Reading the Comics, March 31, 2020: End March, Already, Edition


I think few will oppose me if I say the best part of March 2020 was that it ended. Let me close out nearly all my March business by getting through the last couple comic strips which mentioned some mathematics topic that month. I’ll still have my readership review, probably to post Friday, and then that finishes my participation in the month at last.

Connie Sun’s Connie to the for the 30th features the title character trying to explain what “exponential growth” is. She struggles. Appropriately, as it’s something we see very rarely in ordinary life.

They turn up in mathematics all the time. And mathematical physics, and such. Any process with a rate of change that’s proportional to the current amount of the thing tends to be exponential. This whether growing or decaying. Even circular motion, periodic motion, can be understood as exponential growth with imaginary numbers. So anyone doing mathematics gets trained to see, and expect, exponentials. They have great analytic properties, too. You can use them to solve differential equations. And differential equations are so much of science that it’s easy to forget they’re not.

In ordinary life, though? Well, yes, a lot of quantities will change at rates which depend on their current quantity. But in anything that’s been around a while, the quantity will usually be at, or near enough, an equilibrium. Some kind of balance. It may move away from that balance, but usually, it’ll move back towards it. (I am skipping some complicating factors. Don’t worry about them.) A mathematician will see the hidden exponentials in this. But to anyone else? The thing may start growing, but then it peters out and slows to a stop. Or it might collapse, but that change also peters out. Maybe it’ll hit a new equilibrium; maybe it’ll go back to the old. We rarely see something changing without the sorts of limits that tamp the change back down.

Connie, narrating: 'I recently tried to explain exponential growth to my parents, using an awkward mix of English and Chinese. The problem is that I'm rusty on the math, on top of the language barrier.' Her phone ;'You know how when a line on a graph curves up really sharply?? It's, like, a math thing . Cases are doubling every day or two! Okay, wait, let me look it up. [ Looking over a picture of the exponential growth curve. ] Uh, it's ... [ something ] in Chinese. Does that make sense? ... Yeah, so, I think what it means is that you should definitely STAY HOME.'
Connie Sun’s Connie to the for the 30th of March, 2020. Although I’ve mentioned this strip one time before, it’s not had any serious attention before. Well, this and future essays discussing something mentioned in Connie to the Wonnie should appear at this link.

Even the growth of infection rates for Covid-19 will not stay exponential forever, even if there were no public health measures responding to it. There can’t be more people infected than there are people in the world. At some point, the curve representing number of infected people versus time would stop growing more and more, and would level out, from a pattern called the logistic equation. But the early stages of this are almost indistinguishable from exponential growth.

Samson’s Dark Side of the Horse for the 29th is a comforting counting-sheep joke, with half-sized sheep counted as fractions of a whole sheep. Comforting little bit of business here.

Sam Hurts’s Eyebeam for the 30th describes one version of Zeno’s most famous paradox, and applies it to an event that already seems endless.

Zeno's Paradox: To get from point A to point B, you must first reach the halfway point. From there, you will have to cross a new halfway point. Etc. Etc. Etc. Etc. Etc. Etc. ... You will never run out of halfway points, so you can never arrive. Zeno's Kids: [ Zeno driving, with two kids in the back. ] Kids: 'Are we halfway there yet?'
Sam Hurts’s Eyebeam for the 30th of March, 2020. This is the first time in over two years that I’ve mentioned this strip. Essays featuring Eyebeam are gathered at this link.

Todd Clark’s Lola for the 30th has a student asking what the end of mathematics is. And learning how after algebra comes geometry, trigonometry, calculus, topology, and more. All fair enough, though I’m surprised to see it put for that that of course someone who does enough mathematics will do topology. (I only have a casual brush with it myself, mostly in service to other topics.) But it’s nice to have it acknowledged that, if you want, you can go on learning new mathematics fields, practically without limit.

Ashleigh Brilliant’s Pot-Shots for the 30th just declares infinity to be a favorite number. Is it a number? … We have to be careful what exactly we mean by number. Allow that we are careful, though. It’s certainly at least number-adjacent.

John Zakour and Scott Roberts’s Maria’s Day for the 31st has Maria hoping to get out of new schoolwork. So she gets a review of fractions instead. Typical.


There were some more mathematically-themed comic strips last week. I’ll get to them in an essay at this link, sometime soon. Thanks for reading.

Reading the Comics, October 11, 2018: Under Weather Edition


I ended up not finding more comics on-topic on GoComics yesterday. So this past week’s mathematically-themed strips should fit into two posts well. I apologize for any loss of coherence in this essay, as I’m getting a bit of a cold. I’m looking forward to what this cold does for the A To Z essays coming Tuesday and Friday this week, too.

Stephen Beals’s Adult Children for the 7th uses Albert Einstein’s famous equation as shorthand for knowledge. I’m a little surprised it’s written out in words, rather than symbols. This might reflect that E = mc^2 is often understood just as this important series of sounds, rather than as an equation relating things to one another. Or it might just reflect the needs of the page composition. It could be too small a word balloon otherwise.

(In a darkened bar.) Harvey: 'Are they going to close?' Berle: 'They'll have to if this isn't fixed.' Harvey: 'E equals MC squared!' (The lights come on.) Berle 'Yay! ... Why did you yell that?' Harvey: 'Knowledge is power.'
Stephen Beals’s Adult Children for the 7th of October, 2018. I’m still not sure how I feel about this strip’s use of slightly offset panels like this.

Julie Larson’s The Dinette Set for the 9th continues the thread of tip-calculation jokes around here. I have no explanation for this phenomenon. In this case, Burl is doing the calculation correctly. If the tip is supposed to be 15% of the bill, and the bill is reduced 10%, then the tip would be reduced 10%. If you already have the tip calculated, it might be quicker to figure out a tenth of that rather than work out 15% of the original bill. And, yes, the characters are being rather unpleasantly penny-pinching. That was just the comic strip’s sense of humor.

Burl: 'So a 15% tip four two Monte Cristo platters would be $1.26' Dale: 'So ours would be the same as yours ... waidda minute! Today is 10% OFF for AARP members! So we times our total by 25% to figure the tip?' Burl: 'It's simple, Dale. Take 10% off the $1.26 tip, which is 12.6 cents, round that up to 13 cents, the minus that fro $1.26, and her tip is now $1.13.' Dale: 'Wow! I'm impressed! You did all that in your head! I'll bet I woulda given too much!'
Julie Larson’s The Dinette Set for the 9th of October, 2018. This is a rerun; it originally ran the 2nd of December, 2007.

Todd Clark’s Lola for the 9th take the form of your traditional grumbling about story problems. It also shows off the motif of updating of the words in a story problem to be awkwardly un-hip. The problem seems to be starting in a confounding direction anyway. The first sentence isn’t out and it’s introducing the rate at which Frank is shedding social-media friends over time and the rate at which a train is travelling, some distancer per time. Having one quantity with dimensions friends-per-time and another with dimensions distance-per-time is begging for confusion. Or for some weird gibberish thing, like, determining something to be (say) ninety mile-friends. There’s trouble ahead.

Lola: 'Sammy boy. How's middle school going?' Sammy: 'Stupid story problems.' Lola: 'Whatcha got? Maybe I can help.' Sammy: 'If Frank unfriends people at a rate of six per hour while on a train travelling ... '
Todd Clark’s Lola for the 9th of October, 2018. Don’t let your eye be distracted by the coloring job done on Lola’s eyeglasses in the last panel there.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 10th proposes naming a particular kind of series. A series is the sum of a sequence of numbers. It doesn’t have to be a sequence with infinitely many numbers in it, but it usually is, if it’s to be an interesting series. Properly, a series gets defined by something like the symbols in the upper caption of the panel:

\sum_{i = 1}^{\infty} a_i

Here the ‘i’ is a “dummy variable”, of no particular interest and not even detectable once the calculation is done. It’s not that thing with the square roots of -1 in thise case. ‘i’ is specifically known as the ‘index’, since it indexes the terms in the sequence. Despite the logic of i-index, I prefer to use ‘j’, ‘k’, or ‘n’. This avoids confusion with that square-root-of-minus-1 meaning for i. The index starts at some value, the one to the right of the equals sign underneath the capital sigma; in this case, 1. The sequence evaluates whatever the formula described by a_i is, for each whole number between that lowest ‘i’, in this case 1, and whatever the value above the sigma is. For the infinite series, that’s infinitely large. That is, work out a_i for every counting number ‘i’. For the first sum in the caption, that highest number is 4, and you only need to evaluate four terms and add them together. There’s no rule given for a_i in the caption; that just means that, in this case, we don’t yet have reason to care what the formula is.

On the blackboard: 'Solve: 24 + 12 + 6 + 3 + ... = ?' He put down 48. Woman: 'I ... wow. You've never studied series and you got it instantly.' Man: 'The 'plus three dots' part means 'plus 3', right?' Caption: 'New sequence type: Lucky Moron sequences. Definition: any convergent series such that 3 + (the first four terms) = (the infinite series)'.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 10th of October, 2018. And if you think that’s a not-really-needed name for a kind of series, note that MathWorld has a definition for the “FoxTrot Series” based on one problem from the FoxTrot comic strip from 1998.

This is the way to define a series if we’re being careful, and doing mathematics properly. But there are shorthands, and we fall back on them all the time. On the blackboard is one of them: 24 + 12 + 6 + 3 + \cdots . The \cdots at the end of a summation like this means “carry on this pattern for infinitely many terms”. If it appears in the middle of a summation, like 2 + 4 + 6 + 8 + \cdots + 20 it means “carry on this pattern for the appropriate number of terms”. In that case, it would be 10 + 12 + 14 + 16 + 18 .

The flaw with this “carry on this pattern” is that, properly, there’s no such thing as “the” pattern. There are infinitely many ways to continue from whatever the start was, and they’re all equally valid. What lets this scheme work is cultural expectations. We expect the difference between one term and the next to follow some easy patterns. They increase or decrease by the same amount as we’ve seen before (an arithmetic progression, like 2 + 4 + 6 + 8, increasing by two each time). They increase or decrease by the same ratio as we’ve seen before (a geometric progression, like 24 + 12 + 6 + 3, cutting in half each time). Maybe the sign alternates, or changes by some straightforward rule. If it isn’t one of these, then we have to fall back on being explicit. In this case, it would be that a_i = 24 \cdot \left(\frac{1}{2}\right)^{i - 1} .

The capital-sigma as shorthand for “sum” traces to Leonhard Euler, because of course. I’m finding it hard, in my copy of Florian Cajori’s History of Mathematical Notations, to find just where the series notation as we use it got started. Also I’m not finding where ellipses got into mathematical notation either. It might reflect everybody realizing this was a pretty good way to represent “we’re not going to write out the whole thing here”.

With something marked 30% off. First customer: 'This is normally 100 bucks. How much will it be at 30% off?' Val: '$70.' First customer, to second: 'See, I told you percents are the same as dollars.' Second customer: 'When you're right, you're right.' Val, thinking: 'I pity the next retailer who has to convince him otherwise.'
Norm Feuti’s Retail for the 11th of October, 2018. Yes, the comments include people explaining how people doing Common Core mathematics would never find an answer to “30% off $20”. Also a commenter who explains how one would, probably do it: “30% of 10 is 3. 20 is twice 20, so, 30% off 20 would be twice 3, or 6. So, 20 minus 6, or 14.” Followed by someone saying that if you did it by real math, it would be .7 times 20.

Norm Feuti’s Retail for the 11th riffs on how many people, fundamentally, don’t know what percentages are. I think it reflects thinking of a percentage as some kind of unit. We get used to measurements of things, like, pounds or seconds or dollars or degrees or such that are fixed in value. But a percentage is relative. It’s a fraction of some original quantity. A difference of (say) two pounds in weight is the same amount of weight whatever the original was; why wouldn’t two percent of the weight behave similarly? … Gads, yes, I feel for the next retailer who gets these customers.

I think I’ve already used the story from when I worked in the bookstore about the customer concerned whether the ten-percent-off sticker applied before or after sales tax was calculated. So I’ll only share if people ask to hear it. (They won’t ask.)


When I’m not getting a bit ill, I put my Reading the Comics posts at this link. Essays which mention Adult Children are at this link. Essays with The Dinette Set discussions should be at this link. The essays inspired by Lola are at this link. There’s some mention of Saturday Morning Breakfast Cereal in essays at link, or pretty much every Reading the Comics post. And Retail gets discussed at this link.

Reading the Comics, May 8, 2018: Insecure http Edition


Last week had enough mathematically-themed comics for me to split the content. Usually I split the comics temporally, and this time I will too. What’s unusual is that somewhere along the week the URLs that GoComics pages provide switched from http to https. https is the less-openly-insecure version of the messaging protocol that sends web pages around. It’s good practice; we should be using https wherever possible. I don’t know why they switched that on, and why switch it on midweek. I suppose someone there knew what they were doing.

Tom Wilson’s Ziggy for the 6th of May uses mathematical breakthroughs as shorthand for inspiration. In two ways, too, one with a basically geometric figure and one with a bunch of equations. The geometric figure doesn’t seem to have any significance to me. The equations … that’s a bit harder. They’re probably nonsense. But it’s hard to look at ‘a’ and not see acceleration; the letter is often used for that. And it’s hard to look at ‘v’ and not see velocity. ‘x’ is often a position and ‘t’ is often a time. ‘xf – xi‘ looks meaningful too. It almost begs to be read as “position, final, minus position, initial”. “tf – ti” almost begs to be read as “time, final, minus time, initial”. And the difference in position divided by a difference in time suggests a velocity.

People at Inspiration Point all saying Eureka. one things of an arithmetic formula, one of a geometric proof, one of a bar of music. Ziggy thinks of a vacuum cleaner.
Tom Wilson’s Ziggy for the 6th of May, 2018. I’m also curious whether the geometric figure means anything. But the spray of “x3 – 1” and “x2” and all don’t seem to fit a pattern to me.

So here’s something peculiar inspired by looking at the units that have to follow. If ‘v’ is velocity, then it’s got units of distance over time. \left(\frac{av}{V}\right)^2 and \left(\frac{av}{I}\right)^2 would have units of distance-squared over time-squared. At least unless ‘a ‘or ‘V’ or ‘I’ are themselves measurements. But the square root of their sum then gets us back to distance over time. And then a distance-over-time divided by … well, distance-over-time suggests a pure number. Or something of whatever units ‘R’ carries with it.

So this equation seems arbitrary, and of course the expression doesn’t need to make sense for the joke. But it’s odd that the most-obvious choice of meanings for v and x and t means that the symbols work out so well. At least almost: an acceleration should have units of distance-over-time-squared, and this has units of (nothing). But I may have guessed wrong in thinking ‘a’ meant acceleration here. It might be a description of how something in one direction corresponds to something in another. And that would make sense as a pure number. I wonder whether Wilson got this expression from from anything, or if any readers recognize something that I should have seen right away.

Monty: 'Exactly ONE month of school left, Mrs Lola!' Lola: 'How 'bout that, Monty.' Monty: 'So, subtracting weekends ... that's, um, let's see. Carry the 2, add the 6 ... only 47 days!' Lola: 'Your folks got you signed up for math camp?' Monty: 'How'd you know?'
Todd Clark’s Lola for the 7th of May, 2018. I’m not sure whether Monty means the 6th or the 7th of June is the last day of school, too, but either way I’m pretty sure that’s at least a week and maybe closer to two weeks before we ever got out of school. But we also never started before US Labor Day and it feels indecent when I see schools that do.

Todd Clark’s Lola for the 7th jokes about being bad at mathematics. The number of days left to the end of school isn’t something that a kid should have trouble working out. However, do remember the first rule of calculating the span between two dates on the calendar: never calculate the span between two dates on the calendar. There is so much that goes wrong trying. All right, there’s a method. That method is let someone else do it.

Mutt: 'You want to know what I bought you for Christmas? Think in the number ten!' Jeff: 'Ten? Done!' Mutt: 'Then divide it by two!' Jeff: 'Yes!' Mutt: 'Now you must take away five!' Jeff: 'Yes!' Mutt: 'How much is left?' Jeff: 'Nothing!' (Mutt leaves, while Jeff ponders '?'.)
Bud Fisher’s Mutt and Jeff rerun for the 7th of May, 2018. No idea when the original was from and the word balloons have been relettered with a computer typeface. (Look at the K’s or E’s.) The copyright is given as Aedita S de Beaumont, rather than Bud Fisher or any of the unnamed assistants who actually wrote and drew the strip by this point. Beaumont had married Fisher in 1925 and while they separated after a month they never divorced, so on Fisher’s death Beaumont inherited the rights. Some strips have the signature Pierre S de Beaumont, her son and it happens founder of the Brookstone retail stores. Every bit of this seems strange but I keep looking it over and it seems like I have it right.

Bud Fisher’s Mutt and Jeff for the 7th uses the form of those mathematics-magic games. You know, the ones where you ask someone to pick a number, then do some operations, and then tell you the result. From that you reverse-engineer the original number. They’re amusing enough tricks even if they are all basically the same. It’s instructive to figure out how they work. Replace your original number with symbols and follow the steps then. If you just need the number itself you can replace that with ‘x’. If you need the digits of the number then you’d replace it with something like “10*a + b”, to represent the numerals “ab”. Here, yeah, Mutt’s just being arbitrarily mean.

Robot 55: 'EXTERMINATE ALL LIFE!' Oliver, dressed as a robot: 'Quick, Jorge, act like a robot!' Jorge, dressed like a robot: '20 times 30 equals a million.' Robot 44: 'LIFE EMANATING FROM THIS DIRECTION.' (And approaches the kids.) Oliver: 'Just do the robot dance!' Jorge: 'That's ridiculous, Oliver. Who'd actually program a robot to dance?' (The robots laser-blast a flower.) Jorge, twitching: o/` BOOP BOOP BOOP-BE-BOOP! O/`
Paul Gilligan and Kory Merritt’s Poptropica rerun for the 7th of May, 2018. Sad to say the comic seems to have lapsed into perpetual rerun; I enjoyed the silly adventure and the illustration style.

Paul Gilligan and Kory Merritt’s Poptropica for the 7th depicts calculating stuff as the way to act like a robot. Can’t deny; calculation is pretty much what we expect computers to do. It may hide. It may be done so abstractly it looks like we’re playing Mini Metro instead. This is a new comics tag. I’m sad to say this might be the last use of that tag. Poptropica is fun, but it doesn’t touch on mathematics much at all.

Written on a wood fence: 'Kindergarten teachers know how to make the little things count'.
Gene Mora’s Graffiti for the 8th of May, 2018. I don’t know whether this is a rerun. The copyright date is new but so much about this comic’s worldview is from 1978 at the latest.

Gene Mora’s Graffiti for the 8th mentions arithmetic, albeit obliquely. It’s meant to be pasted on the doors of kindergarten teachers and who am I to spoil the fun?

Anthropomorphic 3/5: 'Honey, what's wrong?' Anthropomorphic 1/4: 'Sour son is leaving the faith! He said he's converting to decimals!'
Scott Hilburn’s The Argyle Sweater for the 9th of May, 2018. I like the shout-out to Archimedes in the background art, too. Archimedes, though, didn’t use fractions in the way we’d recognize them. He’d write out a number as a combination of ratios of some reference number. So he might estimate the length of something being as to the length of something else as 19 is to 7, or something like that. This seems like a longwinded and cumbersome way to write out numbers, or much of anything, and makes one appreciate his indefatigability as much as his insight.

Scott Hilburn’s The Argyle Sweater for the 9th is the anthropomorphic-numerals joke for this week. Converting between decimals and fractions has been done since decimals got worked out in the late 16th century. There’s advantages to either representation. To my eyes the biggest advantage of fractions is they avoid hypnotizing people with the illusion of precision. 0.25 reads as more exact than 1/4. We can imagine it being 0.2500000000000000 and think we know the quantity to any desired precision. 1/4 reads (to me, anyway) as being open to the possibility we’re rounding off from 0.998 out of 4.00023.

Another advantage fractions do have is flexibility. There are infinitely many ways to express the same number as a fraction. In decimals, there are at most two. If you’re trying to calculate something that would be more easily done with a denominator of 30 than of 5, you’re free to do that. Decimals can have advantages in computing, certainly, especially if you’re already set up to manipulate digits. And you can tell at a glance whether, say, 14/29th is greater or less than 154/317th. In case you ever find reason to wonder, I mean. I’m not saying either is always the right way to go.

Reading the Comics, November 25, 2017: Shapes and Probability Edition


This week was another average-grade week of mathematically-themed comic strips. I wonder if I should track them and see what spurious correlations between events and strips turn up. That seems like too much work and there’s better things I could do with my time, so it’s probably just a few weeks before I start doing that.

Ruben Bolling’s Super-Fun-Pax Comics for the 19th is an installment of A Voice From Another Dimension. It’s in that long line of mathematics jokes that are riffs on Flatland, and how we might try to imagine spaces other than ours. They’re taxing things. We can understand some of the rules of them perfectly well. Does that mean we can visualize them? Understand them? I’m not sure, and I don’t know a way to prove whether someone does or does not. This wasn’t one of the strips I was thinking of when I tossed “shapes” into the edition title, but you know what? It’s close enough to matching.

Olivia Walch’s Imogen Quest for the 20th — and I haven’t looked, but it feels to me like I’m always featuring Imogen Quest lately — riffs on the Monty Hall Problem. The problem is based on a game never actually played on Monty Hall’s Let’s Make A Deal, but very like ones they do. There’s many kinds of games there, but most of them amount to the contestant making a choice, and then being asked to second-guess the choice. In this case, pick a door and then second-guess whether to switch to another door. The Monty Hall Problem is a great one for Internet commenters to argue about while the rest of us do something productive. The trouble — well, one trouble — is that whether switching improves your chance to win the car is that whether it does depends on the rules of the game. It’s not stated, for example, whether the host must open a door showing a goat behind it. It’s not stated that the host certainly knows which doors have goats and so chooses one of those. It’s not certain the contestant even wants a car when, hey, goats. What assumptions you make about these issues affects the outcome.

If you take the assumptions that I would, given the problem — the host knows which door the car’s behind, and always offers the choice to switch, and the contestant would rather have a car, and such — then Walch’s analysis is spot on.

Jonathan Mahood’s Bleeker: The Rechargeable Dog for the 20th features a pretend virtual reality arithmetic game. The strip is of incredibly low mathematical value, but it’s one of those comics I like that I never hear anyone talking about, so, here.

Richard Thompson’s Cul de Sac rerun for the 20th talks about shapes. And the names for shapes. It does seem like mathematicians have a lot of names for slightly different quadrilaterals. In our defense, if you’re talking about these a lot, it helps to have more specific names than just “quadrilateral”. Rhomboids are those parallelograms which have all four sides the same length. A parallelogram has to have two pairs of equal-sized legs, but the two pairs’ sizes can be different. Not so a rhombus. Mathworld says a rhombus with a narrow angle that’s 45 degrees is sometimes called a lozenge, but I say they’re fibbing. They make even more preposterous claims on the “lozenge” page.

Todd Clark’s Lola for the 20th does the old “when do I need to know algebra” question and I admit getting grumpy like this when people ask. Do French teachers have to put up with this stuff?

Brian Fies’s Mom’s Cancer rerun for the 23rd is from one of the delicate moments in her story. Fies’s mother just learned the average survival rate for her cancer treatment is about five percent and, after months of things getting haltingly better, is shaken. But as with most real-world probability questions context matters. The five-percent chance is, as described, the chance someone who’d just been diagnosed in the state she’d been diagnosed in would survive. The information that she’s already survived months of radiation and chemical treatment and physical therapy means they’re now looking at a different question. What is the chance she will survive, given that she has survived this far with this care?

Mark Anderson’s Andertoons for the 24th is the Mark Anderson’s Andertoons for the week. It’s a protesting-student kind of joke. For the student’s question, I’m not sure how many sides a polygon has before we can stop memorizing them. I’d say probably eight. Maybe ten. Of the shapes whose names people actually care about, mm. Circle, triangle, a bunch of quadrilaterals, pentagons, hexagons, octagons, maybe decagon and dodecagon. No, I’ve never met anyone who cared about nonagons. I think we could drop heptagons without anyone noticing either. Among quadrilaterals, ugh, let’s see. Square, rectangle, rhombus, parallelogram, trapezoid (or trapezium), and I guess diamond although I’m not sure what that gets you that rhombus doesn’t already. Toss in circles, ellipses, and ovals, and I think that’s all the shapes whose names you use.

Stephan Pastis’s Pearls Before Swine for the 25th does the rounding-up joke that’s been going around this year. It’s got a new context, though.

%d bloggers like this: