Reading the Comics, February 29, 2020: Leap Day Quiet Edition


I can clear out all last week’s mathematically-themed comic strips in one move, it looks like. There were a fair number of strips; it’s just they mostly mention mathematics in passing.

Bill Amend’s FoxTrot for the 23rd — a new strip; it’s still in original production for Sundays — has Jason asking his older sister to double-check a mathematics problem. Double-checking work is reliably useful, as proof against mistakes both stupid and subtle. But that’s true of any field.

Mark Tatulli’s Heart of the City for the 23rd has Heart preparing for an algebra test.

Jim Unger’s Herman for the 23rd has a parent complaining about the weird New Math. The strip is a rerun and I don’t know from when; it hardly matters. The New Math has been a whipping boy for mathematics education since about ten minutes after its creation. And the complaint attaches to every bit of mathematics education reform ever. I am sympathetic to parents, who don’t see why their children should be the test subjects for a new pedagogy. And who don’t want to re-learn mathematics in order to understand what their children are doing. But, still, let someone know you were a mathematics major and they will tell you how much they didn’t understand or like mathematics in school. It’s hard to see why not try teaching it differently.

(If you do go out pretending to be a mathematics major, don’t worry. If someone challenges you on a thing, cite “Euler’s Theorem”, and you’ll have said something on point. And I’ll cover for you.)

Phil Dunlap’s Ink Pen rerun for the 24th has Bixby Rat complain about his mathematics skills.

Father and child duck sitting on the starry sky. Father: 'Hey, Champ, I know you're only 5, but I think it's time I introduce you to the wonders of the universe! See those stars? How many do you think there are?' Child: 'Um ... 12?' Father: 'Actually, there's over 300 sextillion stars! That's a 3 with 23 zeroes after it.' Child: 'And that's more than 12?' Father: 'Maybe I should introduce you to the wonders of math, first.'
Brian Gordon’s Fowl Language for the 25th of February, 2020. This strip previously ran the 5th of February, 2016, which happens to be the only other time I have an essay mentioning this comic. That’s from before I tagged comic strips by title, though. So this essay and any future repetitions that happen to mention Fowl Language should be at this link, although the previous one probably won’t be.

Brian Gordon’s Fowl Language for the 25th has a father trying to explain the vastness of Big Numbers to their kid. Past a certain point none of us really know how big a thing is. We can talk about 300 sextillion stars, or anything else, and reason can tell us things about that number. But do we understand it? Like, can we visualize that many stars the way we can imagine twelve stars? This gets us into the philosophy of mathematics pretty soundly. 300 sextillion is no more imaginary than four is, but I know I feel more confident in my understanding of four. How does that make sense? And can you explain that to your kid?

Vic Lee’s Pardon my Planet for the 28th has an appearance by Albert Einstein. And a blackboard full of symbols. The symbols I can make out are more chemistry than mathematics, but they do exist just to serve as decoration.

Bud Blake’s Tiger rerun for the 28th has Hugo mourning his performance on a mathematics test.

Ruben Bolling’s Super-Fun-Pak Comix for the 28th is an installment of The Uncertainty Principal. This is a repeat, even allowing that Super-Fun-Pak Comix are extracted reruns from Tom The Dancing Bug. As I mention in the essay linked there, the uncertainty principle being referred to here is a famous quantum mechanics result. It tells us there are sets of quantities whose values we can’t, even in principle, measure simultaneously to unlimited precision. A precise measurement of, for example, momentum destroys our ability to be precise about position. This is what makes the joke here. The mathematics of this reflects non-commutative sets of operators.

Dave Blazek’s Loose Parts for the 29th is another with a blackboard full of symbols used to express deep thought on a subject.


And that takes care of last week. I’ll be Reading the Comics for their mathematics content next week, too, although the start of the week has been a slow affair so far. We’ll see if that changes any.

Reading the Comics, September 7, 2018: The Playful Mathematics Blog Carnival Is Coming Edition


I’d like to add something to my roundup up of last week’s mathematically-themed comic strips. That thing is a reminder that I’m hosting this month’s Playful Mathematics Education Carnival. It’ll post the last week of September. If you’ve recently seen pages that teach, that play games, that show any kind of mathematics that makes you smile, please, let me know. It’s worth sharing with more people.

Tom Gammill’s The Doozies for the 6th is the Venn Diagrams joke for the week. It’s only a two-circle diagram, but the comic strip hasn’t got that large a cast. And, really, would be hard to stage in a way that made the joke communicable with three or four participants.

Dean: 'People who enjoy 'The Doozies'.' Dad: 'People who enjoy Venn diagrams.' Second panel: the same, but they think their lines instead, and their thought balloons overlap, with the intersection shaded. Caption: 'Note: Today's Doozies was improvised by the actors on the set.' Footer Dad: 'Who needs writers?' Footer Dean: 'We're on the case!'
Tom Gammill’s The Doozies for the 6th of September, 2018. It wasn’t until transcribing the strip for the image mouseover text that I noticed the second panel had thought balloons rather than speech balloons. I’m not sure what’s contributed to the joke by their being thought rather than speech balloons.

Phil Dunlap’s Ink Pen rerun for the 7th showcases arithmetic as a putative superpower. I would agree with Dynaman that at least this addition doesn’t show off superpowers. But there are feats of arithmetic that do seem superhuman. Mathematical pop histories often mention people who could do quite complicated calculations in their head. Some of them were also great mathematicians, like Carl Friedrich Gauss, Leonhard Euler, or Srinivasa Ramanujan. Some were just … very good at calculating. Zacharias Dase is a famous 19th century example. He’s reported as having been able to multiply together two hundred-digit numbers, in his head. The process took nine hours.

Captain Victorious: 'Check it out, Dynaman, new power! 235 + 747 = 982!' Dynaman: 'Cap, *adding* isn't a superpower.' Captain: (Taking out a calculator.) 'Well, especially when you use a calculator ... '
Phil Dunlap’s Ink Pen rerun for the 7th of September, 2018. It originally ran the 30th of September, 2011.

Is that superhuman? Well, obviously, literally not. But it’s beyond what most of us could imagine doing. I admit I can’t imagine keeping anything straight in my head for nine hours. But. The basic rules of addition aren’t that exotic. Even a process like finding square roots can be done as additions and divisions and multiplications. Much of what makes this look hard is memory. How do you keep track of a hundred or so partial results each of a hundred or so digits? Much of what else is hard is persistence. How do you keep going after the seventh hour of this? And both are traits that you can develop, and practice, and at least get a little better on.

Or bypass the hard work. If asked 235 plus 747 I’d at least answer “a bit under a thousand”, which isn’t bad for an instant answer. 235 is a little under 250; 747 a little under 750; and 250 plus 750 is easy. Rewrite 235 as 250 – 15, and 747 as 750 – 3, and you have this: 235 + 747 is 250 + 750 – 15 – 3. So that’s 1000 minus 18. 982, pretty attainable. This takes practice. It amounts to learning how to spot an easy problem that looks like the question you actually have.

At miniature golf. Gunther: 'So, um, I ... um.' Luann: 'Gunther, why do you always babble whenever we're together? Can't you just chat about something?' Gunther: 'Sure. Okay. I. Um, it's. I. Um. Um.' Luann: 'Talk about something you KNOW about. There must be some topic you feel comfortable with.' Gunther: 'Trigonometry!' Luann: 'Oh, good. Math and miniature golf. Gosh, it just doesn't get any better than this.'
Greg Evans’s Luann Againn for the 7th of September, 2018. It originally ran the 7th of September, 1990.

Greg Evans’s Luann Againn for the 7th shows a date living up to its potential as a fiasco. But it’s not a surprise Gunther finds himself comfortable talking trigonometry. The subject is not one that most people find cozy. I’d guess most people on introduction see it as some weird hybrid that fuses the impenetrable diagrams of geometry with the baffling formulas of algebra.

But there’s comfort in it, especially to a particular personality type. There are a lot of obscure things making up trigonometry. But there’s this beauty, too. All the basic trigonometry functions are tied together in neat little pairs and triplets. Formulas connect the properties of an angle with those of its half and its double. There’s a great many identities, particular calculations that have the same value for every angle.

You can say that about anything, of course. Any topic humans study has endless fascination. What makes mathematical fields comfortable? For one, that they promise this certain knowability. Trigonometry has a jillion definitions and rules and identities and all that. But that means you have a great many things of absolute reliability. They offer this certainty that even “hard” sciences like physics don’t have. Far more security than you see with the difficult sciences, like biology or sociology. And true dependability, compared to the mystifying and obscure rules of interacting with other humans. If you don’t feel you know how to be with people, and don’t feel like you could ever learn, a cosecant is at least something you can master.


I tag my Reading the Comics postsso that you can find as many of them as you like at this link. As long as I’ve written as many as you like. Essays in which I mention The Doozies are at this link. Or will be; turns out this is a new tag. Huh. Essays that discuss Ink Pen are at this link. And essays which mention Luann, either current or vintage, are at this link. Thanks for reading whatever you do enjoy.

Reading the Comics, August 2, 2018: Non-Euclidean Geometry Edition


There’s really only the one strip that I talk about today that gets into non-Euclidean geometries. I was hoping to have the time to get into negative temperatures. That came up in the comics too, and it’s a subject close to my heart. But I didn’t have time to write that and so must go with what I did have. I’ve surely used “Non-Euclidean Geometry Edition” as a name before too, but that name and the date of August 2, 2018? Just as surely not.

Mark Anderson’s Andertoons for the 29th is the Mark Anderson’s Andertoons for the week, at last. Wavehead gets to be disappointed by what a numerator and denominator are. Common problem; there are many mathematics things with great, evocative names that all turn out to be mathematics things.

Both “numerator” and “denominator”, as words, trace to the mid-16th century. They come from Medieval Latin, as you might have guessed. “Denominator” parses out roughly as “to completely name”. As in, break something up into some number of equal-sized pieces. You’d need the denominator number of those pieces to have the whole again. “Numerator” parses out roughly as “count”, as in the count of how many denominator-sized pieces you have. So for all that numerator and denominator look like one another, with with the meat of the words being the letters “n-m–ator”, their centers don’t have anything to do with one another. (I would believe a claim that the way the words always crop up together encouraged them to harmonize their appearances.)

On the board, the fraction 3/4 with the numerator and denominator labelled. Wavehead: 'You know, for something that sounds like two killer robots, this is really disappointing.'
Mark Anderson’s Andertoons for the 29th of July, 2018. Poor Wavehead is never going to get over his disappointment when he learns about the Fredholm Alternative. I still insist it’s an underrated mid-70s paranoia-thriller.

Johnny Hart’s Back to BC for the 29th is a surprisingly sly joke about non-Euclidean geometries. You wouldn’t expect that given the reputation of the comic the last decade of Hart’s life. And I did misread it at first, thinking that after circumnavigating the globe Peter had come back to have what had been the right line touch the left. That the trouble was his stick wearing down I didn’t notice until I re-read.

But Peter’s problem would be there if his stick didn’t wear down. “Parallel” lines on a globe don’t exist. One can try to draw a straight line on the surface of a sphere. These are “great circles”, with famous map examples of those being the equator and the lines of longitude. They don’t keep a constant distance from one another, and they do meet. Peter’s experiment, as conducted, would be a piece of proof that they have to live on a curved surface.

Peter, holding up a Y-shaped stick: 'In proving to you rather dense individuals that parallel lines never meet I am about to embark on a heretofore unprecedented expedition which will encompass the globe. See you.' (He walks off, dragging both ends of the stick in the ground, creating parallel lines. He walks several panels; 'Fifty Thousand Miles Later' as the stick wears down and the parallel lines get less far apart ... he gets back where he started, with the stick worn down to a single ribbon, and the surviving line left.)
Johnny Hart’s Back to BC for the 29th of July, 2018. It originally ran it looks like, the 13th of August, 1961. Or I’m reading the second row, second panel wrong.

And this gets at one of those questions that bothers mathematicians, cosmologists, and philosophers. How do we know the geometry of the universe? If we could peek at it from outside we’d have some help, but that is a big if. So we have to rely on what we can learn from inside the universe. And we can do some experiments that tell us about the geometry we’re in. Peter’s line example would be one; he can use that to show the world’s curved in at least one direction. A couple more lines and he’d be confident the world was a sphere. If we could make precise enough measurements we could do better, with geometric experiments smaller than the circumference of the Earth. (Or universe.) Famously, the sum of the interior angles of a triangle tell us something about the space the triangle’s inscribed in. There are dangers in going from information about one point, or a small area, to information about the whole. But we can tell some things.

Dr Strange-y type doing mind stuff: 'Using my MENTALISTIC powers of the occult, I shall attempt to DOUBLE your brain power, Captain Victorious! Peruse the potency of ... PROFESSOR PECULIAR!' Captain Victorious: 'Mind ... reeling! So much ... information!! ... Two plus two equals ... four! Hey! It worked!' Professor Peculiar: 'I guess double was too relative a term.'
Phil Dunlap’s Ink Pen rerun for the 29th of July, 2018. This one originally ran the 21st of August, 2011.

Phil Dunlap’s Ink Pen for the 29th is another use of arithmetic as shorthand for intelligence. Might be fun to ponder how Captain Victorious would know that he was right about two plus two equalling four, if he didn’t know that already. But we all are in the same state, for mathematical truths. We know we’ve got it right because we believe we have a sound logical argument for the thing being true.

A 'Newton Enterprises' boat pulls up to a desert island. A skeleton's under the tree; beside it, a whiteboard that starts with 'Coconut' and proceeds through a few lines of text to, finally, 'F = GMm/R^2'. Caption: 'How Newton actually stumbled across his formula for the theory of gravity.'
Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 30th of July, 2018. All right, so the rubber boat is an obvious anachronism. But Newton’s pal Edmond Halley made some money building diving bells for people to excavate shipwrecks and if that doesn’t mess with your idea of what the 17th century was you’re a stronger one than I am.

Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 30th is a riff on the story of Isaac Newton and the apple. The story of Newton starting his serious thinking of gravity by pondering why apples should fall while the Moon did not is famous. And it seems to trace to Newton. We have a good account of it from William Stukeley, who in the mid-18th century wrote Memoirs of Sir Isaac Newton’s Life. Stukeley knew Newton, and claimed to get the story right from him. He also told it to his niece’s husband, John Conduitt. Whether this is what got Newton fired with the need to create such calculus and physics, or whether it was a story he composed to give his life narrative charm, is beyond my ability to say. It’s an important piece of mathematics history anyway.


If you’d like more Reading the Comics essays you can find them at this link. Some of the many essays to mention Andertoons are at this link. Other essays mentioning B.C. (vintage and current) are at this link. The comic strip Ink Pen gets its mentions at this link, although I’m surprised to learn it’s a new tag today. And the Chuckle Brothers I discuss at this link. Thank you.

%d bloggers like this: