I thought my new workflow of writing my paragraph or two about each comic was going to help me keep up and keep fresher with the daily comics. And then Comic Strip Master Command decided that *everybody* had to do comics that at least touched on some mathematical subject. I don’t know. I’m trying to keep up but will admit, I didn’t get to writing anything about Friday’s or Saturday’s strips yet. They’ll keep a couple days.

Bill Amend’s **FoxTrot Classics**for the 29th of January reprints the strip from the 5th of February, 1996. (The **Classics** reprints finally reached the point where Amend retired from daily strips, and jumped back a dozen years to continue printing.) It just mentions mathematics exams, and high performances on both is all.

Josh Shalek’s **Kid Shay Comics** reprint for the 29th tosses off a mention of Uncle Brian attempting a great mathematical feat. In this case it’s the Grand Unification Theory, some logically coherent set of equations that describe the fundamental forces of the universe. I think anyone with a love for mathematics makes a couple quixotic attempts on enormously vast problems like this. Or the Riemann Hypothesis, or Goldbach’s Conjecture, or Fermat’s Last Theorem. Yes, Fermat’s Last Theorem has been proven, but there’s no reason there couldn’t be an easier proof. Similarly there’s no reason there couldn’t be a better proof of the Four Color Map theorem. Most of these attempts end up the way Brian’s did. But there’s value in attempting this anyway. Even when you fail, you can have fun and learn fascinating things in the attempt.

Carol Lay’s **Lay Lines** for the 29th is a vignette about a statistician. And one of those statisticians with the job of finding surprising correlations between things. I think it’s also a riff on the hypothesis that free markets are necessarily perfect: if there’s any advantage to doing something one way, it’ll quickly be found and copied until that is the normal performance of the market. Anyone doing better than average is either taking advantage of concealed information, or else is lucky.

Matt Lubchansky’s **Please Listen To Me** for the 29th depicts a person doing statistical work for his own purposes. In this case he’s trying to find what factors might be screwing up the world. The expressions in the second panel don’t have an obvious meaning to me. The start of the expression at the top line suggests statistical mechanics to me, for what that’s worth, and the H and Ψ underneath suggest thermodynamics or quantum mechanics. So if Lubchansky was just making up stuff, he was doing it with a good eye for mathematics that might underly everything.

Rick Stromoski’s **Soup to Nutz** for the 29th circles around the anthropomorphic numerals idea. It’s not there exactly, but Andrew is spending some time giving personality to numerals. I can’t say I give numbers this much character. But there are numbers that seem nicer than others. Usually this relates to what I can do with the numbers. 10, for example, is so easy to multiply or divide by. If I need to multiply a number by, say, something near thirty, it’s a delight to triple it and then multiply by ten. Twelve and 24 and 60 are fun because they’re so relatively easy to find parts of. Even numbers often do seem easier to work with, just because splitting an even number in half saves us from dealing with decimals or fractions. Royboy sees all this as silliness, which seems out of character for him, really. I’d expect him to be up for assigning traits to numbers like that.

Bill Griffith’s **Zippy the Pinhead** for the 30th mentions Albert Einstein and relativity. And Zippy ruminates on the idea that there’s duplicates of everything, in the vastness of the universe. It’s an unsettling idea that isn’t obviously ruled out by mathematics alone. There’s, presumably, some chance that a bunch of carbon and hydrogen and oxygen and other atoms happened to come together in such a way as to make our world as we know it today. If there’s a vast enough universe, isn’t there a chance that a bunch of carbon and hydrogen and oxygen and other atoms happened to come together that same way *twice*? Three times? If the universe is infinitely large, might it not happen infinitely many times? In any number of variations? It’s hard to see why not, but even if it is possible, that’s no reason to think it must happen either. And whether those duplicates are *us* is a question for philosophers studying the problem of identity and what it means to be one person rather than some other person. (It turns out to be a *very* difficult problem and I’m glad I’m not expected to offer answers.)

Tony Cochrane’s **Agnes** attempts to use mathematics to reason her way to a better bedtime the 31st. She’s not doing well. Also this seems like it’s more of an optimization problem than a simple arithmetic one. What’s the latest bedtime she can get that still allows for everything that has to be done, likely including getting up in time and getting enough sleep? Also, just my experience but I didn’t think Agnes was old enough to stay up until 10 in the first place.