Reading the Comics, September 29, 2019: September 29, 2019 Edition


Several of the mathematically-themed comic strips from last week featured the fine art of calculation. So that was set to be my title for this week. Then I realized that all the comics worth some detailed mention were published last Sunday, and I do like essays that are entirely one-day affairs. There are a couple of other comic strips that mentioned mathematics tangentially and I’ll list those later this week.

John Hambrock’s The Brilliant Mind of Edison lee for the 29th has Edison show off an organic computer. This is a person, naturally enough. Everyone can do some arithmetic in their heads, especially if we allow that sometimes approximate answers are often fine. People with good speed and precision have always been wonders, though. The setup may also riff on the ancient joke of mathematicians being ways to turn coffee into theorems. (I would imagine that Hambrock has heard that joke. But it is enough to suppose that he’s aware many adult humans drink coffee.)

Edison: 'Welcome to Edison's Science Sunday. I'm going to show you how to build a simple organic calculator. I'll use a bale of hay, a pot of coffee, and Bob the postman. First, I'll have Bob sit on the hay.' Joules, rat: 'OK, now what?' Edison: 'Bob, what is 46 times 19?' Bob :'874.' Joules: 'You have GOT to be kidding me!' Edison: 'He's a whiz with numbers.' Joules: 'Where does the coffee come in?' Edison: 'It extends Bob's battery life.' Bob: 'Cream and sugar, please.'
John Hambrock’s The Brilliant Mind of Edison lee for the 29th of September, 2019. Essays featuring something mentioned in Edison Lee appear at this link.

John Kovaleski’s Daddy Daze for the 29th sees Paul, the dad, working out the calculations his son (Angus) proposed. It’s a good bit of arithmetic that Paul’s doing in his head. The process of multiplying an insubstantial thing by many, many times until you get something of moderate size happens all the time. Much of integral calculus is based on the idea that we can add together infinitely many infinitesimal numbers, and from that get something understandable on the human scale. Saving nine seconds every other day is useless for actual activities, though. You need a certain fungibility in the thing conserved for the bother to be worth it.

Kid: 'Ba ba'. Dad: 'A brilliant math-related idea?' Kid: 'Ba ba ba ba'. Dad: 'We don't need to wash *all* your toes every time you take a bath since they're not *that* dirty?' 'Ba ba ba ba ba' 'OK, if I've got this. There's 8 space between your 10 toes, each space takes 1.25 seconds to wash. If we wash only one space per bath we save 8.75 seconds each time. Three baths a week, this saves 1365 seconds (22.75 minutes) every year. Gee, what'll we do with all that extra time?' 'Ba ba ba'. 'Play 'This Little Piggy' 107.4 times.'
John Kovaleski’s Daddy Daze for the 29th of September, 2019. This is a new tag. Well, the comic is barely a year old. But this and other essays featuring Daddy Daze should be at this link.

Dan Thompson’s Harley for the 29th gets us into some comic strips not drawn by people named John. The comic has some mathematics in it qualitatively. The observation that you could jump a motorcycle farther, or higher, with more energy, and that you can get energy from rolling downhill. It’s here mostly because of the good fortune that another comic strip did a joke on the same topic, and did it quantitatively. That comic?

Harley, racing on the motorcycle: 'Speeding down this mountain should launch us over Pointy Rock Canyon.' Cat, riding behind: 'How do you figure that?' Harley: 'Math, my friend. Harley + Speed + Ramp = Jump The Canyon. It's so simple, it's genius!' Cat: 'We're going faster than we've ever gone!' Harley: 'I think I heard a sonic boom!' Cat: 'I see the rap!' Harley: 'I see my brilliance!' (They race up the ramp. Final panel, they're floating in space.) Cat: 'Didn't you flunk math in school?' Harley: 'Not the third time.'
Dan Thompson’s Harley for the 29th of September, 2019. This just barely misses being a new tag. This essay and the other time I mentioned Harley are at this link. I’ll keep you up dated if there are more essays to add to this pile.

Bill Amend’s FoxTrot for the 29th. Young prodigies Jason and Marcus are putting serious calculation into their Hot Wheels track and working out the biggest loop-the-loop possible from a starting point. Their calculations are right, of course. Bill Amend, who’d been a physics major, likes putting authentic mathematics and mathematical physics in. The key is making sure the car moves fast enough in the loop that it stays on the track. This means the car experiencing a centrifugal force that’s larger than that of gravity. The centrifugal force on something moving in a circle is proportional to the square of the thing’s speed, and inversely proportional to the radius of the circle. This for a circle in any direction, by the way.

So they need to know, if the car starts at the height A, how fast will it go at the top of the loop, at height B? If the car’s going fast enough at height B to stay on the track, it’s certainly going fast enough to stay on for the rest of the loop.

Diagram on ruled paper showing a track dropping down and circling around, with the conservation-of-energy implications resulting on the conclusion the largest possible loop-the-loop is 4/5 the starting height. Peter: 'I don't think this will work. Your calculations assume no friction.' Jason: 'Peter, please. We're not stupid.' (Jason's friend Marcus is working on the track.) Mom: 'Kids, why is there a Hot Wheels car soaking in a bowl of olive oil?'
Bill Amend’s FoxTrot for the 29th of September, 2019. Essays featuring either the current-run Sunday FoxTrot or the vintage FoxTrot comics from the 90s should be at this link.

