## Reading the Comics, March 9, 2018: Some Old Lines Edition

To close out last week’s comics I got a bunch of strips that were repeats, or that touch on topics I’ve discussed quite a bit around these parts already. I’m pretty sure all the words I have here are new in their specific organization. The words themselves are pretty old.

Maria Scrivan’s Half Full for the 4th is the Rubik’s Cube joke for the week. I ought to write up a proper description of the algebra of Rubik’s Cubes. The real stuff is several books’ worth of material, yes. But a couple hundred words about what’s interesting should be doable. … Or I could just ask folks if they’ve read good descriptions of the group theory that cubes show off. I’m always open to learning other people have said stuff better than me. This is part of why I’ve never published an essay about Cantor’s Diagonal Proof; many people have written such essays and I couldn’t add anything useful to that heap of words.

Ryan North’s Dinosaur Comics for the 5th is about the heap paradox. Or the sorites paradox, depending on what book you’ve been reading from. The problem is straightforward enough. As God, in the strip says, a big pile of sand is clearly a heap. One or two grains of sand is clearly not. If you remove grains from the heap, eventually, you lose the heap-ness. T-Rex suggests solving the question of when that happens by statistical survey, finding what people on average find to be the range where things shift over.

As with many attempts to apply statistical, or experimental, methods to philosophical questions it misses the point. There are properties that things seem to have only as aggregations. Where do they come from? How can there be something true about a collection of things that isn’t true about any part of the thing? This is not just about messy real-world properties either; we can say stuff about groups of mathematical objects that aren’t true about individual objects within the set. For example, suppose we want to draw a real number at random, uniformly, from the continuous interval 0 to 10. There’s a 50% chance we’ll draw a number greater than 5. The chance of drawing any specific number greater than 5, though, is zero. But we can always draw one. Something weird is happening here, as often happens with questions we’ve been trying to answer for thousands of years.

Norm Feuti’s Retail for the 6th is a new strip, although the joke’s appeared before. There’s some arithmetic calculations that are easy to do, or that become easy because you do them a lot. Or because you see them done a lot and learn what the patterns are. A handful of basic tricks — like that 80 percent off is 20 percent of something, or that 20 percent of a thing is one-fifth the original thing — can be stunning. Stage magicians find the same effect.

John Zakour and Scott Roberts’s Working Daze for the 6th is another chance for me to talk about the supposed folly of giving 110 percent. Or point you to where I did already. I’m forgiving of the use of the phrase.

Bob Shannon’s Tough Town for the 7th is the anthropomorphized abacus joke of the week. Been a while since we had one of those. I suppose an adding machine would be at least as good a representative of the abstract concept of doing arithmetic, but it’s likely harder to draw too. This is just tiring to draw.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th presents the old complaint about mathematics’s utility, here in an ancient setting. I’m intereste that the caveman presents counting in terms of matching up other things to his fingers. We use this matching of one set of things to another even today. It gets us to ordinal and cardinal numbers, and the to what we feel pretty sure about with infinitely large sets. An idea can be ancient and basic and still be vital.

Steve Sicula’s Home and Away for the 9th is about the hatred people profess for mathematics. Some of that is more hatred of how it’s taught, which is too often as a complicated and apparently pointless activity. Some of that is hatred of how it’s used, since it turns up in a lot of jobs. And for some reason we’ve designed society so that we do jobs we don’t like. I don’t know why we think that’s a good idea. We should work on that.

## Reading the Comics, March 5, 2018: If It’s Even Mathematics Edition

Many of the strips from the first half of last week are ones that just barely touch on mathematical content. I’m not sure how relevant they all are. I hope you like encountering them anyway.

Bill Griffith’s Zippy the Pinhead for the 4th of March offers “an infinite number of mathematicians walk into a bar” as a joke’s setup. Mathematics popularizers have a small set of jokes about infinite numbers of mathematicians, often arriving at hotels. They’re used to talk about how we now understand infinitely large sets. There’s often counter-intuitive or just plain weird results that follow. And presenting it as a joke works surprisingly well in introducing the ideas. There’s a kind of joke that is essentially a tall tale, spinning out an initial premise to as far and as absurd a consequence as you can get. In structure, that’s not much different to a proof, a discussion of the consequences of an idea. It’s a shame that it’s hard to make jokes or anecdotes about more fields of mathematics. Somehow infinitely large groups of people are funnier than, say, upper-bounded nondecreasing sequences.

Mike Baldwin’s Cornered for the 4th has a bit of fraction-based wordplay. I’m not sure how mathematical this is, but I grinned.

Bill Amend’s FoxTrot for the 4th has Jason try to make a “universal” loot box that consists of zeroes and ones. As he says, accumulate enough and put them in the right order and you have any digital prize imaginable. Implementation is, as joked, the problem. Assembling ones and zeroes at random isn’t likely to turn up anything you might care about in a reasonable time. (It’s the monkeys-at-typewriters problem.) If you know how to assemble ones and zeroes to get what you want, well, what do you need Jason’s boxes for? As with most clever ideas by computer-oriented boys it shouldn’t really be listened to.

Mark Pett’s Lucky Cow rerun for the 4th has Neil make an order-of-magnitude error estimating what animal power can do. We’ve all made them. They’re particularly easy to make when switching the unit measure. Trying to go from meters to kilometers and multiplying the distance by a thousand, say. Which is annoying since often it’s easiest to estimate the order of magnitude of something first. I can’t find easily an estimate of how many calories a hamster eats over the course of the day. That seems like it would give an idea of how much energy a hamster could possibly be expected to provide, and so work out whether the estimate of four million hamsters to power a car is itself plausible. If someone has information, I’d take it.

Jonathan Lemon’s Rabbits Against Magic for the 4th is a Rubik’s Cube joke. Also a random processes joke. If a blender could turn the faces of a cube, and could turn them randomly, and could run the right period of time … well, yeah, it could unscramble a cube. But see the previous talk about Jason Fox and the delivery of ones and zeroes.

Mark Tatulli’s Lio for the 5th is a solid geometry joke. I’ve put more thought into whether and where to put hyphens in the last three words of that sentence than is worth it.

Steve Sicula’s Home and Away rerun for the 6th has the father and son happily doing some mathematics. It’s in the service of better gambling on sports. But at least they know why they would like to do these calculations.

## Reading the Comics, July 30, 2017: Not Really Mathematics edition

It’s been a busy enough week at Comic Strip Master Command that I’ll need to split the results across two essays. Any other week I’d be glad for this, since, hey, free content. But this week it hits a busy time and shouldn’t I have expected that? The odd thing is that the mathematics mentions have been numerous but not exactly deep. So let’s watch as I make something big out of that.

Mark Tatulli’s Heart of the City closed out its “Math Camp” storyline this week. It didn’t end up having much to do with mathematics and was instead about trust and personal responsibility issues. You know, like stories about kids who aren’t learning to believe in themselves and follow their dreams usually are. Since we never saw any real Math Camp activities we don’t get any idea what they were trying to do to interest kids in mathematics, which is a bit of a shame. My guess would be they’d play a lot of the logic-driven puzzles that are fun but that they never get to do in class. The story established that what I thought was an amusement park was instead a fair, so, that might be anywhere Pennsylvania or a couple of other nearby states.

Rick Kirkman and Jerry Scott’s Baby Blues for the 25th sees Hammie have “another” mathematics worksheet accident. Could be any subject, really, but I suppose it would naturally be the one that hey wait a minute, why is he doing mathematics worksheets in late July? How early does their school district come back from summer vacation, anyway?

Olivia Walch’s Imogen Quest for the 26th uses a spot of mathematics as the emblem for teaching. In this case it’s a bit of physics. And an important bit of physics, too: it’s the time-dependent Schrödinger Equation. This is the one that describes how, if you know the total energy of the system, and the rules that set its potential and kinetic energies, you can work out the function Ψ that describes it. Ψ is a function, and it’s a powerful one. It contains probability distributions: how likely whatever it is you’re modeling is to have a particle in this region, or in that region. How likely it is to have a particle with this much momentum, versus that much momentum. And so on. Each of these we find by applying a function to the function Ψ. It’s heady stuff, and amazing stuff to me. Ψ somehow contains everything we’d like to know. And different functions work like filters that make clear one aspect of that.

Dan Thompson’s Brevity for the 26th is a joke about Sesame Street‘s Count von Count. Also about how we can take people’s natural aptitudes and delights and turn them into sad, droning unpleasantness in the service of corporate overlords. It’s fun.

Steve Sicula’s Home and Away rerun for the 26th is a misplaced Pi Day joke. It originally ran the 22nd of April, but in 2010, before Pi Day was nearly so much a thing.

Doug Savage’s Savage Chickens for the 26th proves something “scientific” by putting numbers into it. Particularly, by putting statistics into it. Understandable impulse. One of the great trends of the past century has been taking the idea that we only understand things when they are measured. And this implies statistics. Everything is unique. Only statistical measurement lets us understand what groups of similar things are like. Does something work better than the alternative? We have to run tests, and see how the something and the alternative work. Are they so similar that the differences between them could plausibly be chance alone? Are they so different that it strains belief that they’re equally effective? It’s one of science’s tools. It’s not everything which makes for science. But it is stuff easy to communicate in one panel.

Neil Kohney’s The Other End for the 26th is really a finance joke. It’s about the ways the finance industry can turn one thing into a dazzling series of trades and derivative trades. But this is a field that mathematics colonized, or that colonized mathematics, over the past generation. Mathematical finance has done a lot to shape ideas of how we might study risk, and probability, and how we might form strategies to use that risk. It’s also done a lot to shape finance. Pretty much any major financial crisis you’ve encountered since about 1990 has been driven by a brilliant new mathematical concept meant to govern risk crashing up against the fact that humans don’t behave the way some model said they should. Nor could they; models are simplified, abstracted concepts that let hard problems be approximated. Every model has its points of failure. Hopefully we’ll learn enough about them that major financial crises can become as rare as, for example, major bridge collapses or major airplane disasters.

## Reading the Comics, July 1, 2012

This will be a hastily-written installment since I married just this weekend and have other things occupying me. But there’s still comics mentioning math subjects so let me summarize them for you. The first since my last collection of these, on the 13th of June, came on the 15th, with Dave Whamond’s Reality Check, which goes into one of the minor linguistic quirks that bothers me: the claim that one can’t give “110 percent,” since 100 percent is all there is. I don’t object to phrases like “110 percent”, though, since it seems to me the baseline, the 100 percent, must be to some standard reference performance. For example, the Space Shuttle Main Engines routinely operated at around 104 percent, not because they were exceeding their theoretical limits, but because the original design thrust was found to be not quite enough, and the engines were redesigned to deliver more thrust, and it would have been far too confusing to rewrite all the documentation so that the new design thrust was the new 100 percent. Instead 100 percent was the design capacity of an engine which never flew but which existed in paper form. So I’m forgiving of “110 percent” constructions, is the important thing to me.