might specialize in the equations that describe fluid flows, for example. But it could plausibly be because they have interesting and strange analytical properties. It’d be only incidental that they might also say something enlightening about why the plumbing is stopped up.

Neal Rubin and Rod Whigham’s Gil Thorp for the 24th seems to be setting out the premise for the summer storyline. It’s sabermetrics. Or at least the idea that sports performance can be quantized, measured, and improved. The principle behind that is sound enough. The trick is figuring out what are the right things to measure, and what can be done to improve them. Also another trick is don’t be a high school student trying to lecture classmates about geometry. Seriously. They are not going to thank you. Even if you turn out to be right. I’m not sure how you would have much control of the angle your ball comes off the bat, but that’s probably my inexperience. I’ve learned a lot about how to control a pinball hitting the flipper. I’m not sure I could quantize any of it, but I admit I haven’t made a serious attempt to try either. Also, when you start doing baseball statistics you run a roughly 45% chance of falling into a deep well of calculation and acronyms of up to twelve letters from which you never emerge. Be careful. (This is a new comic strip tag.)

Randy Glasbergen’s Glasbergen Cartoons rerun for the 25th feels a little like a slight against me. Well, no matter. Use the things that get you in the mood you need to do well. (Not a new comic strip tag because I’m filing it under ‘Randy Glasbergen’ which I guess I used before?)