A Leap Day 2016 Mathematics A To Z: Jacobian

I don’t believe I got any requests for a mathematics term starting ‘J’. I’m as surprised as you. Well, maybe less surprised. I’ve looked at the alphabetical index for Wolfram MathWorld and noticed its relative poverty for ‘J’. It’s not as bad as ‘X’ or ‘Y’, though. But it gives me room to pick a word of my own.


The Jacobian is named for Carl Gustav Jacob Jacobi, who lived in the first half of the 19th century. He’s renowned for work in mechanics, the study of mathematically modeling physics. He’s also renowned for matrices, rectangular grids of numbers which represent problems. There’s more, of course, but those are the points that bring me to the Jacobian I mean to talk about. There are other things named for Jacobi, including other things named “Jacobian”. But I mean to limit the focus to two, related, things.

I discussed mappings some while describing homomorphisms and isomorphisms. A mapping’s a relationship matching things in one set, a domain, to things in a set, the range. The domain and the range can be anything at all. They can even be the same thing, if you like.

A very common domain is … space. Like, the thing you move around in. It’s a region full of points that are all some distance and some direction from one another. There’s almost always assumed to be multiple directions possible. We often call this “Euclidean space”. It’s the space that works like we expect for normal geometry. We might start with a two- or three-dimensional space. But it’s often convenient, especially for physics problems, to work with more dimensions. Four-dimensions. Six-dimensions. Incredibly huge numbers of dimensions. Honest, this often helps. It’s just harder to sketch out.

So we might for a problem need, say, 12-dimensional space. We can describe a point in that with an ordered set of twelve coordinates. Each describes how far you are from some standard reference point known as The Origin. If it doesn’t matter how many dimensions we’re working with, we call it an N-dimensional space. Or we use another letter if N is committed to something or other.

This is our stage. We are going to be interested in some N-dimensional Euclidean space. Let’s pretend N is 2; then our stage looks like the screen you’re reading now. We don’t need to pretend N is larger yet.

Our player is a mapping. It matches things in our N-dimensional space back to the same N-dimensional space. For example, maybe we have a mapping that takes the point with coordinates (3, 1) to the point (-3, -1). And it takes the point with coordinates (5.5, -2) to the point (-5.5, 2). And it takes the point with coordinates (-6, -π) to the point (6, π). You get the pattern. If we start from the point with coordinates (x, y) for some real numbers x and y, then the mapping gives us the point with coordinates (-x, -y).

One more step and then the play begins. Let’s not just think about a single point. Think about a whole region. If we look at the mapping of every point in that whole region, we get out … probably, some new region. We call this the “image” of the original region. With the mapping from the paragraph above, it’s easy to say what the image of a region is. It’ll look like the reflection in a corner mirror of the original region.

What if the mapping’s more complicated? What if we had a mapping that described how something was reflected in a cylindrical mirror? Or a mapping that describes how the points would move if they represent points of water flowing around a drain? — And that last explains why Jacobians appear in mathematical physics.

Many physics problems can be understood as describing how points that describe the system move in time. The dynamics of a system can be understood by how moving in time changes a region of starting conditions. A system might keep a region pretty much unchanged. Maybe it makes the region move, but it doesn’t change size or shape much. Or a system might change the region impressively. It might keep the area about the same, but stretch it out and fold it back, the way one might knead cookie dough.

The Jacobian, the one I’m interested in here, is a way of measuring these changes. The Jacobian matrix describes, for each point in the original domain, how a tiny change in one coordinate causes a change in the mapping’s coordinates. So if we have a mapping from an N-dimensional space to an N-dimensional space, there are going to be N times N values at work. Each one represents a different piece. How much does a tiny change in the first coordinate of the original point change the first coordinate of the mapping of the point? How much does a tiny change in the first coordinate of the original point change the second coordinate of the mapping of the the point? How much does a tiny change in the first coordinate of the original point change the third coordinate of the mapping of the point? … how much does a tiny change in the second coordinate of the original point change the first coordinate of the mapping of the point? And on and on and now you know why mathematics majors are trained on Jacobians with two-by-two and three-by-three matrices. We do maybe a couple four-by-four matrices to remind us that we are born to suffer. We never actually work out bigger matrices. Life is just too short.

(I’ve been talking, by the way, about the mapping of an N-dimensional space to an N-dimensional space. This is because we’re about to get to something that requires it. But we can write a matrix like this for a mapping of an N-dimensional space to an M-dimensional space, a different-sized space. It has uses. Let’s not worry about that.)

If you have a square matrix, one that has as many rows as columns, then you can calculate something named the determinant. This involves a lot of work. It takes even more work the bigger the matrix is. This is why mathematics majors learn to calculate determinants on two-by-two and three-by-three matrices. We do a couple four-by-four matrices and maybe one five-by-five to again remind us about suffering.

Anyway, by calculating the determinant of a Jacobian matrix, we get the Jacobian determinant. Finally we have something simple. The Jacobian determinant says how the area of a region changes in the mapping. Suppose the Jacobian determinant at a point is 2. Then a small region containing that point has an image with twice the original area. Suppose the Jacobian determinant is 0.8. Then a small region containing that point has an image with area 0.8 times the original area. Suppose the Jacobian determinant is -1. Then —

Well, what would you imagine?

If the Jacobian determinant is -1, then a small region around that point gets mapped to something with the same area. What changes is called the handedness. The mapping doesn’t just stretch or squash the region, but it also flips it along at least one dimension. The Jacobian determinant can tell us that.

So the Jacobian matrix, and the Jacobian determinant, are ways to describe how mappings change areas. Mathematicians will often call either of them just “the Jacobian”. We trust context to make clear what we mean. Either one is a way of describing how mappings change space: how they expand or contract, how they rotate, how they reflect spaces. Some fields of mathematics, including a surprising amount of the study of physics, are about studying how space changes.

A Leap Day 2016 Mathematics A To Z: Isomorphism

Gillian B made the request that’s today’s A To Z word. I’d said it would be challenging. Many have been, so far. But I set up some of the work with “homomorphism” last time. As with “homomorphism” it’s a word that appears in several fields and about different kinds of mathematical structure. As with homomorphism, I’ll try describing what it is for groups. They seem least challenging to the imagination.


An isomorphism is a kind of homomorphism. And a homomorphism is a kind of thing we do with groups. A group is a mathematical construct made up of two things. One is a set of things. The other is an operation, like addition, where we take two of the things and get one of the things in the set. I think that’s as far as we need to go in this chain of defining things.

A homomorphism is a mapping, or if you like the word better, a function. The homomorphism matches everything in a group to the things in a group. It might be the same group; it might be a different group. What makes it a homomorphism is that it preserves addition.

I gave an example last time, with groups I called G and H. G had as its set the whole numbers 0 through 3 and as operation addition modulo 4. H had as its set the whole numbers 0 through 7 and as operation addition modulo 8. And I defined a homomorphism φ which took a number in G and matched it the number in H which was twice that. Then for any a and b which were in G’s set, φ(a + b) was equal to φ(a) + φ(b).

We can have all kinds of homomorphisms. For example, imagine my new φ1. It takes whatever you start with in G and maps it to the 0 inside H. φ1(1) = 0, φ1(2) = 0, φ1(3) = 0, φ1(0) = 0. It’s a legitimate homomorphism. Seems like it’s wasting a lot of what’s in H, though.

An isomorphism doesn’t waste anything that’s in H. It’s a homomorphism in which everything in G’s set matches to exactly one thing in H’s, and vice-versa. That is, it’s both a homomorphism and a bijection, to use one of the terms from the Summer 2015 A To Z. The key to remembering this is the “iso” prefix. It comes from the Greek “isos”, meaning “equal”. You can often understand an isomorphism from group G to group H showing how they’re the same thing. They might be represented differently, but they’re equivalent in the lights you use.

I can’t make an isomorphism between the G and the H I started with. Their sets are different sizes. There’s no matching everything in H’s set to everything in G’s set without some duplication. But we can make other examples.

For instance, let me start with a new group G. It’s got as its set the positive real numbers. And it has as its operation ordinary multiplication, the kind you always do. And I want a new group H. It’s got as its set all the real numbers, positive and negative. It has as its operation ordinary addition, the kind you always do.

For an isomorphism φ, take the number x that’s in G’s set. Match it to the number that’s the logarithm of x, found in H’s set. This is a one-to-one pairing: if the logarithm of x equals the logarithm of y, then x has to equal y. And it covers everything: all the positive real numbers have a logarithm, somewhere in the positive or negative real numbers.

And this is a homomorphism. Take any x and y that are in G’s set. Their “addition”, the group operation, is to multiply them together. So “x + y”, in G, gives us the number xy. (I know, I know. But trust me.) φ(x + y) is equal to log(xy), which equals log(x) + log(y), which is the same number as φ(x) + φ(y). There’s a way to see the postive real numbers being multiplied together as equivalent to all the real numbers being added together.

You might figure that the positive real numbers and all the real numbers aren’t very different-looking things. Perhaps so. Here’s another example I like, drawn from Wikipedia’s entry on Isomorphism. It has as sets things that don’t seem to have anything to do with one another.

Let me have another brand-new group G. It has as its set the whole numbers 0, 1, 2, 3, 4, and 5. Its operation is addition modulo 6. So 2 + 2 is 4, while 2 + 3 is 5, and 2 + 4 is 0, and 2 + 5 is 1, and so on. You get the pattern, I hope.

The brand-new group H, now, that has a more complicated-looking set. Its set is ordered pairs of whole numbers, which I’ll represent as (a, b). Here ‘a’ may be either 0 or 1. ‘b’ may be 0, 1, or 2. To describe its addition rule, let me say we have the elements (a, b) and (c, d). Find their sum first by adding together a and c, modulo 2. So 0 + 0 is 0, 1 + 0 is 1, 0 + 1 is 1, and 1 + 1 is 0. That result is the first number in the pair. The second number we find by adding together b and d, modulo 3. So 1 + 0 is 1, and 1 + 1 is 2, and 1 + 2 is 0, and so on.

So, for example, (0, 1) plus (1, 1) will be (1, 2). But (0, 1) plus (1, 2) will be (1, 0). (1, 2) plus (1, 0) will be (0, 2). (1, 2) plus (1, 2) will be (0, 1). And so on.

The isomorphism matches up things in G to things in H this way:

In G φ(G), in H
0 (0, 0)
1 (1, 1)
2 (0, 2)
3 (1, 0)
4 (0, 1)
5 (1, 2)

I recommend playing with this a while. Pick any pair of numbers x and y that you like from G. And check their matching ordered pairs φ(x) and φ(y) in H. φ(x + y) is the same thing as φ(x) + φ(y) even though the things in G’s set don’t look anything like the things in H’s.

Isomorphisms exist for other structures. The idea extends the way homomorphisms do. A ring, for example, has two operations which we think of as addition and multiplication. An isomorphism matches two rings in ways that preserve the addition and multiplication, and which match everything in the first ring’s set to everything in the second ring’s set, one-to-one. The idea of the isomorphism is that two different things can be paired up so that they look, and work, remarkably like one another.

One of the common uses of isomorphisms is describing the evolution of systems. We often like to look at how some physical system develops from different starting conditions. If you make a little variation in how things start, does this produce a small change in how it develops, or does it produce a big change? How big? And the description of how time changes the system is, often, an isomorphism.

Isomorphisms also appear when we study the structures of groups. They turn up naturally when we look at things called “normal subgroups”. The name alone gives you a good idea what a “subgroup” is. “Normal”, well, that’ll be another essay.

A Leap Day 2016 Mathematics A To Z: Homomorphism

I’m not sure how, but many of my Mathematics A To Z essays seem to circle around algebra. I mean abstract algebra, not the kind that involves petty concerns like ‘x’ and ‘y’. In abstract algebra we worry about letters like ‘g’ and ‘h’. For special purposes we might even have ‘e’. Maybe it’s that the subject has a lot of familiar-looking words. For today’s term, I’m doing an algebra term, and one that wasn’t requested. But it’ll make my life a little easier when I get to a word that was requested.


Also, I lied when I said this was an abstract algebra word. At least I was imprecise. The word appears in a fairly wide swath of mathematics. But abstract algebra is where most mathematics majors first encounter it. And the other uses hearken back to this. If you understand what an algebraist means by “homomorphism” then you understand the essence of what someone else means by it.

One of the things mathematicians study a lot is mapping. This is matching the things in one set to things in another set. Most often we want this to be done by some easy-to-understand rule. Why? Well, we often want to understand how one group of things relates to another group. So we set up maps between them. These describe how to match the things in one set to the things in another set. You may think this sounds like it’s just a function. You’re right. I suppose the name “mapping” carries connotations of transforming things into other things that a “function” might not have. And “functions”, I think, suggest we’re working with numbers. “Mappings” sound more abstract, at least to my ear. But it’s just a difference in dialect, not substance.

A homomorphism is a mapping that obeys a couple of rules. What they are depends on the kind of things the homomorphism maps between. I want a simple example, so I’m going to use groups.

A group is made up of two things. One is a set, a collection of elements. For example, take the whole numbers 0, 1, 2, and 3. That’s a good enough set. The second thing in the group is an operation, something to work like addition. For example, we might use “addition modulo 4”. In this scheme, addition (and subtraction) work like they do with ordinary whole numbers. But if the result would be more than 3, we subtract 4 from the result, until we get something that’s 0, 1, 2, or 3. Similarly if the result would be less than 0, we add 4, until we get something that’s 0, 1, 2, or 3. The result is an addition table that looks like this:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

So let me call G the group that has as its elements 0, 1, 2, and 3, and that has addition be this modulo-4 addition.

Now I want another group. I’m going to name it H, because the alternative is calling it G2 and subscripts are tedious to put on web pages. H will have a set with the elements 0, 1, 2, 3, 4, 5, 6, and 7. Its addition will be modulo-8 addition, which works the way you might have guessed after looking at the above. But here’s the addition table:

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 2 3 4 5 6 7 0
2 2 3 4 5 6 7 0 1
3 3 4 5 6 7 0 1 2
4 4 5 6 7 0 1 2 3
5 5 6 7 0 1 2 3 4
6 6 7 0 1 2 3 4 5
7 7 0 1 2 3 4 5 6

G and H look a fair bit like each other. Their sets are made up of familiar numbers, anyway. And the addition rules look a lot like what we’re used to.

We can imagine mapping from one to the other pretty easily. At least it’s easy to imagine mapping from G to H. Just match a number in G’s set — say, ‘1’ — to a number in H’s set — say, ‘2’. Easy enough. We’ll do something just as daring in matching ‘0’ to ‘1’, and we’ll map ‘2’ to ‘3’. And ‘3’? Let’s match that to ‘4’. Let me call that mapping f.

But f is not a homomorphism. What makes a homomorphism an interesting map is that the group’s original addition rule carries through. This is easier to show than to explain.

In the original group G, what’s 1 + 2? … 3. That’s easy to work out. But in H, what’s f(1) + f(2)? f(1) is 2, and f(2) is 3. So f(1) + f(2) is 5. But what is f(3)? We set that to be 4. So in this mapping, f(1) + f(2) is not equal to f(3). And so f is not a homomorphism.

Could anything be? After all, G and H have different sets, sets that aren’t even the same size. And they have different addition rules, even if the addition rules look like they should be related. Why should we expect it’s possible to match the things in group G to the things in group H?

Let me show you how they could be. I’m going to define a mapping φ. The letter’s often used for homomorphisms. φ matches things in G’s set to things in H’s set. φ(0) I choose to be 0. φ(1) I choose to be 2. φ(2) I choose to be 4. φ(3) I choose to be 6.

And now look at this … φ(1) + φ(2) is equal to 2 + 4, which is 6 … which is φ(3). Was I lucky? Try some more. φ(2) + φ(2) is 4 + 4, which in the group H is 0. In the group G, 2 + 2 is 0, and φ(0) is … 0. We’re all right so far.

One more. φ(3) + φ(3) is 6 + 6, which in group H is 4. In group G, 3 + 3 is 2. φ(2) is 4.

If you want to test the other thirteen possibilities go ahead. If you want to argue there’s actually only seven other possibilities do that, too. What makes φ a homomorphism is that if x and y are things from the set of G, then φ(x) + φ(y) equals φ(x + y). φ(x) + φ(y) uses the addition rule for group H. φ(x + y) uses the addition rule for group G. Some mappings keep the addition of things from breaking. We call this “preserving” addition.

This particular example is called a group homomorphism. That’s because it’s a homomorphism that starts with one group and ends with a group. There are other kinds of homomorphism. For example, a ring homomorphism is a homomorphism that maps a ring to a ring. A ring is like a group, but it has two operations. One works like addition and the other works like multiplication. A ring homomorphism preserves both the addition and the multiplication simultaneously.

And there are homomorphisms for other structures. What makes them homomorphisms is that they preserve whatever the important operations on the strutures are. That’s typically what you might expect when you are introduced to a homomorphism, whatever the field.

%d bloggers like this: