Tagged: lotteries Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 6:00 pm on Sunday, 9 April, 2017 Permalink | Reply
    Tags: , chess, , lotteries, , Mustard and Boloney, , , , Take It From The Tinkersons,   

    Reading the Comics, April 6, 2017: Abbreviated Week Edition 


    I’m writing this a little bit early because I’m not able to include the Saturday strips in the roundup. There won’t be enough to make a split week edition; I’ll just add the Saturday strips to next week’s report. In the meanwhile:

    Mac King and Bill King’s Magic in a Minute for the 2nd is a magic trick, as the name suggests. It figures out a card by way of shuffling a (partial) deck and getting three (honest) answers from the other participant. If I’m not counting wrongly, you could do this trick with up to 27 cards and still get the right card after three answers. I feel like there should be a way to explain this that’s grounded in information theory, but I’m not able to put that together. I leave the suggestion here for people who see the obvious before I get to it.

    Bil Keane and Jeff Keane’s Family Circus (probable) rerun for the 6th reassured me that this was not going to be a single-strip week. And a dubiously included single strip at that. I’m not sure that lotteries are the best use of the knowledge of numbers, but they’re a practical use anyway.

    Dolly holds up pads of paper with numbers on them. 'C'mon, PJ, you hafta learn your numbers or else you'll never win the lottery.'

    Bil Keane and Jeff Keane’s Family Circus for the 6th of April, 2017. I’m not familiar enough with the evolution of the Family Circus style to say whether this is a rerun, a newly-drawn strip, or an old strip with a new caption. I suppose there is a certain timelessness to it, at least once we get into the era when states sported lotteries again.

    Bill Bettwy’s Take It From The Tinkersons for the 6th is part of the universe of students resisting class. I can understand the motivation problem in caring about numbers of apples that satisfy some condition. In the role of distinct objects whose number can be counted or deduced cards are as good as apples. In the role of things to gamble on, cards open up a lot of probability questions. Counting cards is even about how the probability of future events changes as information about the system changes. There’s a lot worth learning there. I wouldn’t try teaching it to elementary school students.

    The teacher: 'How many apples will be left, Tillman?' 'When are we going to start counting things more exciting than fruit?' 'What would you like to count, Tillman?' 'Cards.'

    Bill Bettwy’s Take It From The Tinkersons for the 6th of April, 2017. That tree in the third panel is a transplant from a Slylock Fox six-differences panel. They’ve been trying to rebuild the population of trees that are sometimes three triangles and sometimes four triangles tall.

    Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 6th uses mathematics as the stuff know-it-alls know. At least I suppose it is; Doctor Know It All speaks of “the pathagorean principle”. I’m assuming that’s meant to be the Pythagorean theorem, although the talk about “in any right triangle the area … ” skews things. You can get to stuf about areas of triangles from the Pythagorean theorem. One of the shorter proofs of it depends on the areas of the squares of the three sides of a right triangle. But it’s not what people typically think of right away. But he wouldn’t be the first know-it-all to start blathering on the assumption that people aren’t really listening. It’s common enough to suppose someone who speaks confidently and at length must know something.

    Dave Whamond’s Reality Check for the 6th is a welcome return to anthropomorphic-numerals humor. Been a while.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th builds on the form of a classic puzzle, about a sequence indexed to the squares of a chessboard. The story being riffed on is a bit of mathematical legend. The King offered the inventor of chess any reward. The inventor asked for one grain of wheat for the first square, two grains for the second square, four grains for the third square, eight grains for the fourth square, and so on, through all 64 squares. An extravagant reward, but surely one within the king’s power to grant, right? And of course not: by the 64th doubling the amount of wheat involved is so enormous it’s impossibly great wealth.

    The father’s offer is meant to evoke that. But he phrases it in a deceptive way, “one penny for the first square, two for the second, and so on”. That “and so on” is the key. Listing a sequence and ending “and so on” is incomplete. The sequence can go in absolutely any direction after the given examples and not be inconsistent. There is no way to pick a single extrapolation as the only logical choice.

    We do it anyway, though. Even mathematicians say “and so on”. This is because we usually stick to a couple popular extrapolations. We suppose things follow a couple common patterns. They’re polynomials. Or they’re exponentials. Or they’re sine waves. If they’re polynomials, they’re lower-order polynomials. Things like that. Most of the time we’re not trying to trick our fellow mathematicians. Or we know we’re modeling things with some physical base and we have reason to expect some particular type of function.

    In this case, the $1.27 total is consistent with getting two cents for every chess square after the first. There are infinitely many other patterns that would work, and the kid would have been wise to ask for what precisely “and so on” meant before choosing.

    Berkeley Breathed’s Bloom County 2017 for the 7th is the climax of a little story in which Oliver Wendell Holmes has been annoying people by shoving scientific explanations of things into their otherwise pleasant days. It’s a habit some scientifically-minded folks have, and it’s an annoying one. Many of us outgrow it. Anyway, this strip is about the curious evidence suggesting that the universe is not just expanding, but accelerating its expansion. There are mathematical models which allow this to happen. When developing General Relativity, Albert Einstein included a Cosmological Constant for little reason besides that without it, his model would suggest the universe was of a finite age and had expanded from an infinitesimally small origin. He had grown up without anyone knowing of any evidence that the size of the universe was a thing that could change.

    Anyway, the Cosmological Constant is a puzzle. We can find values that seem to match what we observe, but we don’t know of a good reason it should be there. We sciencey types like to have models that match data, but we appreciate more knowing why the models look like that and not anything else. So it’s a good problem some of the cosmologists have been working on. But we’ve been here before. A great deal of physics, especially in the 20th Century, has been driven by looking for reasons behind what look like arbitrary points in a successful model. If Oliver were better-versed in the history of science — something scientifically minded people are often weak on, myself included — he’d be less easily taunted by Opus.

    Mikael Wulff and Anders Morgenthaler’s TruthFacts for the 7th thinks that we forgot they ran this same strip back on the 17th of March. I spotted it, though. Nyah.

    Advertisements
     
  • Joseph Nebus 12:44 am on Monday, 8 February, 2016 Permalink | Reply
    Tags: , lotteries, , , Super Bowl   

    Reading the Comics, February 6, 2016: Lottery Edition 


    As mentioned, the lottery was a big thing a couple of weeks ago. So there were a couple of lottery-themed comics recently. Let me group them together. Comic strips tend to be anti-lottery. It’s as though people trying to make a living drawing comics for newspapers are skeptical of wild long-shot dreams.

    T Lewis and Michael Fry’s Over The Hedge started a lottery storyline the 1st of February. Verne, the turtle, repeats the tired joke that the lottery is a tax on people bad at mathematics. Enormous jackpots, like the $1,500,000,000 payout of a couple weeks back, break one leg of the anti-lottery argument. If the expected payout is large enough then the expectation value of playing can become positive. The expectation value is one of those statistics terms that almost tells you what it is just by the name. It’s what you would expect as the average result if you could repeat some experiment arbitrarily many times. If the payout is 1.5 billion, and the chance of winning one in 250 million, then the expected value of the payout is six dollars. If a ticket costs less than six dollars, then — if you could play over and over, hundreds of millions of times — you’d expect to come out ahead each time you play.

    If you could. Of course, you can’t play the lottery hundreds of millions of times. You can play a couple of times at most. (Even if you join a pool at work and buy, oh, a thousand tickets. That’s still barely better than playing twice.) And the payout may be less than the full jackpot; multiple winners are common things in the most enormous jackpots. Still, if you’re pondering whether it’s sensible to spend two dollars on a billion-dollar lottery jackpot? You’re being fussy. You’ll spend at least that much on something more foolish and transitory — the lottery ticket can at least be used as a bookmark — I’ll bet.

    Jef Mallett’s Frazz for the 4th of February picks up the anti-lottery crusade. Caulfield does pin down that lotteries work because people figure they have a better chance of winning than they truly do. Nobody buys a ticket because they figure it’s worth losing a dollar or two. It’s because they figure the chance is worth a little money.

    Ken Cursoe’s Tiny Sepuku for the 4th of February consults the Chinese Zodiac Monkey for help on finding lucky numbers. There’s not really any finding them. Lotteries work hard to keep the winning numbers as unpredictable as possible. I have heard the lore that numbers up to 31 are picked by more people — they’re numbers that can be birthdays — so that multiple winners on the same drawing are more likely. I don’t know that this is true, though. I suspect that I could feel comfortable even with a four-way split of one and a half billions of dollars. Five-way would be out of the question, of course. Better to tear up the ticket than take that undignified split.

    Ahead of the exam, Ruthie asks, 'Instead of two number 2 pencils, can we bring one number 3 pencil and one number 1? Or one number 4 pencil or four number 1 pencils? And will there be any math on this test? I'm not good at math.'

    In Rick Detorie’s One Big Happy for the 3rd of February, 2016. The link will probably expire in early March.

    In Rick Detorie’s One Big Happy for the 3rd of February features Ruthie tossing off a confusing pile of numbers on the way to declaring herself bad at mathematics. It’s always the way.

    Breaking up a whole number like 4 into different sums of whole numbers is a mathematics problem also. Splitting up 4 into, say, ‘2 plus 1 plus 1’, is a ‘partition’ of the number. I’m not sure of important results that follow this sort of integer partition directly. But splitting up sets of things different ways runs through a lot of mathematics. Integer partitions are the ones you can do in elementary school.

    Percy Crosby’s Skippy for the 3rd of February — I believe it originally ran December 1928 — is a Roman numerals joke. The mathematical content may be low, but what the heck. It’s kind of timely. The Super Bowl, set for today, has been the most prominent use of Roman numerals we have anymore since the Star Trek movies stopped using them a quarter-century ago.

    Bill Amend’s FoxTrot for the 7th of February seems to be in agreement. And yes, I’m disappointed the Super Bowl is giving up on Roman numerals, much the way I’m disappointed they’re using a standardized and quite boring logo for each year. Part of the glory of past Super Bowls is seeing old graphic design eras preserved like fossils.

    Brian Gordon’s Fowl Language for the 5th of February shows a duck trying to explain incredibly huge numbers to his kid. It’s hard. You need to appreciate mathematics some to start appreciating real vastness. I’m not sure anyone can really have a feel for a number like 300 sextillion, the character’s estimate for the number of stars there are. You can make rationalizations for what numbers that big are like, but I suspect the mind shies back from staring directly at it.

    Infinity, and the many different sizes of infinity, might be easier to work with. One doesn’t need to imagine infinitely many things to work out the properties of infinitely large sets. You could do as well with a neatly drawn rectangle and some other, bigger, rectangles. But if you want to talk about the number 300,000,000,000,000,000,000,000 then you do want to think of something true about that number which isn’t also true about eight or about nine hundred million. But geology teaches us to ponder Deep Time. Astronomy trains us to imagine incredibly vast distances. Why not spend some time pondering huge numbers?

    And with all that said, I’d like to make one more call for any requests for my winter 2016 Mathematics A To Z glossary. There are quite a few attractive letters left unclaimed; a word or short term could be yours!

     
  • Joseph Nebus 5:00 pm on Thursday, 19 November, 2015 Permalink | Reply
    Tags: , lotteries, , , , wrestling   

    Reading the Comics, November 18, 2015: All Caught Up Edition 


    Yes, I feel a bit bad that I didn’t have anything posted yesterday. I’d had a nice every-other-day streak going for a couple weeks there. But I had honestly expected more mathematically themed comic strips, and there just weren’t enough in my box by the end of the 17th. So I didn’t have anything to schedule for a post the 18th. The 18th came through, though, and now I’ve got enough to talk about. And that before I get to reading today’s comics. So, please, enjoy.

    Scott Adams’s Dilbert Classics for the 16th of November (originally published the 21st of September, 1992) features Dilbert discovering Bell’s Theorem. Bell’s Theorem is an important piece of our understanding of quantum mechanics. It’s a theorem that excites people who first hear about it. It implies quantum mechanics can’t explain reality unless it can allow information to be transmitted between interacting particles faster than light. And quantum mechanics does explain reality. The thing is, and the thing that casual readers don’t understand, is that there’s no way to use this to send a signal. Imagine that I took two cards, one an ace and one an eight, seal them in envelopes, and gave them to astronauts. The astronauts each travel to ten light-years away from me in opposite directions. (They took extreme offense at something I said and didn’t like one another anyway.) Then one of them opens her envelope, finding that she’s got the eight. Then instantly, even though they’re twenty light-years apart, she knows the other astronaut has an ace in her envelope. But there is no way the astronauts can use this to send information to one another, which is what people want Bell’s Theorem to tell us. (My example is not legitimate quantum mechanics and do not try to use it to pass your thesis defense. It just shows why Bell’s Theorem does not give us a way to send information we care about faster than light.) The next day Dilbert’s Garbageman, the Smartest Man in the World, mentions Dilbert’s added something to Bell’s Theorem. It’s the same thing everybody figuring they can use quantum entanglement to communicate adds to the idea.

    Tom Thaves’ Frank and Ernest for the 16th of November riffs on the idea of a lottery as a “tax on people who are bad at math”. Longtime readers here know that I have mixed feelings about that, and not just because I’m wary of cliché. If the jackpot is high enough, you can reach the point where the expectation value of the prize is positive. That is, you would expect to make money if you played the game under the same conditions often enough. But that chance is still vanishingly small. Even playing a million times would not make it likely you would more earn money than you spent. I’m not dogmatic enough to say what your decision should be, at least if the prize is big enough. (And that’s not considering the value placed on the fun of playing. One may complain that it shouldn’t be any fun to buy a soon-to-be-worthless ticket. But many people do enjoy it and I can’t bring myself to say they’re all wrong about feeling enjoyment.)

    And it happens that on the 18th Brant Parker and Johnny Hart’s Wizard of Id Classics (originally run the 20th of November, 1965) did a lottery joke. That one is about a lottery one shouldn’t play, except that the King keeps track of who refuses to buy a ticket. I know when we’re in a genre.

    Peter Mann’s The Quixote Syndrome for the 16th of November explores something I had never known but that at least the web seems to think is true. Apparently in 1958 Samuel Beckett knew the 12-year-old André Roussimoff. People of my age cohort have any idea who that is when they hear Roussimoff became pro wrestling star André the Giant. And Beckett drove the kid to school. Mann — taking, I think, a break from his usual adaptations of classic literature — speculates on what they might have talked about. His guess: Beckett attempting to ease one of his fears through careful study and mathematical treatment. The problem is goofily funny. But the treatment is the sort of mathematics everyone understands needing and understands using.

    John Deering’s Strange Brew for the 17th of November tells a rounding up joke. Scott Hilburn’s The Argyle Sweater told it back in August. I suspect the joke is just in the air. Most jokes were formed between 1922 and 1978 anyway, and we’re just shuffling around the remains of that fruitful era.

    Tony Cochrane’s Agnes for the 18th of November tells a resisting-the-word-problem joke. I admit expecting better from Cochrane. But casting arithmetic problems into word problems is fraught with peril. It isn’t enough to avoid obsolete references. (If we accept trains as obsolete. I’m from the United States Northeast, where subways and even commuter trains are viable things.) The problem also has to ask something the problem-solver can imagine wanting to know. It may not matter whether the question asks how far apart two trains, two cars, or two airplanes are, if the student can’t see their distance as anything but trivia. We may need better practice in writing stories if we’re to write story problems.

     
    • ivasallay 7:09 pm on Thursday, 19 November, 2015 Permalink | Reply

      “One may complain that it shouldn’t be any fun to buy a soon-to-be-worthless ticket.” You may not want to tell people that, but I think it’s a very good point. My favorite, believe it or not, was the rounding up comic.

      Like

      • Joseph Nebus 4:18 am on Friday, 20 November, 2015 Permalink | Reply

        I certainly believe you about the rounding up comic. It’s one of those kinds of jokes that puts the punch line so close to the setup that you have to go back and notice where thing happened, and that’s reliably disorienting and fun.

        I understand the reasoning that a lottery ticket should be a completely irrational purchase and that one shouldn’t get pleasure from buying one. But I’m not sure I can draw a distinction between buying a ticket and spending one or two dollars on any other short-lived consumable item. We don’t regard it as inherently stupid that someone might, say, buy a pack of toy gun blasting caps and throw them on the ground to make a couple bangs. Making it a purchase of a chance of money somehow offends people who don’t share the thrill.

        Liked by 1 person

  • Joseph Nebus 3:00 pm on Sunday, 13 September, 2015 Permalink | Reply
    Tags: , , lotteries, ,   

    Reading the Comics, September 10, 2015: Back To School Edition 


    I assume that Comic Strip Master Command ordered many mathematically-themed comic strips to coincide with the United States school system getting back up to full. That or they knew I’d have a busy week. This is only the first part of comic strips that have appeared since Tuesday.

    Mel Henze’s Gentle Creatures for the 7th and the 8th of September use mathematical talk to fill out the technobabble. It’s a cute enough notion. These particular strips ran last year, and I talked about them then. The talk of a “Lagrangian model” interests me. It name-checks a real and important and interesting scientist who’s not Einstein or Stephen Hawking. But I’m still not aware of any “Lagrangian model” that would be relevant to starship operations.

    Jon Rosenberg’s Scenes from a Multiverse for the 7th of September speaks of a society of “powerful thaumaturgic diagrammers” who used Venn diagrams not wisely but too well. The diagrammers got into trouble when one made “a Venn diagram that showed the intersection of all the Venns and all the diagrams”. I imagine this not to be a rigorous description of what happened. But Venn diagrams match up well with many logic problems. And self-referential logic, logic statements that describe their own truth or falsity, is often problematic. So I would accept a story in which Venn diagrams about Venn diagrams leads to trouble. The motif of tying logic and mathematics into magic is an old one. I understand it. A clever mathematical argument often feels like magic, especially the surprising ones. To me, the magical theorems are those that prove a set of seemingly irrelevant lemmas. Then, with that stock in hand, the theorem goes on to the main point in a few wondrous lines. If you can do that, why not transmute lead, or accidentally retcon a society out of existence?

    Mark Anderson’s Andertoons for the 8th of September just delights me. Occasionally I feel a bit like Mark Anderson’s volunteer publicity department. A panel like this, though, makes me feel that he deserves it.

    Jeffrey Caulfield and Alexandre Rouillard’s Mustard and Boloney for the 8th of September is the first anthropomorphic-geometric-figures joke we’ve had here in a while.

    Mike Baldwin’s Cornered for the 9th of September is a drug testing joke, and a gambling joke. Both are subjects driven by probabilities. Any truly interesting system is always changing. If we want to know whether something affects the system we have to know whether we can make a change that’s bigger than the system does on its own. And this gives us drug-testing and other statistical inference tests. If we apply a drug, or some treatment, or whatever, how does the system change? Does it change enough, consistently, that it’s not plausible that the change just happened by chance? Or by some other influence?

    You might have noticed a controversy going around psychology journals. A fair number of experiments were re-run, by new experimenters following the original protocols as closely as possible. Quite a few of the reported results didn’t happen again, or happened in a weaker way. That’s produced some handwringing. No one thinks deliberate experimental fraud is that widespread in the field. There may be accidental fraud, people choosing data or analyses that heighten the effect they want to prove, or that pick out any effect. However, it may also simply be chance again. Psychology experiments tend to have a lower threshold of “this is sufficiently improbable that it indicates something is happening” than, say, physics has. Psychology has a harder time getting the raw data. A supercollider has enormous startup costs, but you can run the thing for as long as you like. And every electron is the same thing. A test of how sleep deprivation affects driving skills? That’s hard. No two sleepers or drivers are quite alike, even at different times of the day. There’s not an obvious cure. Independent replication of previously done experiments helps. That’s work that isn’t exciting — necessary as it is, it’s also repeating what others did — and it’s harder to get people to do it, or pay for it. But in the meantime it’s harder to be sure what interesting results to trust.

    Ruben Bolling’s Super-Fun-Pak Comix for the 9th of September is another Chaos Butterfly installment. I don’t want to get folks too excited for posts I technically haven’t written yet, but there is more Chaos Butterfly soon.

    Rick Stromoski’s Soup To Nutz for the 10th of September has Royboy guess the odds of winning a lottery are 50-50. Silly, yes, but only because we know that anyone is much more likely to lose a lottery than to win it. But then how do we know that?

    Since the rules of a lottery are laid out clearly we can reason about the probability of winning. We can calculate the number of possible outcomes of the game, and how many of them count as winning. Suppose each of those possible outcomes are equally likely. Then the probability of winning is the number of winning outcomes divided by the number of probable outcomes. Quite easy.

    — Of course, that’s exactly what Royboy did. There’s two possible outcomes, winning or losing. Lacking reason to think they aren’t equally likely he concluded a win and a loss were just as probable.

    We have to be careful what we mean by “an outcome”. What we probably mean for a drawn-numbers lottery is the number of ways the lottery numbers can be drawn. For a scratch-off card we mean the number of tickets that can be printed. But we’re still stuck with this idea of “equally likely” outcomes. I suspect we know what we mean by this, but trying to say what that is clearly, and without question-begging, is hard. And even this works only because we know the rules by which the lottery operates. Or we can look them up. If we didn’t know the details of the lottery’s workings, past the assumption that it has consistently followed rules, what could we do?

    Well, that’s what we have probability classes for, and particularly the field of Bayesian probability. This field tries to estimate the probabilities of things based on what actually happens. Suppose Royboy played the lottery fifty times and lost every time. That would smash the idea that his chances were 50-50, although that would not yet tell him what the chances really are.

     
    • ivasallay 5:33 pm on Tuesday, 15 September, 2015 Permalink | Reply

      Soup to Nutz could make a worthwhile classroom discussion.

      Like

      • Joseph Nebus 12:18 am on Friday, 18 September, 2015 Permalink | Reply

        Not just a discussion — you could almost hang a whole course in probability on this one! I had to restrain myself from writing forever about it and just publish already.

        Like

  • Joseph Nebus 8:08 pm on Saturday, 4 July, 2015 Permalink | Reply
    Tags: , , contests, lotteries, number sign, ,   

    Reading the Comics, July 4, 2015: Symbolic Curiosities Edition 


    Comic Strip Master Command was pretty kind to me this week, and didn’t overload me with too many comics when my computer problems were the most time-demanding. You’ve seen how bad that is by how long it’s taken me to get to answering people’s comments. But they have kept publishing mathematical comic strips, and so I’m ready for another review. This time around a couple of the strips talk about the symbols of mathematics, so that’s enough of a hook for my titling needs.

    Assured that his chances of winning a contest are worse than his chances of being struck by a meteor, Moose refuses to leave the house, because he's feeling lucky.

    Henry Scarpelli and Craig Boldman’s Archie for the 30th of June, 2015, although that’s a rerun.

    Henry Scarpelli and Craig Boldman’s Archie (June 30, rerun) is about living with long odds. People react to very improbable events in strange ways. Moose is being maybe more consistent than normal for folks in figuring that if he’s going to be lucky enough to win a contest then he’s just lucky enough to be hit by a meteor too. (It feels like a lottery to me, although I guess Moose has to be too young to enter a lottery.) And I’m amused by the logic of someone’s behavior becoming funny because it is logically consistent.

    Dave Blazek’s Loose Parts (June 30) shows the offices of Math, Inc. (I believe this is actually the Chicago division, not the main headquarters.) This is also a strip I could easily see happening in the real world. It’s not different in principle from clocks which put some arithmetic expression up for the hours, or those calendars which make a math puzzle out of the date.

    (More …)

     
    • ivasallay 6:11 am on Monday, 6 July, 2015 Permalink | Reply

      Location, location, location. I liked that one the best’

      Like

    • elkement 3:10 pm on Monday, 6 July, 2015 Permalink | Reply

      I like the one about the # sign. I recently learned that the dagger (which I only associated with the transpose of a matrix of operators in quantum mechanics) was used in in the old days to mark repetitions in a literary text.

      Like

      • Joseph Nebus 5:23 pm on Tuesday, 7 July, 2015 Permalink | Reply

        Oh, that’s interesting. I hadn’t thought about where the dagger came from, beyond the set of weird things people sometimes use when they need multiple footnotes on a page and for some reason can’t use superscripted numbers.

        Liked by 1 person

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: