Tagged: Joe Vanilla Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 6:00 pm on Sunday, 7 May, 2017 Permalink | Reply
    Tags: codes, Emmy Lou, , , , Joe Vanilla, , Kidtown, , , , , W T Duck   

    Reading the Comics, May 2, 2017: Puzzle Week 


    If there was a theme this week, it was puzzles. So many strips had little puzzles to work out. You’ll see. Thank you.

    Bill Amend’s FoxTrot for the 30th of April tries to address my loss of Jumble panels. Thank you, whoever at Comic Strip Master Command passed along word of my troubles. I won’t spoil your fun. As sometimes happens with a Jumble you can work out the joke punchline without doing any of the earlier ones. 64 in binary would be written 1000000. And from this you know what fits in all the circles of the unscrambled numbers. This reduces a lot of the scrambling you have to do: just test whether 341 or 431 is a prime number. Check whether 8802, 8208, or 2808 is divisible by 117. The integer cubed you just have to keep trying possibilities. But only one combination is the cube of an integer. The factorial of 12, just, ugh. At least the circles let you know you’ve done your calculations right.

    Steve McGarry’s activity feature Kidtown for the 30th plays with numbers some. And a puzzle that’ll let you check how well you can recognize multiles of four that are somewhere near one another. You can use diagonals too; that’s important to remember.

    Mac King and Bill King’s Magic in a Minute feature for the 30th is also a celebration of numerals. Enjoy the brain teaser about why the encoding makes sense. I don’t believe the hype about NASA engineers needing days to solve a puzzle kids got in minutes. But if it’s believable, is it really hype?

    Marty Links’s Emmy Lou from the 29th of October, 1963 was rerun the 2nd of May. It’s a reminder that mathematics teachers of the early 60s also needed something to tape to their doors.

    Mel Henze’s Gentle Creatures rerun for the 2nd of May is another example of the conflating of “can do arithmetic” with “intelligence”.

    Mark Litzler’s Joe Vanilla for the 2nd name-drops the Null Hypothesis. I’m not sure what Litzler is going for exactly. The Null Hypothesis, though, comes to us from statistics and from inference testing. It turns up everywhere when we sample stuff. It turns up in medicine, in manufacturing, in psychology, in economics. Everywhere we might see something too complicated to run the sorts of unambiguous and highly repeatable tests that physics and chemistry can do — things that are about immediately practical questions — we get to testing inferences. What we want to know is, is this data set something that could plausibly happen by chance? Or is it too far out of the ordinary to be mere luck? The Null Hypothesis is the explanation that nothing’s going on. If your sample is weird in some way, well, everything is weird. What’s special about your sample? You hope to find data that will let you reject the Null Hypothesis, showing that the data you have is so extreme it just can’t plausibly be chance. Or to conclude that you fail to reject the Null Hypothesis, showing that the data is not so extreme that it couldn’t be chance. We don’t accept the Null Hypothesis. We just allow that more data might come in sometime later.

    I don’t know what Litzler is going for with this. I feel like I’m missing a reference and I’ll defer to a finance blogger’s Reading the Comics post.

    Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 3rd is another in the string of jokes using arithmetic as source of indisputably true facts. And once again it’s “2 + 2 = 5”. Somehow one plus one never rates in this use.

    Aaron Johnson’s W T Duck rerun for the 3rd is the Venn Diagram joke for this week. It’s got some punch to it, too.

    Je Mallett’s Frazz for the 5th took me some time to puzzle out. I’ll allow it.

     
  • Joseph Nebus 6:00 pm on Sunday, 5 March, 2017 Permalink | Reply
    Tags: , , Joe Vanilla, , , , Poor Richard's Almanac, ,   

    Reading the Comics, March 4, 2017: Frazz, Christmas Trees, and Weddings Edition 


    It was another of those curious weeks when Comic Strip Master Command didn’t send quite enough comics my way. Among those they did send were a couple of strips in pairs. I can work with that.

    Samson’s Dark Side Of The Horse for the 26th is the Roman Numerals joke for this essay. I apologize to Horace for being so late in writing about Roman Numerals but I did have to wait for Cecil Adams to publish first.

    In Jef Mallett’s Frazz for the 26th Caulfield ponders what we know about Pythagoras. It’s hard to say much about the historical figure: he built a cult that sounds outright daft around himself. But it’s hard to say how much of their craziness was actually their craziness, how much was just that any ancient society had a lot of what seems nutty to us, and how much was jokes (or deliberate slander) directed against some weirdos. What does seem certain is that Pythagoras’s followers attributed many of their discoveries to him. And what’s certain is that the Pythagorean Theorem was known, at least a thing that could be used to measure things, long before Pythagoras was on the scene. I’m not sure if it was proved as a theorem or whether it was just known that making triangles with the right relative lengths meant you had a right triangle.

    Greg Evans’s Luann Againn for the 28th of February — reprinting the strip from the same day in 1989 — uses a bit of arithmetic as generic homework. It’s an interesting change of pace that the mathematics homework is what keeps one from sleep. I don’t blame Luann or Puddles for not being very interested in this, though. Those sorts of complicated-fraction-manipulation problems, at least when I was in middle school, were always slogs of shuffling stuff around. They rarely got to anything we’d like to know.

    Jef Mallett’s Frazz for the 1st of March is one of those little revelations that statistics can give one. Myself, I was always haunted by the line in Carl Sagan’s Cosmos about how, in the future, with the Sun ageing and (presumably) swelling in size and heat, the Earth would see one last perfect day. That there would most likely be quite fine days after that didn’t matter, and that different people might disagree on what made a day perfect didn’t matter. Setting out the idea of a “perfect day” and realizing there would someday be a last gave me chills. It still does.

    Richard Thompson’s Poor Richard’s Almanac for the 1st and the 2nd of March have appeared here before. But I like the strip so I’ll reuse them too. They’re from the strip’s guide to types of Christmas trees. The Cubist Fur is described as “so asymmetrical it no longer inhabits Euclidean space”. Properly neither do we, but we can’t tell by eye the difference between our space and a Euclidean space. “Non-Euclidean” has picked up connotations of being so bizarre or even horrifying that we can’t hope to understand it. In practice, it means we have to go a little slower and think about, like, what would it look like if we drew a triangle on a ball instead of a sheet of paper. The Platonic Fir, in the 2nd of March strip, looks like a geometry diagram and I doubt that’s coincidental. It’s very hard to avoid thoughts of Platonic Ideals when one does any mathematics with a diagram. We know our drawings aren’t very good triangles or squares or circles especially. And three-dimensional shapes are worse, as see every ellipsoid ever done on a chalkboard. But we know what we mean by them. And then we can get into a good argument about what we mean by saying “this mathematical construct exists”.

    Mark Litzler’s Joe Vanilla for the 3rd uses a chalkboard full of mathematics to represent the deep thinking behind a silly little thing. I can’t make any of the symbols out to mean anything specific, but I do like the way it looks. It’s quite well-done in looking like the shorthand that, especially, physicists would use while roughing out a problem. That there are subscripts with forms like “12” and “22” with a bar over them reinforces that. I would, knowing nothing else, expect this to represent some interaction between particles 1 and 2, and 2 with itself, and that the bar means some kind of complement. This doesn’t mean much to me, but with luck, it means enough to the scientist working it out that it could be turned into a coherent paper.

    'Has Carl given you any reason not to trust him?' 'No, not yet. But he might.' 'Fi ... you seek 100% certainty in people, but that doesn't exist. In the end,' and Dethany is drawn as her face on a pi symbol, 'we're *all* irrational numbers.'

    Bill Holbrook’s On The Fastrack for the 3rd of March, 2017. Fi’s dress isn’t one of those … kinds with the complicated pattern of holes in it. She got it torn while trying to escape the wedding and falling into the basement.

    Bill Holbrook’s On The Fastrack is this week about the wedding of the accounting-minded Fi. And she’s having last-minute doubts, which is why the strip of the 3rd brings in irrational and anthropomorphized numerals. π gets called in to serve as emblematic of the irrational numbers. Can’t fault that. I think the only more famously irrational number is the square root of two, and π anthropomorphizes more easily. Well, you can draw an established character’s face onto π. The square root of 2 is, necessarily, at least two disconnected symbols and you don’t want to raise distracting questions about whether the root sign or the 2 gets the face.

    That said, it’s a lot easier to prove that the square root of 2 is irrational. Even the Pythagoreans knew it, and a bright child can follow the proof. A really bright child could create a proof of it. To prove that π is irrational is not at all easy; it took mathematicians until the 19th century. And the best proof I know of the fact does it by a roundabout method. We prove that if a number (other than zero) is rational then the tangent of that number must be irrational, and vice-versa. And the tangent of π/4 is 1, so therefore π/4 must be irrational, so therefore π must be irrational. I know you’ll all trust me on that argument, but I wouldn’t want to sell it to a bright child.

    'Fi ... humans are complicated. Like the irrational number pi, we can go on forever. You never get to the bottom of us! But right now, upstairs, there are two variables who *want* you in their lives. Assign values to them.' Carl, Fi's fiancee, is drawn as his face with a y; his kid as a face on an x.

    Bill Holbrook’s On The Fastrack for the 4th of March, 2017. I feel bad that I completely forgot Carl had a kid and that the face on the x doesn’t help me remember anything.

    Holbrook continues the thread on the 4th, extends the anthropomorphic-mathematics-stuff to call people variables. There’s ways that this is fair. We use a variable for a number whose value we don’t know or don’t care about. A “random variable” is one that could take on any of a set of values. We don’t know which one it does, in any particular case. But we do know — or we can find out — how likely each of the possible values is. We can use this to understand the behavior of systems even if we never actually know what any one of it does. You see how I’m going to defend this metaphor, then, especially if we allow that what people are likely or unlikely to do will depend on context and evolve in time.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: