Learning of imaginary numbers, things created to be the square roots of negative numbers, inspired me. It probably inspires anyone who’s the sort of person who’d become a mathematician. The trick was great. I wondered could I do it? Could I find some other useful expansion of the number system?

The square root of a complex-valued number sounded like the obvious way to go, until a little later that week when I learned that’s just some other complex-valued numbers. The next thing I hit on: how about the *logarithm* of a negative number? Couldn’t that be a useful expansion of numbers?

No. It turns out you can make a sensible logarithm of negative, and complex-valued, numbers using complex-valued numbers. Same with trigonometric and inverse trig functions, tangents and arccosines and all that. There isn’t anything we can do with the normal mathematical operations that needs something bigger than the complex-valued numbers to play with. It’s possible to expand on the complex-valued numbers. We can make quaternions and some more elaborate constructs there. They don’t solve any particular shortcoming in complex-valued numbers, but they’ve got their uses. I never got anywhere near reinventing them. I don’t regret the time spent on that. There’s something useful in trying to invent something even if it fails.

One problem with mathematics — with all intellectual fields, really — is that it’s easy, when teaching, to give the impression that this stuff is the Word of God, built into the nature of the universe and inarguable. It’s *so* not. The stuff we find interesting and how we describe those things are the results of human thought, attempts to say what is interesting about a thing and what is useful. And what best approximates our ideas of what we would like to know. So I was happy to see this come across my Twitter feed:

The links to a 12-page paper by Deepak Bal, Leibniz, Bernoulli, and the Logarithms of Negative Numbers. It’s a review of how the idea of a logarithm of a negative number got developed over the course of the 18th century. And what great minds, like Gottfried Leibniz and John (I) Bernoulli argued about as they find problems with the implications of what they were doing. (There were a *lot* of Bernoullis doing great mathematics, and even multiple John Bernoullis. The (I) is among the ways we keep them sorted out.) It’s worth a read, I think, even if you’re not all that versed in how to calculate logarithms. (but if you’d like to be better-versed, here’s the tail end of some thoughts about that.) The process of how a good idea like this comes to be is worth knowing.

Also: it turns out there’s not “the” logarithm of a complex-valued number. There’s infinitely many logarithms. But they’re a family, all strikingly similar, so we can pick one that’s convenient and just use that. Ask if you’re really interested.