Checking Back in On That 117-Year-Old Roller Coaster


I apologize to people who want to know the most they can about the comic strips of the past week. I’ve not had time to write about them. Part of what has kept me busy is a visit to Lakemont Park, in Altoona, Pennsylvania. The park has had several bad years, including two years in which it did not open at all. But still standing at the park is the oldest-known roller coaster, Leap The Dips.

My first visit to this park, in 2013, among other things gave me a mathematical question to ask. That is, could any of the many pieces of wood in it be original? How many pieces would you expect?

Two parts of the white-painted-wood roller coaster track. In front is the diagonal lift hill. Behind is a basically horizontal track which has a small dip in the middle.
One of the dips of Leap The Dips. These hills are not large ones. The biggest drop is about nine feet; the coaster is a total of 41 feet high at its greatest. The track goes back and forth in a figure-eight layout several times, and in the middle of each ‘straightaway’ leg is a dip like this.

Problems of this form happen all the time. They turn up whenever there’s something which has a small chance of happening, but many chances to happen. In this case, there’s a small chance that any particular piece of wood will need replacing. But there are a lot of pieces of wood, and they might need replacement at any ride inspection. So there’s an obvious answer to how likely it is any piece of wood would survive a century-plus. And, from that, how much of that wood should be original.

And, since this is a probability question, I found reasons not to believe in this answer. These reasons amount to my doubting that the reality is much like the mathematical abstraction. I even found evidence that my doubts were correct.

Covered station for the roller coaster, with 'LEAP THE DIPS' written in what looks like a hand-painted sign hanging from above. Two roller coaster chairs sit by the station.
The station for the Leap The Dips roller coaster, Lakemont Park, Altoona, Pennsylvania. There are two separate cars visible on the tracks by the station. When I last visited there was only one car on the tracks. The cars have a front and a back seat, and while there is a bar to grab hold of, there are no other restraints, which makes the low-speed ride more exciting.

The sad thing to say about revisiting Lakemont Park — well, one is that the park has lost almost all its amusement park rides. It’s got athletic facilities, and a couple miniature golf courses, but besides two wooden and one kiddie roller coaster, and an antique-cars ride, there’s not much left of its long history as an amusement park. But the other thing is that Leap The Dips was closed when I was able to visit. The ride’s under repairs, and seems to be getting painted too. This is sad, but I hope it implies better things soon.

Roller Coaster Immortality Update!


Several years ago I had the chance to go to Lakemont Park, in Altoona, Pennsylvania. It’s a lovely and very old amusement park, featuring the oldest operating roller coaster, Leap The Dips. As roller coasters go it’s not very large and not very fast, but it’s a great ride. It does literally and without exaggeration leap off the track, though not far enough to be dangerous. I recommend the park and the ride to people who have cause to be in the middle of Pennsylvania.

I wondered whether any boards in it might date from the original construction in 1902 by the E Joy Morris company. If we make some assumptions we can turn this into a probability problem. It’s a problem of a type that always seems to be answered 1/e. (The problem is “what is the probability that any particular piece of wood has lasted 100 years, if a piece of wood has a one percent chance of needing replacement every year?”) That’s a probability of about 37 percent. But I doubted this answer meant anything. My skepticism came from wondering why every piece of wood should be equally likely to survive every year. Different pieces serve different structural roles, and will be exposed to the elements differently. How can I be sure that the probability one piece needs replacement is independent of the probability some other piece needs replacement? But if they’re not independent then my calculation doesn’t give a relevant answer.

The Leap-The-Dips roller coaster at Lakemont Park, Altoona, Pennsylvania.
The Leap-The-Dips roller coaster at Lakemont Park, Altoona, Pennsylvania.

A recent post on the Usenet roller coaster enthusiast newsgroup rec.roller-coaster, in a discussion titled “Age a coaster should be preserved”, suggests I was right in my skepticism. Derek Gee writes:

According to the video documentary the park produced around
1999, all of the original upright lumber was found to be in excellent shape.
The E. Joy Morris company had waterproofed it by sealing it in ten coats of
paint and it was old-growth hardwood. All the horizontal lumber was
replaced as I recall.

I am aware this is not an academically rigorous answer to the question of how much of the roller coaster’s original construction is still in place. But it is a lead. It suggests that quite a bit of the antique ride is as antique as could be.