How to crumple paper

I intend to post something inspired by the comics. I’m not ready just yet. Until then, though, I’d like to share a neat article published in Nature. It’s about paper.

In particular, it’s about how paper crumples. When paper is crumpled, and flattened out again, it looks different. When it’s crumpled and flattened out again, it looks even more different. But you reach a point where crumping and flattening the paper stops making it look all that different. A model for the fragmentation kinetics of crumpled thin sheets, by Jovana Andrejevic, Lisa M Lee, Shmuel M Rubinstein, and Chris H Rycroft, tries to explain the process.

The skeptical reader might say this is obvious. They’re invited to write a simulation that takes a set of fold lines and predicts which sides of the paper are angled out and which are angled in. The skeptical reader may also ask who cares about paper. It’s paper because many mathematics problems start from the kinds of things one sets one’s hands on. Anyone who’s seen a crack growing across their sidewalk, though — or across their countertop, or their grandfather’s desk — realizes there are things we don’t understand about how things break. And why they break that way. And, more generally, there’s a lot we don’t understand about how complicated “natural” shapes form. The big interest in this is how long molecules crumple up. The shapes of these govern how they behave, and it’d be nice to understand that more.

The New York Times has an article explaining the paper, with more of the story of what the research is and why it’s important. This if you don’t feel comfortable reading formulas about compaction ratios or skipping over formulas to get to text again.

Reading the Comics, November 4, 2017: Slow, Small Week Edition

It was a slow week for mathematically-themed comic strips. What I have are meager examples. Small topics to discuss. The end of the week didn’t have anything even under loose standards of being on-topic. Which is fine, since I lost an afternoon of prep time to thunderstorms that rolled through town and knocked out power for hours. Who saw that coming? … If I had, I’d have written more the day before.

Mac King and Bill King’s Magic in a Minute for the 29th of October looks like a word problem. Well, it is a word problem. It looks like a problem about extrapolating a thing (price) from another thing (quantity). Well, it is an extrapolation problem. The fun is in figuring out what quantities are relevant. Now I’ve spoiled the puzzle by explaining it all so.

Olivia Walch’s Imogen Quest for the 30th doesn’t say it’s about a mathematics textbook. But it’s got to be. What other kind of textbook will have at least 28 questions in a section and only give answers to the odd-numbered problems in back? You never see that in your social studies text.

Eric the Circle for the 30th, this one by Dennill, tests how slow a week this was. I guess there’s a geometry joke in Jane Austen? I’ll trust my literate readers to tell me. My doing the world’s most casual search suggests there’s no mention of triangles in Pride and Prejudice. The previous might be the most ridiculously mathematics-nerdy thing I have written in a long while.

Tony Murphy’s It’s All About You for the 31st does some advanced-mathematics name-dropping. In so doing, it’s earned a spot taped to the door of two people in any mathematics department with more than 24 professors across the country. Or will, when they hear there was a gap unification theory joke in the comics. I’m not sure whether Murphy was thinking of anything particular in naming the subject “gap unification theory”. It sounds like a field of mathematical study. But as far as I can tell there’s just one (1) paper written that even says “gap unification theory”. It’s in partition theory. Partition theory is a rich and developed field, which seems surprising considering it’s about breaking up sets of the counting numbers into smaller sets. It seems like a time-waster game. But the game sneaks into everything, so the field turns out to be important. Gap unification, in the paper I can find, is about studying the gaps between these smaller sets.

There’s also a “band-gap unification” problem. I could accept this name being shortened to “gap unification” by people who have to say its name a lot. It’s about the physics of semiconductors, or the chemistry of semiconductors, as you like. The physics or chemistry of them is governed by the energies that electrons can have. Some of these energies are precise levels. Some of these energies are bands, continuums of possible values. When will bands converge? When will they not? Ask a materials science person. Going to say that’s not mathematics? Don’t go looking at the papers.

Whether partition theory or materials since it seems like a weird topic. Maybe Murphy just put together words that sounded mathematical. Maybe he has a friend in the field.

Bill Amend’s FoxTrot Classics for the 1st of November is aiming to be taped up to the high school teacher’s door. It’s easy to show how the square root of two is irrational. Takes a bit longer to show the square root of three is. Turns out all the counting numbers are either perfect squares — 1, 4, 9, 16, and so on — or else have irrational square roots. There’s no whole number with a square root of, like, something-and-three-quarters or something-and-85-117ths. You can show that, easily if tediously, for any particular whole number. What’s it look like to show for all the whole numbers that aren’t perfect squares already? (This strip originally ran the 8th of November, 2006.)

Guy Gilchrist’s Nancy for the 1st does an alphabet soup joke, so like I said, it’s been a slow week around here.

John Zakour and Scott Roberts’s Maria’s Day for the 2nd is really just mathematics being declared hated, so like I said, it’s been a slow week around here.