The Summer 2017 Mathematics A To Z: N-Sphere/N-Ball


Today’s glossary entry is a request from Elke Stangl, author of the Elkemental Force blog, which among other things has made me realize how much there is interesting to say about heat pumps. Well, you never know what’s interesting before you give it serious thought.

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

N-Sphere/N-Ball.

I’ll start with space. Mathematics uses a lot of spaces. They’re inspired by geometry, by the thing that fills up our room. Sometimes we make them different by simplifying them, by thinking of the surface of a table, or what geometry looks like along a thread. Sometimes we make them bigger, imagining a space with more directions than we have. Sometimes we make them very abstract. We realize that we can think of polynomials, or functions, or shapes as if they were points in space. We can describe things that work like distance and direction and angle that work for these more abstract things.

What are useful things we know about space? Many things. Whole books full of things. Let me pick one of them. Start with a point. Suppose we have a sense of distance, of how far one thing is from one another. Then we can have an idea of the neighborhood. We can talk about some chunk of space that’s near our starting point.

So let’s agree on a space, and on some point in that space. You give me a distance. I give back to you — well, two obvious choices. One of them is all the points in that space that are exactly that distance from our agreed-on point. We know what this is, at least in the two kinds of space we grow up comfortable with. In three-dimensional space, this is a sphere. A shell, at least, centered around whatever that first point was. In two-dimensional space, on our desktop, it’s a circle. We know it can look a little weird: if we started out in a one-dimensional space, there’d be only two points, one on either side of the original center point. But it won’t look too weird. Imagine a four-dimensional space. Then we can speak of a hypersphere. And we can imagine that as being somehow a ball that’s extremely spherical. Maybe it pokes out of the rendering we try making of it, like a cartoon character falling out of the movie screen. We can imagine a five-dimensional space, or a ten-dimensional one, or something with even more dimensions. And we can conclude there’s a sphere for even that much space. Well, let it.

What are spheres good for? Well, they’re nice familiar shapes. Even if they’re in a weird number of dimensions. They’re useful, too. A lot of what we do in calculus, and in analysis, is about dealing with difficult points. Points where a function is discontinuous. Points where the function doesn’t have a value. One of calculus’s reliable tricks, though, is that we can swap information about the edge of things for information about the interior. We can replace a point with a sphere and find our work is easier.

The other thing I could give you. It’s a ball. That’s all the points that aren’t more than your distance away from our point. It’s the inside, the whole planet rather than just the surface of the Earth.

And here’s an ambiguity. Is the surface a part of the ball? Should we include the edge, or do we just want the inside? And that depends on what we want to do. Either might be right. If we don’t need the edge, then we have an open set (stick around for Friday). This gives us the open ball. If we do need the edge, then we have a closed set, and so, the closed ball.

Balls are so useful. Take a chunk of space that you find interesting for whatever reason. We can represent that space as the joining together (the “union”) of a bunch of balls. Probably not all the same size, but that’s all right. We might need infinitely many of these balls to get the chunk precisely right, or as close to right as can be. But that’s all right. We can still do it. Most anything we want to analyze is easier to prove on any one of these balls. And since we can describe the complicated shape as this combination of balls, then we can know things about the whole complicated shape. It’s much the way we can know things about polygons by breaking them into triangles, and showing things are true about triangles.

Sphere or ball, whatever you like. We can describe how many dimensions of space the thing occupies with the prefix. The 3-ball is everything close enough to a point that’s in a three-dimensional space. The 2-ball is everything close enough in a two-dimensional space. The 10-ball is everything close enough to a point in a ten-dimensional space. The 3-sphere is … oh, all right. Here we have a little squabble. People doing geometry prefer this to be the sphere in three dimensions. People doing topology prefer this to be the sphere whose surface has three dimensions, that is, the sphere in four dimensions. Usually which you mean will be clear from context: are you reading a geometry or a topology paper? If you’re not sure, oh, look for anything hinting at the number of spatial dimensions. If nothing gives you a hint maybe it doesn’t matter.

Either way, we do want to talk about the family of shapes without committing ourselves to any particular number of dimensions. And so that’s why we fall back on ‘N’. ‘N’ is a good name for “the number of dimensions we’re working in”, and so we use it. Then we have the N-sphere and the N-ball, a sphere-like shape, or a ball-like shape, that’s in however much space we need for the problem.

I mentioned something early on that I bet you paid no attention to. That was that we need a space, and a point inside the space, and some idea of distance. One of the surprising things mathematics teaches us about distance is … there’s a lot of ideas of distance out there. We have what I’ll call an instinctive idea of distance. It’s the one that matches what holding a ruler up to stuff tells us. But we don’t have to have that.

I sense the grumbling already. Yes, sure, we can define distance by some screwball idea, but do we ever need it? To which the mathematician answers, well, what if you’re trying to figure out how far away something in midtown Manhattan is? Where you can only walk along streets or avenues and we pretend Broadway doesn’t exist? Huh? How about that? Oh, fine, the skeptic might answer. Grant that there can be weird cases where the straight-line ruler distance is less enlightening than some other scheme is.

Well, there are. There exists a whole universe of different ideas of distance. There’s a handful of useful ones. The ordinary straight-line ruler one, the Euclidean distance, you get in a method so familiar it’s worth saying what you do. You find the coordinates of your two given points. Take the pairs of corresponding coordinates: the x-coordinates of the two points, the y-coordinates of the two points, the z-coordinates, and so on. Find the differences between corresponding coordinates. Take the absolute value of those differences. Square all those absolute-value differences. Add up all those squares. Take the square root of that. Fine enough.

There’s a lot of novelty acts. For example, do that same thing, only instead of raising the differences to the second power, raise them to the 26th power. When you get the sum, instead of the square root, take the 26th root. There. That’s a legitimate distance. No, you will never need this, but your analysis professor might give you it as a homework problem sometime.

Some are useful, though. Raising to the first power, and then eventually taking the first root, gives us something useful. Yes, raising to a first power and taking a first root isn’t doing anything. We just say we’re doing that for the sake of consistency. Raising to an infinitely large power, and then taking an infinitely great root, inspires angry glares. But we can make that idea rigorous. When we do it gives us something useful.

And here’s a new, amazing thing. We can still make “spheres” for these other distances. On a two-dimensional space, the “sphere” with this first-power-based distance will look like a diamond. The “sphere” with this infinite-power-based distance will look like a square. On a three-dimensional space the “sphere” with the first-power-based distance looks like a … well, more complicated, three-dimensional diamond. The “sphere” with the infinite-power-based distance looks like a box. The “balls” in all these cases look like what you expect from knowing the spheres.

As with the ordinary ideas of spheres and balls these shapes let us understand space. Spheres offer a natural path to understanding difficult points. Balls offer a natural path to understanding complicated shapes. The different ideas of distance change how we represent these, and how complicated they are, but not the fact that we can do it. And it allows us to start thinking of what spheres and balls for more abstract spaces, universes made of polynomials or formed of trig functions, might be. They’re difficult to visualize. But we have the grammar that lets us speak about them now.

And for a postscript: I also wrote about spheres and balls as part of my Set Tour a couple years ago. Here’s the essay about the N-sphere, although I didn’t exactly call it that. And here’s the essay about the N-ball, again not quite called that.

The Summer 2017 Mathematics A To Z: Klein Bottle


Gaurish, of the For The Love Of Mathematics blog, takes me back into topology today. And it’s a challenging one, because what can I say about a shape this involved when I’m too lazy to draw pictures or include photographs most of the time?

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

In 1958 Clifton Fadiman, an open public intellectual and panelist on many fine old-time radio and early TV quiz shows, edited the book Fantasia Mathematica. It’s a pleasant read and you likely can find a copy in a library or university library nearby. It’s a collection of mathematically-themed stuff. Mostly short stories, a few poems, some essays, even that bit where Socrates works through a proof. And some of it is science fiction, this from an era when science fiction was really disreputable.

If there’s a theme to the science fiction stories included it is: Möbius Strips, huh? There are so many stories in the book that amount to, “what is this crazy bizarre freaky weird ribbon-like structure that only has the one side? Huh?” As I remember even one of the non-science-fiction stories is a Möbius Strip story.

I don’t want to sound hard on the writers, nor on Fadiman for collecting what he has. A story has to be about people doing something, even if it’s merely exploring some weird phenomenon. You can imagine people dealing with weird shapes. It’s hard to imagine what story you could tell about an odd perfect number. (Well, that isn’t “here’s how we discovered the odd perfect number”, which amounts to a lot of thinking and false starts. Or that doesn’t make the odd perfect number a MacGuffin, the role equally well served by letters of transit or a heap of gold or whatever.) Many of the stories that aren’t about the Möbius Strip are about four- and higher-dimensional shapes that people get caught in or pass through. One of the hyperdimensional stories, A J Deutsch’s “A Subway Named Möbius”, even pulls in the Möbius Strip. The name doesn’t fit, but it is catchy, and is one of the two best tall tales about the Boston subway system.

Besides, it’s easy to see why the Möbius Strip is interesting. It’s a ribbon where both sides are the same side. What’s not neat about that? It forces us to realize that while we know what “sides” are, there’s stuff about them that isn’t obvious. That defies intuition. It’s so easy to make that it holds another mystery. How is this not a figure known to the ancients and used as a symbol of paradox for millennia? I have no idea; it’s hard to guess why something was not noticed when it could easily have been It dates to 1858, when August Ferdinand Möbius and Johann Bendict Listing independently published on it.

The Klein Bottle is newer by a generation. Felix Klein, who used group theory to enlighten geometry and vice-versa, described the surface in 1882. It has much in common with the Möbius Strip. It’s a thing that looks like a solid. But it’s impossible to declare one side to be outside and the other in, at least not in any logically coherent way. Take one and dab a spot with a magic marker. You could trace, with the marker, a continuous curve that gets around to the same spot on the “other” “side” of the thing. You see why I have to put quotes around “other” and “side”. I believe you know what I mean when I say this. But taken literally, it’s nonsense.

The Klein Bottle’s a two-dimensional surface. By that I mean that could cover it with what look like lines of longitude and latitude. Those coordinates would tell you, without confusion, where a point on the surface is. But it’s embedded in a four-dimensional space. (Or a higher-dimensional space, but everything past the fourth dimension is extravagance.) We have never seen a Klein Bottle in its whole. I suppose there are skilled people who can imagine it faithfully, but how would anyone else ever know?

Big deal. We’ve never seen a tesseract either, but we know the shadow it casts in three-dimensional space. So it is with the Klein Bottle. Visit any university mathematics department. If they haven’t got a glass replica of one in the dusty cabinets welcoming guests to the department, never fear. At least one of the professors has one on an office shelf, probably beside some exams from eight years ago. They make nice-looking jars. Klein Bottles don’t have to. There are different shapes their projection into three dimensions can take. But the only really different one is this sort of figure-eight helical shape that looks like a roller coaster gone vicious. (There’s also a mirror image of this, the helix winding the opposite way.) These representations have the surface cross through itself. In four dimensions, it does no such thing, any more than the edges of a cube cross one another. It’s just the lines in a picture on a piece of paper that cross.

The Möbius Strip is good practice for learning about the Klein Bottle. We can imagine creating a Bottle by the correct stitching-together of two strips. Or, if you feel destructive, we can start with a Bottle and slice it, producing a pair of Möbius Strips. Both are non-orientable. We can’t make a division between one side and another that reflects any particular feature of the shape. One of the helix-like representations of the Klein Bottle also looks like a pool toy-ring version of the Möbius Strip.

And strange things happen on these surfaces. You might remember the four-color map theorem. Four colors are enough to color any two-dimensional map without adjacent territories having to share a color. (This isn’t actually so, as the territories have to be contiguous, with no enclaves of one territory inside another. Never mind.) This is so for territories on the sphere. It’s hard to prove (although the five-color theorem is easy.) Not so for the Möbius Strip: territories on it might need as many as six colors. And likewise for the Klein Bottle. That’s a particularly neat result, as the Heawood Conjecture tells us the Klein Bottle might need seven. The Heawood Conjecture is otherwise dead-on in telling us how many colors different kinds of surfaces need for their map-colorings. The Klein Bottle is a strange surface. And yes, it was easier to prove the six-color theorem on the Klein Bottle than it was to prove the four-color theorem on the plane or sphere.

(Though it’s got the tentative-sounding name of conjecture, the Heawood Conjecture is proven. Heawood put it out as a conjecture in 1890. It took to 1968 for the whole thing to be finally proved. I imagine all those decades of being thought but not proven true gave it a reputation. It’s not wrong for Klein Bottles. If six colors are enough for these maps, then so are seven colors. It’s just that Klein Bottles are the lone case where the bound is tighter than Heawood suggests.)

All that said, do we care? Do Klein Bottles represent something of particular mathematical interest? Or are they imagination-capturing things we don’t really use? I confess I’m not enough of a topologist to say how useful they are. They are easily-understood examples of algebraic or geometric constructs. These are things with names like “quotient spaces” and “deck transformations” and “fiber bundles”. The thought of the essay I would need to write to say what a fiber bundle is makes me appreciate having good examples of the thing around. So if nothing else they are educationally useful.

And perhaps they turn up more than I realize. The geometry of Möbius Strips turns up in many surprising places: music theory and organic chemistry, superconductivity and roller coasters. It would seem out of place if the kinds of connections which make a Klein Bottle don’t turn up in our twisty world.

The End 2016 Mathematics A To Z: Yang Hui’s Triangle


Today’s is another request from gaurish and another I’m glad to have as it let me learn things too. That’s a particularly fun kind of essay to have here.

Yang Hui’s Triangle.

It’s a triangle. Not because we’re interested in triangles, but because it’s a particularly good way to organize what we’re doing and show why we do that. We’re making an arrangement of numbers. First we need cells to put the numbers in.

Start with a single cell in what’ll be the top middle of the triangle. It spreads out in rows beneath that. The rows are staggered. The second row has two cells, each one-half width to the side of the starting one. The third row has three cells, each one-half width to the sides of the row above, so that its center cell is directly under the original one. The fourth row has four cells, two of which are exactly underneath the cells of the second row. The fifth row has five cells, three of them directly underneath the third row’s cells. And so on. You know the pattern. It’s the one that pins in a plinko board take. Just trimmed down to a triangle. Make as many rows as you find interesting. You can always add more later.

In the top cell goes the number ‘1’. There’s also a ‘1’ in the leftmost cell of each row, and a ‘1’ in the rightmost cell of each row.

What of interior cells? The number for those we work out by looking to the row above. Take the cells to the immediate left and right of it. Add the values of those together. So for example the center cell in the third row will be ‘1’ plus ‘1’, commonly regarded as ‘2’. In the third row the leftmost cell is ‘1’; it always is. The next cell over will be ‘1’ plus ‘2’, from the row above. That’s ‘3’. The cell next to that will be ‘2’ plus ‘1’, a subtly different ‘3’. And the last cell in the row is ‘1’ because it always is. In the fourth row we get, starting from the left, ‘1’, ‘4’, ‘6’, ‘4’, and ‘1’. And so on.

It’s a neat little arithmetic project. It has useful application beyond the joy of making something neat. Many neat little arithmetic projects don’t have that. But the numbers in each row give us binomial coefficients, which we often want to know. That is, if we wanted to work out (a + b) to, say, the third power, we would know what it looks like from looking at the fourth row of Yanghui’s Triangle. It will be 1\cdot a^4 + 4\cdot a^3 \cdot b^1 + 6\cdot a^2\cdot b^2 + 4\cdot a^1\cdot b^3 + 1\cdot b^4 . This turns up in polynomials all the time.

Look at diagonals. By diagonal here I mean a line parallel to the line of ‘1’s. Left side or right side; it doesn’t matter. Yang Hui’s triangle is bilaterally symmetric around its center. The first diagonal under the edges is a bit boring but familiar enough: 1-2-3-4-5-6-7-et cetera. The second diagonal is more curious: 1-3-6-10-15-21-28 and so on. You’ve seen those numbers before. They’re called the triangular numbers. They’re the number of dots you need to make a uniformly spaced, staggered-row triangle. Doodle a bit and you’ll see. Or play with coins or pool balls.

The third diagonal looks more arbitrary yet: 1-4-10-20-35-56-84 and on. But these are something too. They’re the tetrahedronal numbers. They’re the number of things you need to make a tetrahedron. Try it out with a couple of balls. Oranges if you’re bored at the grocer’s. Four, ten, twenty, these make a nice stack. The fourth diagonal is a bunch of numbers I never paid attention to before. 1-5-15-35-70-126-210 and so on. This is — well. We just did tetrahedrons, the triangular arrangement of three-dimensional balls. Before that we did triangles, the triangular arrangement of two-dimensional discs. Do you want to put in a guess what these “pentatope numbers” are about? Sure, but you hardly need to. If we’ve got a bunch of four-dimensional hyperspheres and want to stack them in a neat triangular pile we need one, or five, or fifteen, or so on to make the pile come out neat. You can guess what might be in the fifth diagonal. I don’t want to think too hard about making triangular heaps of five-dimensional hyperspheres.

There’s more stuff lurking in here, waiting to be decoded. Add the numbers of, say, row four up and you get two raised to the third power. Add the numbers of row ten up and you get two raised to the ninth power. You see the pattern. Add everything in, say, the top five rows together and you get the fifth Mersenne number, two raised to the fifth power (32) minus one (31, when we’re done). Add everything in the top ten rows together and you get the tenth Mersenne number, two raised to the tenth power (1024) minus one (1023).

Or add together things on “shallow diagonals”. Start from a ‘1’ on the outer edge. I’m going to suppose you started on the left edge, but remember symmetry; it’ll be fine if you go from the right instead. Add to that ‘1’ the number you get by moving one cell to the right and going up-and-right. And then again, go one cell to the right and then one cell up-and-right. And again and again, until you run out of cells. You get the Fibonacci sequence, 1-1-2-3-5-8-13-21-and so on.

We can even make an astounding picture from this. Take the cells of Yang Hui’s triangle. Color them in. One shade if the cell has an odd number, another if the cell has an even number. It will create a pattern we know as the Sierpiński Triangle. (Wacław Sierpiński is proving to be the surprise special guest star in many of this A To Z sequence’s essays.) That’s the fractal of a triangle subdivided into four triangles with the center one knocked out, and the remaining triangles them subdivided into four triangles with the center knocked out, and on and on.

By now I imagine even my most skeptical readers agree this is an interesting, useful mathematical construct. Also that they’re wondering why I haven’t said the name “Blaise Pascal”. The Western mathematical tradition knows of this from Pascal’s work, particularly his 1653 Traité du triangle arithmétique. But mathematicians like to say their work is universal, and independent of the mere human beings who find it. Constructions like this triangle give support to this. Yang lived in China, in the 12th century. I imagine it possible Pascal had hard of his work or been influenced by it, by some chain, but I know of no evidence that he did.

And even if he had, there are other apparently independent inventions. The Avanti Indian astronomer-mathematician-astrologer Varāhamihira described the addition rule which makes the triangle work in commentaries written around the year 500. Omar Khayyám, who keeps appearing in the history of science and mathematics, wrote about the triangle in his 1070 Treatise on Demonstration of Problems of Algebra. Again so far as I am aware there’s not a direct link between any of these discoveries. They are things different people in different traditions found because the tools — arithmetic and aesthetically-pleasing orders of things — were ready for them.

Yang Hui wrote about his triangle in the 1261 book Xiangjie Jiuzhang Suanfa. In it he credits the use of the triangle (for finding roots) was invented around 1100 by mathematician Jia Xian. This reminds us that it is not merely mathematical discoveries that are found by many peoples at many times and places. So is Boyer’s Law, discovered by Hubert Kennedy.

Reading the Comics, October 14, 2015: Shapes and Statistics Edition


It’s been another strong week for mathematics in the comic strips. The 15th particularly was a busy enough day I’m going to move its strips off to the next Reading the Comics group. What we have already lets me talk about shapes, and statistics, and what randomness can do for you.

Carol Lay’s Lay Lines for the 11th of October turns the infinite-monkeys thought-experiment into a contest. It’s an intriguing idea. To have the monkey save correct pages foils the pure randomness that makes the experiment so mind-boggling. However, saving partial successes like correct pages is, essentially, how randomness can be harnessed to do work for us. This is normally in fields known, generally, as Monte Carlo methods, named in honor of the famed casinos.

Suppose you have a problem in which it’s hard to find the best answer, but it’s easy to compare whether one answer is better than another. For example, suppose you’re trying to find the shortest path through a very complicated web of interactions. It’s easy to say how long a path is, and easy to say which of two paths is shorter. It’s hard to say you’ve found the shortest. So what you can do is pick a path at random, and take its length. Then make an arbitrary, random change in it. The changed path is either shorter or longer. If the random change makes the path shorter, great! If the random change makes the path longer, then (usually) forget it. Repeat this process and you’ll get, by hoarding incremental improvements and throwing away garbage, your shortest possible path. Or at least close to it.

Properly, you have to sometimes go along with changes that lengthen the path. It might turn out there’s a really short path you can get to if you start out in an unpromising direction. For a monkey-typing problem such as in the comic, there’s no need for that. You can save correct pages and discard the junk.

Geoff Grogan’s Jetpack Junior for the 12th of October, and after, continues the explorations of a tesseract. The strip uses the familiar idea that a tesseract opens up to a vast, nearly infinite space. I’m torn about whether that’s a fair representation. A four-dimensional hypercube is still a finite (hyper)volume, after all. A four-dimensional cube ten feet on each side contains 10,000 hypercubic feet, not infinitely great a (hyper)volume. On the other hand … well, think of how many two-dimensional squares you could fit in a three-dimensional box. A two-dimensional object has no volume — zero measure, in three-dimensional space — so you could fit anything into it. This may be reasonable but it still runs against my intuition, and my sense of what makes for a fair story premise.

Ernie Bushmiller’s Nancy for the 13th of October, originally printed in 1955, describes a couple geometric objects. I have to give Nancy credit for a description of a sphere that’s convincing, even if it isn’t exactly correct. Even if the bubble-gum bubble Nancy were blowing didn’t have a distortion to her mouth, it still sags under gravity. But it’s easy, at least if you already have an intuitive understanding of spheres, to go from the bubble-gum bubble to the ideal sphere. (Homework question: why does Sluggo’s description of an octagon need to specify “a figure with eight sides and eight angles”? Why isn’t specifying a figure with eight sides, or eight angles, be enough?)

Jon Rosenberg’s Scenes From A Multiverse for the 13th of October depicts a playground with kids who’re well-versed in the problems of statistical inference. A “statistically significant sample size” nearly explains itself. It is difficult to draw reliable conclusions from a small sample, because a small sample can be weird. Generally, the difference between the statistics of a sample and the statistics of the broader population it’s drawn from will be smaller the larger the sample is. There are several courses hidden in that “generally” there.

“Selection bias” is one of the courses hidden in that “generally”. A good sample should represent the population fairly. Whatever’s being measured should appear in the sample about as often as it appears in the population. It’s hard to say that’s so, though, before you know what the population is like. A biased selection over-represents some part of the population, or under-represents it, in some way.

“Confirmation bias” is another of the courses. That amounts to putting more trust in evidence that supports what we want to believe, and in discounting evidence against it. People tend to do this, without meaning to fool themselves or anyone else. It’s easiest to do with ambiguous evidence: is the car really running smoother after putting in more expensive spark plugs? Is the dog actually walking more steadily after taking this new arthritis medicine? Has the TV program gotten better since the old show-runner was kicked out? If these can be quantified in some way, and a complete record made, it’s typically easier to resist confirmation bias. But not everything can be quantified, and even so, differences can be subtle, and demand more research than we can afford.

On the 15th, Scenes From A Multiverse did another strip with some mathematical content. It’s about the question of whether it’s possible to determine whether the universe is a computer simulation. But the same ideas apply to questions like whether there could be a multiverse, some other universe than ours. The questions seem superficially to be unanswerable. There are some enthusiastic attempts, based on what things we might conclude. I suspect that the universe is just too small a sample size to draw any good conclusions from, though.

Dan Thompson’s Brevity for the 14th of October is another anthropomorphized-numerals joke.

A Summer 2015 Mathematics A To Z: hypersphere


Hypersphere.

If you asked someone to say what mathematicians do, there are, I think, three answers you’d get. One would be “they write out lots of decimal places”. That’s fair enough; that’s what numerical mathematics is about. One would be “they write out complicated problems in calculus”. That’s also fair enough; say “analysis” instead of “calculus” and you’re not far off. The other answer I’d expect is “they draw really complicated shapes”. And that’s geometry. All fair enough; this is stuff real mathematicians do.

Geometry has always been with us. You may hear jokes about never using algebra or calculus or such in real life. You never hear that about geometry, though. The study of shapes and how they fill space is so obviously useful that you sound like a fool saying you never use it. That would be like claiming you never use floors.

There are different kinds of geometry, though. The geometry we learn in school first is usually plane geometry, that is, how shapes on a two-dimensional surface like a sheet of paper or a computer screen work. Here we see squares and triangles and trapezoids and theorems with names like “side-angle-side congruence”. The geometry we learn as infants, and perhaps again in high school, is solid geometry, how shapes in three-dimensional spaces work. Here we see spheres and cubes and cones and something called “ellipsoids”. And there’s spherical geometry, the way shapes on the surface of a sphere work. This gives us great circle routes and loxodromes and tales of land surveyors trying to work out what Vermont’s northern border should be.

Continue reading “A Summer 2015 Mathematics A To Z: hypersphere”