My All 2020 Mathematics A to Z: Zero Divisor

Jacob Siehler had several suggestions for this last of the A-to-Z essays for 2020. Zorn’s Lemma was an obvious choice. It’s got an important place in set theory, it’s got some neat and weird implications. It’s got a great name. The zero divisor is one of those technical things mathematics majors have deal with. It never gets any pop-mathematics attention. I picked the less-travelled road and found a delightful scenic spot.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Zero Divisor.

3 times 4 is 12. That’s a clear, unambiguous, and easily-agreed-upon arithmetic statement. The thing to wonder is what kind of mathematics it takes to mess that up. The answer is algebra. Not the high school kind, with x’s and quadratic formulas and all. The college kind, with group theory and rings.

A ring is a mathematical construct that lets you do a bit of arithmetic. Something that looks like arithmetic, anyway. It has a set of elements.  (An element is just a thing in a set.  We say “element” because it feels weird to call it “thing” all the time.) The ring has an addition operation. The ring has a multiplication operation. Addition has an identity element, something you can add to any element without changing the original element. We can call that ‘0’. The integers, or to use the lingo Z , are a ring (among other things).

Among the rings you learn, after the integers, is the integers modulo … something. This can be modulo any counting number. The integers modulo 10, for example, we write as Z_{10} for short. There are different ways to think of what this means. The one convenient for this essay is that it’s the integers 0, 1, 2, up through 9. And that the result of any calculation is “how much more than a whole multiple of 10 this calculation would otherwise be”. So then 3 times 4 is now 2. 3 times 5 is 5; 3 times 6 is 8. 3 times 7 is 1, and doesn’t that seem peculiar? That’s part of how modulo arithmetic warns us that groups and rings can be quite strange things.

We can do modulo arithmetic with any of the counting numbers. Look, for example, at Z_{5} instead. In the integers modulo 5, 3 times 4 is … 2. This doesn’t seem to get us anything new. How about Z_{8} ? In this, 3 times 4 is 4. That’s interesting. It doesn’t make 3 the multiplicative identity for this ring. 3 times 3 is 1, for example. But you’d never see something like that for regular arithmetic.

How about Z_{12} ? Now we have 3 times 4 equalling 0. And that’s a dramatic break from how regular numbers work. One thing we know about regular numbers is that if a times b is 0, then either a is 0, or b is zero, or they’re both 0. We rely on this so much in high school algebra. It’s what lets us pick out roots of polynomials. Now? Now we can’t count on that.

When this does happen, when one thing times another equals zero, we have “zero divisors”. These are anything in your ring that can multiply by something else to give 0. Is, zero, the additive identity, always a zero divisor. … That depends on what the textbook you first learned algebra from said. To avoid ambiguity, you can write a “nonzero zero divisor”. This clarifies your intentions and slows down your copy editing every time you read “nonzero zero”. Or call it a “nontrivial zero divisor” or “proper zero divisor” instead. My preference is to accept 0 as always being a zero divisor. We can disagree on this. What of zero divisors other than zero?

Your ring might or might not have them. It depends on the ring. The ring of integers Z , for example, doesn’t have any zero divisors except for 0. The ring of integers modulo 12 Z_{12} , though? Anything that isn’t relatively prime to 12 is a zero divisor. So, 2, 3, 6, 8, 9, and 10 are zero divisors here. The ring of integers modulo 13 Z_{13} ? That doesn’t have any zero divisors, other than zero itself. In fact any ring of integers modulo a prime number, Z_{p} , lacks zero divisors besides 0.

Focusing too much on integers modulo something makes zero divisors sound like some curious shadow of prime numbers. There are some similarities. Whether a number is prime depends on your multiplication rule and what set of things it’s in. Being a zero divisor in one ring doesn’t directly relate to whether something’s a zero divisor in any other. Knowing what the zero divisors are tells you something about the structure of the ring.

It’s hard to resist focusing on integers-modulo-something when learning rings. They work very much like regular arithmetic does. Even the strange thing about them, that every result is from a finite set of digits, isn’t too alien. We do something quite like it when we observe that three hours after 10:00 is 1:00. But many sets of elements can create rings. Square matrixes are the obvious extension. Matrixes are grids of elements, each of which … well, they’re most often going to be numbers. Maybe integers, or real numbers, or complex numbers. They can be more abstract things, like rotations or whatnot, but they’re hard to typeset. It’s easy to find zero divisors in matrixes of numbers. Imagine, like, a matrix that’s all zeroes except for one element, somewhere. There are a lot of matrices which, multiplied by that, will be a zero matrix, one with nothing but zeroes in it. Another common kind of ring is the polynomials. For these you need some constraint like the polynomial coefficients being integers-modulo-something. You can make that work.

In 1988 Istvan Beck tried to establish a link between graph theory and ring theory. We now have a usable standard definition of one. If R is any ring, then \Gamma(R) is the zero-divisor graph of R . (I know some of you think R is the real numbers. No; that’s a bold-faced \mathbb{R} instead. Unless that’s too much bother to typeset.) You make the graph by putting in a vertex for the elements in R . You connect two vertices a and b if the product of the corresponding elements is zero. That is, if they’re zero divisors for one other. (In Beck’s original form, this included all the elements. In modern use, we don’t bother including the elements that are not zero divisors.)

Drawing this graph \Gamma(R) makes tools from graph theory available to study rings. We can measure things like the distance between elements, or what paths from one vertex to another exist. What cycles — paths that start and end at the same vertex — exist, and how large they are. Whether the graphs are bipartite. A bipartite graph is one where you can divide the vertices into two sets, and every edge connects one thing in the first set with one thing in the second. What the chromatic number — the minimum number of colors it takes to make sure no two adjacent vertices have the same color — is. What shape does the graph have?

It’s easy to think that zero divisors are just a thing which emerges from a ring. The graph theory connection tells us otherwise. You can make a potential zero divisor graph and ask whether any ring could fit that. And, from that, what we can know about a ring from its zero divisors. Mathematicians are drawn as if by an occult hand to things that let you answer questions about a thing from its “shape”.

And this lets me complete a cycle in this year’s A-to-Z, to my delight. There is an important question in topology which group theory could answer. It’s a generalization of the zero-divisors conjecture, a hypothesis about what fits in a ring based on certain types of groups. This hypothesis — actually, these hypotheses. There are a bunch of similar questions about invariants called the L2-Betti numbers can be. These we call the Atiyah Conjecture. This because of work Michael Atiyah did in the cohomology of manifolds starting in the 1970s. It’s work, I admit, I don’t understand well enough to summarize, and hope you’ll forgive me for that. I’m still amazed that one can get to cutting-edge mathematics research this. It seems, at its introduction, to be only a subversion of how we find x for which (x - 2)(x + 1) = 0 .

And this, I am amazed to say, completes the All 2020 A-to-Z project. All of this year’s essays should be gathered at this link. In the next couple days I plan t check that they actually are. All the essays from every A-to-Z series, going back to 2015, should be at this link. I plan to soon have an essay about what I learned in doing the A-to-Z this year. And then we can look to 2021 and hope that works out all right. Thank you for reading.

My All 2020 Mathematics A to Z: K-Theory

I should have gone with Vayuputrii’s proposal that I talk about the Kronecker Delta. But both Jacob Siehler and Mr Wu proposed K-Theory as a topic. It’s a big and an important one. That was compelling. It’s also a challenging one. This essay will not teach you K-Theory, or even get you very far in an introduction. It may at least give some idea of what the field is about.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.


This is a difficult topic to discuss. It’s an important theory. It’s an abstract one. The concrete examples are either too common to look interesting or are already deep into things like “tangent bundles of Sn-1”. There are people who find tangent bundles quite familiar concepts. My blog will not be read by a thousand of them this month. Those who are familiar with the legends grown around Alexander Grothendieck will nod on hearing he was a key person in the field. Grothendieck was of great genius, and also spectacular indifference to practical mathematics. Allegedly he once, pressed to apply something to a particular prime number for an example, proposed 57, which is not prime. (One does not need to be a genius to make a mistake like that. If I proposed 447 or 449 as prime numbers, how long would you need to notice I was wrong?)

K-Theory predates Grothendieck. Now that we know it’s a coherent mathematical idea we can find elements leading to it going back to the 19th century. One important theorem has Bernhard Riemann’s name attached. Henri Poincaré contributed early work too. Grothendieck did much to give the field a particular identity. Also a name, the K coming from the German Klasse. Grothendieck pioneered what we now call Algebraic K-Theory, working on the topic as a field of abstract algebra. There is also a Topological K-Theory, early work on which we thank Michael Atiyah and Friedrick Hirzebruch for. Topology is, popularly, thought of as the mathematics of flexible shapes. It is, but we get there from thinking about relationships between sets, and these are the topologies of K-Theory. We understand these now as different ways of understandings structures.

Still, one text I found described (topological) K-Theory as “the first generalized cohomology theory to be studied thoroughly”. I remember how much handwaving I had to do to explain what a cohomology is. The subject looks intimidating because of the depth of technical terms. Every field is deep in technical terms, though. These look more rarefied because we haven’t talked much, or deeply, into the right kinds of algebra and topology.

You find at the center of K-Theory either “coherent sheaves” or “vector bundles”. Which alternative depends on whether you prefer Algebraic or Topological K-Theory. Both alternatives are ways to encode information about the space around a shape. Let me talk about vector bundles because I find that easier to describe. Take a shape, anything you like. A closed ribbon. A torus. A Möbius strip. Draw a curve on it. Every point on that curve has a tangent plane, the plane that just touches your original shape, and that’s guaranteed to touch your curve at one point. What are the directions you can go in that plane? That collection of directions is a fiber bundle — a tangent bundle — at that point. (As ever, do not use this at your thesis defense for algebraic topology.)

Now: what are all the tangent bundles for all the points along that curve? Does their relationship tell you anything about the original curve? The question is leading. If their relationship told us nothing, this would not be a subject anyone studies. If you pick a point on the curve and look at its tangent bundle, and you move that point some, how does the tangent bundle change?

If we start with the right sorts of topological spaces, then we can get some interesting sets of bundles. What makes them interesting is that we can form them into a ring. A ring means that we have a set of things, and an operation like addition, and an operation like multiplication. That is, the collection of things works somewhat like the integers do. This is a comfortable familiar behavior after pondering too much abstraction.

Why create such a thing? The usual reasons. Often it turns out calculating something is easier on the associated ring than it is on the original space. What are we looking to calculate? Typically, we’re looking for invariants. Things that are true about the original shape whatever ways it might be rotated or stretched or twisted around. Invariants can be things as basic as “the number of holes through the solid object”. Or they can be as ethereal as “the total energy in a physics problem”. Unfortunately if we’re looking at invariants that familiar, K-Theory is probably too much overhead for the problem. I confess to feeling overwhelmed by trying to learn enough to say what it is for.

There are some big things which it seems well-suited to do. K-Theory describes, in its way, how the structure of a set of items affects the functions it can have. This links it to modern physics. The great attention-drawing topics of 20th century physics were quantum mechanics and relativity. They still are. The great discovery of 20th century physics has been learning how much of it is geometry. How the shape of space affects what physics can be. (Relativity is the accessible reflection of this.)

And so K-Theory comes to our help in string theory. String theory exists in that grand unification where mathematics and physics and philosophy merge into one. I don’t toss philosophy into this as an insult to philosophers or to string theoreticians. Right now it is very hard to think of ways to test whether a particular string theory model is true. We instead ponder what kinds of string theory could be true, and how we might someday tell whether they are. When we ask what things could possibly be true, and how to tell, we are working for the philosophy department.

My reading tells me that K-Theory has been useful in condensed matter physics. That is, when you have a lot of particles and they interact strongly. When they act like liquids or solids. I can’t speak from experience, either on the mathematics or the physics side.

I can talk about an interesting mathematical application. It’s described in detail in section 2.3 of Allen Hatcher’s text Vector Bundles and K-Theory, here. It comes about from consideration of the Hopf invariant, named for Heinz Hopf for what I trust are good reasons. It also comes from consideration of homomorphisms. A homomorphism is a matching between two sets of things that preserves their structure. This has a precise definition, but I can make it casual. If you have noticed that, every (American, hourlong) late-night chat show is basically the same? The host at his desk, the jovial band leader, the monologue, the show rundown? Two guests and a band? (At least in normal times.) Then you have noticed the homomorphism between these shows. A mathematical homomorphism is more about preserving the products of multiplication. Or it preserves the existence of a thing called the kernel. That is, you can match up elements and how the elements interact.

What’s important is Adams’ Theorem of the Hopf Invariant. I’ll write this out (quoting Hatcher) to give some taste of K-Theory:

The following statements are true only for n = 1, 2, 4, and 8:
a. R^n is a division algebra.
b. S^{n - 1} is parallelizable, ie, there exist n – 1 tangent vector fields to S^{n - 1} which are linearly independent at each point, or in other words, the tangent bundle to S^{n - 1} is trivial.

This is, I promise, low on jargon. “Division algebra” is familiar to anyone who did well in abstract algebra. It means a ring where every element, except for zero, has a multiplicative inverse. That is, division exists. “Linearly independent” is also a familiar term, to the mathematician. Almost every subject in mathematics has a concept of “linearly independent”. The exact definition varies but it amounts to the set of things having neither redundant nor missing elements.

The proof from there sprawls out over a bunch of ideas. Many of them I don’t know. Some of them are simple. The conditions on the Hopf invariant all that S^{n - 1} stuff eventually turns into finding values of n for for which 2^n divides 3^n - 1 . There are only three values of ‘n’ that do that. For example.

What all that tells us is that if you want to do something like division on ordered sets of real numbers you have only a few choices. You can have a single real number, R^1 . Or you can have an ordered pair, R^2 . Or an ordered quadruple, R^4 . Or you can have an ordered octuple, R^8 . And that’s it. Not that other ordered sets can’t be interesting. They will all diverge far enough from the way real numbers work that you can’t do something that looks like division.

And now we come back to the running theme of this year’s A-to-Z. Real numbers are real numbers, fine. Complex numbers? We have some ways to understand them. One of them is to match each complex number with an ordered pair of real numbers. We have to define a more complicated multiplication rule than “first times first, second times second”. This rule is the rule implied if we come to R^2 through this avenue of K-Theory. We get this matching between real numbers and the first great expansion on real numbers.

The next great expansion of complex numbers is the quaternions. We can understand them as ordered quartets of real numbers. That is, as R^4 . We need to make our multiplication rule a bit fussier yet to do this coherently. Guess what fuss we’d expect coming through K-Theory?

R^8 seems the odd one out; who does anything with that? There is a set of numbers that neatly matches this ordered set of octuples. It’s called the octonions, sometimes called the Cayley Numbers. We don’t work with them much. We barely work with quaternions, as they’re a lot of fuss. Multiplication on them doesn’t even commute. (They’re very good for understanding rotations in three-dimensional space. You can also also use them as vectors. You’ll do that if your programming language supports quaternions already.) Octonions are more challenging. Not only does their multiplication not commute, it’s not even associative. That is, if you have three octonions — call them p, q, and r — you can expect that p times the product of q-and-r would be different from the product of p-and-q times r. Real numbers don’t work like that. Complex numbers or quaternions don’t either.

Octonions let us have a meaningful division, so we could write out p \div q and know what it meant. We won’t see that for any bigger ordered set of R^n . And K-Theory is one of the tools which tells us we may stop looking.

This is hardly the last word in the field. It’s barely the first. It is at least an understandable one. The abstractness of the field works against me here. It does offer some compensations. Broad applicability, for example; a theorem tied to few specific properties will work in many places. And pure aesthetics too. Much work, in statements of theorems and their proofs, involve lovely diagrams. You’ll see great lattices of sets relating to one another. They’re linked by chains of homomorphisms. And, in further aesthetics, beautiful words strung into lovely sentences. You may not know what it means to say “Pontryagin classes also detect the nontorsion in \pi_k(SO(n)) outside the stable range”. I know I don’t. I do know when I hear a beautiful string of syllables and that is a joy of mathematics never appreciated enough.

Thank you for reading. The All 2020 A-to-Z essays should be available at this link. The essays from all A-to-Z sequence, 2015 to present, should be at this link. And I am still open for M, N, and O essay topics. Thanks for your attention.

My All 2020 Mathematics A to Z: Michael Atiyah

To start this year’s great glossary project Mr Wu, author of the blog, had a great suggestion: The Atiyah-Singer Index Theorem. It’s an important and spectacular piece of work. I’ll explain why I’m not doing that in a few sentences.

Mr Wu pointed out that a biography of Michael Atiyah, one of the authors of this theorem, might be worth doing. GoldenOj endorsed the biography idea, and the more I thought it over the more I liked it. I’m not able to do a true biography, something that goes to primary sources and finds a convincing story of a life. But I can sketch out a bit, exploring his work and why it’s of note.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Michael Atiyah.

Theodore Frankel’s The Geometry of Physics: An Introduction is a wonderful book. It’s 686 pages, including the index. It all explores how our modern understanding of physics is our modern understanding of geometry. On page 465 it offers this:

The Atiyah-Singer index theorem must be considered a high point of geometrical analysis of the twentieth century, but is far too complicated to be considered in this book.

I know when I’m licked. Let me attempt to look at one of the people behind this theorem instead.

The Riemann Hypothesis is about where to find the roots of a particular infinite series. It’s been out there, waiting for a solution, for a century and a half. There are many interesting results which we would know to be true if the Riemann Hypothesis is true. In 2018, Michael Atiyah declared that he had a proof. And, more, an amazing proof, a short proof. Albeit one that depended on a great deal of background work and careful definitions. The mathematical community was skeptical. It still is. But it did not dismiss outright the idea that he had a solution. It was plausible that Atiyah might solve one of the greatest problems of mathematics in something that fits on a few PowerPoint slides.

So think of a person who commands such respect.

His proof of the Riemann Hypothesis, as best I understand, is not generally accepted. For example, it includes the fine structure constant. This comes from physics. It describes how strongly electrons and photons interact. The most compelling (to us) consequence of the Riemann Hypothesis is in how prime numbers are distributed among the integers. It’s hard to think how photons and prime numbers could relate. But, then, if humans had done all of mathematics without noticing geometry, we would know there is something interesting about π. Differential equations, if nothing else, would turn up this number. We happened to discover π in the real world first too. If it were not familiar for so long, would we think there should be any commonality between differential equations and circles?

I do not mean to say Atiyah is right and his critics wrong. I’m no judge of the matter at all. What is interesting is that one could imagine a link between a pure number-theory matter like the Riemann hypothesis and a physical matter like the fine structure constant. It’s not surprising that mathematicians should be interested in physics, or vice-versa. Atiyah’s work was particularly important. Much of his work, from the late 70s through the 80s, was in gauge theory. This subject lies under much of modern quantum mechanics. It’s born of the recognition of symmetries, group operations that you can do on a field, such as the electromagnetic field.

In a sequence of papers Atiyah, with other authors, sorted out particular cases of how magnetic monopoles and instantons behave. Magnetic monopoles may sound familiar, even though no one has ever seen one. These are magnetic points, an isolated north or a south pole without its opposite partner. We can understand well how they would act without worrying about whether they exist. Instantons are more esoteric; I don’t remember encountering the term before starting my reading for this essay. I believe I did, encountering the technique as a way to describe the transitions between one quantum state and another. Perhaps the name failed to stick. I can see where there are few examples you could give an undergraduate physics major. And it turns out that monopoles appear as solutions to some problems involving instantons.

This was, for Atiyah, later work. It arose, in part, from bringing the tools of index theory to nonlinear partial differential equations. This index theory is the thing that got us the Atiyah-Singer Index Theorem too complicated to explain in 686 pages. Index theory, here, studies questions like “what can we know about a differential equation without solving it?” Solving a differential equation would tell us almost everything we’d like to know, yes. But it’s also quite hard. Index theory can tell us useful things like: is there a solution? Is there more than one? How many? And it does this through topological invariants. A topological invariant is a trait like, for example, the number of holes that go through a solid object. These things are indifferent to operations like moving the object, or rotating it, or reflecting it. In the language of group theory, they are invariant under a symmetry.

It’s startling to think a question like “is there a solution to this differential equation” has connections to what we know about shapes. This shows some of the power of recasting problems as geometry questions. From the late 50s through the mid-70s, Atiyah was a key person working in a topic that is about shapes. We know it as K-theory. The “K” from the German Klasse, here. It’s about groups, in the abstract-algebra sense; the things in the groups are themselves classes of isomorphisms. Michael Atiyah and Friedrich Hirzebruch defined this sort of group for a topological space in 1959. And this gave definition to topological K-theory. This is again abstract stuff. Frankel’s book doesn’t even mention it. It explores what we can know about shapes from the tangents to the shapes.

And it leads into cobordism, also called bordism. This is about what you can know about shapes which could be represented as cross-sections of a higher-dimension shape. The iconic, and delightfully named, shape here is the pair of pants. In three dimensions this shape is a simple cartoon of what it’s named. On the one end, it’s a circle. On the other end, it’s two circles. In between, it’s a continuous surface. Imagine the cross-sections, how on separate layers the two circles are closer together. How their shapes distort from a real circle. In one cross-section they come together. They appear as two circles joined at a point. In another, they’re a two-looped figure. In another, a smoother circle. Knowing that Atiyah came from these questions may make his future work seem more motivated.

But how does one come to think of the mathematics of imaginary pants? Many ways. Atiyah’s path came from his first research specialty, which was algebraic geometry. This was his work through much of the 1950s. Algebraic geometry is about the kinds of geometric problems you get from studying algebra problems. Algebra here means the abstract stuff, although it does touch on the algebra from high school. You might, for example, do work on the roots of a polynomial, or a comfortable enough equation like x^2 + y^2 = 1 . Atiyah had started — as an undergraduate — working on projective geometries. This is what one curve looks like projected onto a different surface. This moved into elliptic curves and into particular kinds of transformations on surfaces. And algebraic geometry has proved important in number theory. You might remember that the Wiles-Taylor proof of Fermat’s Last Theorem depended on elliptic curves. Some work on the Riemann hypothesis is built on algebraic topology.

(I would like to trace things farther back. But the public record of Atiyah’s work doesn’t offer hints. I can find amusing notes like his father asserting he knew he’d be a mathematician. He was quite good at changing local currency into foreign currency, making a profit on the deal.)

It’s possible to imagine this clear line in Atiyah’s career, and why his last works might have been on the Riemann hypothesis. That’s too pat an assertion. The more interesting thing is that Atiyah had several recognizable phases and did iconic work in each of them. There is a cliche that mathematicians do their best work before they are 40 years old. And, it happens, Atiyah did earn a Fields Medal, given to mathematicians for the work done before they are 40 years old. But I believe this cliche represents a misreading of biographies. I suspect that first-rate work is done when a well-prepared mind looks fresh at a new problem. A mathematician is likely to have these traits line up early in the career. Grad school demands the deep focus on a particular problem. Getting out of grad school lets one bring this deep knowledge to fresh questions.

It is easy, in a career, to keep studying problems one has already had great success in, for good reason and with good results. It tends not to keep producing revolutionary results. Atiyah was able — by chance or design I can’t tell — to several times venture into a new field. The new field was one that his earlier work prepared him for, yes. But it posed new questions about novel topics. And this creative, well-trained mind focusing on new questions produced great work. And this is one way to be credible when one announces a proof of the Riemann hypothesis.

Here is something I could not find a clear way to fit into this essay. Atiyah recorded some comments about his life for the Web of Stories site. These are biographical and do not get into his mathematics at all. Much of it is about his life as child of British and Lebanese parents and how that affected his schooling. One that stood out to me was about his peers at Manchester Grammar School, several of whom he rated as better students than he was. Being a good student is not tightly related to being a successful academic. Particularly as so much of a career depends on chance, on opportunities happening to be open when one is ready to take them. It would be remarkable if there wre three people of greater talent than Atiyah who happened to be in the same school at the same time. It’s not unthinkable, though, and we may wonder what we can do to give people the chance to do what they are good in. (I admit this assumes that one finds doing what one is good in particularly satisfying or fulfilling.) In looking at any remarkable talent it’s fair to ask how much of their exceptional nature is that they had a chance to excel.