The hard part would be figuring the speed at height B. Or it would be hard if we tried calculating the forces, and thus acceleration, of the car along the track. This would be a tedious problem. It would depend on the exact path of the track, for example. And it would be a long integration problem, which is trouble. There aren’t many integrals we can actually calculate directly. Most of the interesting ones we have to do numerically or work on approximations of the actual thing. This is all right, though. We don’t have to do that integral. We can look at potential energy instead. This turns what would be a tedious problem into the first three lines of work. And one of those was “Kinetic Energy = Δ Potential Energy”.

But as Peter observes, this does depend on supposing the track is frictionless. We always do this in basic physics problems. Friction is hard. It does depend on the exact path one follows, for example. And it depends on speed in complicated ways. We can make approximations to allow for friction losses, often based in experiment. Or try to make the problem one that has less friction, as Jason and Marcus are trying to do.

Caption: 'ODDITIONS'. Several people with large numerals as head stand around, reading scripts; the one with a 3 head recites, 'To be or not to be? That is the question.' A 9 leans in, saying, 'Next!'
Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 29th of September, 2019. The occasional essay featuring Mustard and Boloney appears at this link. I feel a bit glad to see this doesn’t seem to be a rerun, or at least it’s not one I’ve discussed before.

Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 29th is the anthropomorphic numerals joke for the week. This is a slight joke to include here. But there were many comic strips of slight mathematical content. I intend to list them in an essay on Wednesday.

Tuesday I plan to be a day for the Fall 2019 A-to-Z. Again, thank you for reading.

Reading the Comics, July 3, 2018: Fine, Jef Mallett Wants My Attention Edition


Three of these essays in a row now that Jef Mallett’s Frazz has done something worth responding to. You know, the guy lives in the same metro area. He could just stop in and visit sometime. There’s a pinball league in town and everything. He could view it as good healthy competition.

Bill Hinds’s Cleats for the 1st is another instance of the monkeys-on-typewriters metaphor. The metaphor goes back at least as far as 1913, when Émile Borel wrote a paper on statistical mechanics and the reversibility problem. Along the way it was worth thinking of the chance of impossibly unlikely events, given enough time to happen. Monkeys at typewriters formed a great image for a generator of text that knows no content or plan. Given enough time, this random process should be able to produce all the finite strings of text, whatever their content. And the metaphor’s caught people’s fancy I guess there’s something charming and Dadaist about monkeys doing office work. Borel started out with a million monkeys typing ten hours a day. Modern audiences sometimes make this an infinite number of monkeys typing without pause. This is a reminder of how bad we’re allowing pre-revolutionary capitalism get.

Kid: 'Mom, Dad, I want to go bungee jumping this summer!' Dad: 'A thousand monkeys working a thousand typewriters would have a better chance of randomly typing the complete works of William Shakespeare over the summer than you have of bungee jumping.' (Awksard pause.) Kid: 'What's a typewriter?' Dad: 'A thousand monkeys randomly TEXTING!'
Bill Hinds’s Cleats rerun for the 1st of July, 2018. It originally ran the 28th of June, 2009. Oh, but you figured that out yourselves, didn’t you? Also, boy, that’s not much of a punch line. Most comics aren’t actually written with disdain for young people and their apps and their podcasts and their emojis and all that. But sometimes one kind of hits it.

Sometimes it’s cut down to a mere thousand monkeys, as in this example. Often it’s Shakespeare, but sometimes it’s other authors who get duplicated. Dickens seems like a popular secondary choice. In joke forms, the number of monkeys and time it would take to duplicate something is held as a measure of the quality of the original work. This comes from people who don’t understand. Suppose the monkeys and typewriters are producing truly random strings of characters. Then the only thing that affects how long it takes them to duplicate some text is the length of the original text. How good the text is doesn’t enter into it.

Jef Mallett’s Frazz for the 1st is about the comfort of knowing about things one does not know. And that’s fine enough. Frazz cites Fermat’s Last Theorem as a thing everyone knows of but doesn’t understand. And that choice confuses me. I’m not sure what there would be to Fermat’s Last Theorem that someone who had heard of it would not understand. The basic statement of it — if you have three positive whole numbers a, b, and c, then there’s no whole number n larger than 2 so that a^n + b^n equals c^n — has it.

Frazz: 'You know what I like? Fermat's last theorem.' Jane: 'Do you even understand it?' Frazz: 'Nope. And neither do you. To paraphrase Mark Twain, we live in a world where too many people don't know what they don't know. With Fermat's Last Theorem, we can all agree on something we don't know.' Jane: 'Nice. Except how many people have ever heard of Fermat's Last Theorem?' Frazz: '2,125,420,566.' Jane: 'You don't know that.' Frazz: 'I know!'
Jef Mallett’s Frazz for the 1st of July, 2018. Frazz’s estimate of how many have heard of Fermat’s Last Theorem seems low to me. But I grew up at a time when the theorem was somewhat famous for being something easy to understand and that had defied four hundred years’ worth of humanity trying to prove. And even then my experience is selected to a particular kind of Western-culture person. Was the theorem ever so interesting to, say, Indian or Chinese mathematicians? (Come to it, was there someone in the South Asian or Chinese or Japanese traditions who ran across the same property but didn’t get famous in Western literature for it?)

But “understanding” is a flexible concept. He might mean that people don’t know why the Theorem is true. Fair enough. Andrew Wiles and Richard Taylor’s proof is a long thing that goes deep into a field of mathematics that even most mathematicians don’t study. Why it should be true can be an interesting question, and one that’s hard to ever satisfyingly answer. What is the difference between a proof that something is true and an explanation for why it’s true? And before you say there’s not one, please consider that many mathematicians do experience a difference between seeing something proved and understanding why something is true.

And Frazz might also mean that nobody knows what use Fermat’s Last Theorem is. This is a fair complaint too. I’m not aware offhand of any interesting results which follow from its truth, nor of anything neat that would come about had it been false. It’s just one of those things that happens to be true, and that we’ve found to be pretty, perhaps because it is easy to ask whether it’s true and hard to answer. I don’t know.

Morrie Turner’s Wee Pals for the 2nd has a kid looking for a square root. We all have peculiar hobbies. His friends speak of it as though it’s a lost physical object. This is a hilarious misunderstanding until it strikes you that we speak about stuff like square roots “existing”. Indeed, the language of mathematics would be trashed if we couldn’t speak about numerical constructs “existing” somewhere to be “found”. But try to put “four” in a box and see what you get. That we mostly have little trouble understanding what we mean by showing some mathematical construct exists, and what we hope to do by looking for it, suggests we roughly know what we mean by the phrases. All right then; what is that, in terms a kid could understand?

Ralph: 'Whatcha doin', Oliver?' Oliver: 'Trying to find the square root of 8,765,510.' Ralph: 'Where did you lose it? Randy and I will help you find it!'
Morrie Turner’s Wee Pals rerun for the 2nd of July, 2018. It originally ran the 2nd of July, 2013. Just saying, it would have been slick if Oliver had been working out something for which 42 was the answer. Why couldn’t he have been looking for the cube root of 74,088 instead?

There are many ways to numerically compute a square root, if you have to do it by hand and it isn’t a perfect square. My preference is for iterative methods, in which you start with a rough guess and try to improve things. One good enough method for we call the Babylonian method, reflecting how old we think it is. Start with your number S whose square root you want. And start with a number x0, a first guess for what the square root is. This can be anything. The great thing about iterative methods is even if you start with a garbage answer, you get to a good answer soon enough. Still, if you have a suspicion of what the square root should be, start there.

Your first iteration, the first guess for a better answer, is to calculate the number x_1 = \frac{1}{2}\left( x_0 + \frac{S}{x_0}\right) . Typically, x1 will be closer to the square root of S than will x0 be. And in any case, we can get closer still. Use x1 to calculate a new number. This is x_2 = \frac{1}{2}\left( x_1 + \frac{S}{x_1}\right) . And then x3 and x4 and x5 and so on. In theory, you never finish; you’re stuck finding an infinitely long sequence of better approximations to the square root. In practice, you finish; you find that you’re close enough to the square root. Well, the square root of a whole number is either a whole number (if it was a perfect square to start) or is an irrational number. You were going to stop on an approximation sooner or later.

The method requires doing division. Long division, too, after the first couple steps. I don’t know a way around that which doesn’t divert into something less pleasant, such as logarithms and exponentials. Or maybe into trigonometric functions. This can be tedious to do by hand. Great thing, though, is if you make a mistake? That’s kind of all right. The next iteration will (usually) correct for it. That’s the glory of iterative methods. They tend to be forgiving of numerical error, whatever its source. Another iteration reduces, or even eliminates, the mistake of the previous iteration.

At the bar. Harley's Friend: 'I've done the math. You won't make it across the canyon without a good ramp, Harley! You need a quadrilateral with exactly one pair of parallel sides. You'll be riding into a trap ... ezoid.' Harley, in jail, to the sheriff: 'Who knew a calculator could go that far up his nose.'
Dan Thompson’s Harley for the 3rd of July, 2018. I don’t know the guy’s name here. The storyline is part of Harley’s annual effort to jump across the canyon and no, it doesn’t go well.

Dan Thompson’s Harley for the 3rd is a shapes joke. Haven’t had a proper anthropomorphic geometric figures joke in a while. This is near enough.


For more of these Reading the Comics posts please follow this link. If you’re only interested in Reading the Cleats strips, please use this link instead. But Cleats is a new tag this essay, so for now, there aren’t others. If you’re hoping to see all my Reading the Comics posts about Frazz, try this link. If you’d like more of my essays which mention Wee Pals, you can use this link. And if you’d like more Reading the Comics posts that mention Harley, use this link. That’s another new tag, but I believe Dan Thompson is still making new examples of the strip. So it may appear again.

%d bloggers like this: