Tagged: multiverse Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 6:00 pm on Thursday, 19 January, 2017 Permalink | Reply
    Tags: , , multiverse, , , , , The Daily Drawing, The Elderberries, Ziggy   

    Reading the Comics, January 14, 2017: Maybe The Last Jumble? Edition 


    So now let me get to the other half of last week’s comics. Also, not to spoil things, but this coming week is looking pretty busy so I may have anothe split-week Reading the Comics coming up. The shocking thing this time is that the Houston Chronicle has announced it’s discontinuing its comics page. I don’t know why; I suppose because they’re fed up with people coming loyally to a daily feature. I will try finding alternate sources for the things I had still been reading there, but don’t know if I’ll make it.

    I’m saddened by this. Back in the 90s comics were just coming onto the Internet. The Houston Chronicle was one of a couple newspapers that knew what to do with them. It, and the Philadelphia Inquirer and the San Jose Mercury-News, had exactly what we wanted in comics: you could make a page up of all the strips you wanted to read, and read them on a single page. You could even go backwards day by day in case you missed some. The Philadelphia Inquirer was the only page that let you put the comics in the order you wanted, as opposed to alphabetical order by title. But if you were unafraid of opening up URLs you could reorder the Houston Chronicle page you built too.

    And those have all faded away. In the interests of whatever interest is served by web site redesigns all these papers did away with their user-buildable comics pages. The Chronicle was the last holdout, but even they abolished their pages a few years ago, with a promise for a while that they’d have a replacement comics-page scheme up soon. It never came and now, I suppose, never will.

    Most of the newspapers’ sites had become redundant anyway. Comics Kingdom and GoComics.com offer user-customizable comics pages, with a subscription model that makes it clear that money ought to be going to the cartoonists. I still had the Chronicle for a few holdouts, like Joe Martin’s strips or the Jumble feature. And from that inertia that attaches to long-running Internet associations.

    So among the other things January 2017 takes away from us, it is taking the last, faded echo of the days in the 1990s when newspapers saw comics as awesome things that could be made part of their sites.

    Lorie Ransom’s The Daily Drawing for the 11th is almost but not quite the anthropomorphized-numerals joke for this installment. It’s certainly the most numerical duck content I’ve got on record.

    Tom II Wilson’s Ziggy for the 11th is an Early Pi Day joke. Cosmically there isn’t any reason we couldn’t use π in take-a-number dispensers, after all. Their purpose is to give us some certain order in which to do things. We could use any set of numbers which can be put in order. So the counting numbers work. So do the integers. And the real numbers. But practicality comes into it. Most people have probably heard that π is a bit bigger than 3 and a fair bit smaller than 4. But pity the two people who drew e^{\pi} and \pi^{e} figuring out who gets to go first. Still, I won’t be surprised if some mathematics-oriented place uses a gimmick like this, albeit with numbers that couldn’t be confused. At least not confused by people who go to mathematics-oriented places. That would be for fun rather than cake.

    CTEFH -OOO-; ITODI OOO--; RAWDON O--O-O; FITNAN OO--O-. He wanted to expand his collection and the Mesopotamian abacus would make a OOOO OOOOOOOO.

    the Jumble for the 11th of January, 2017. This link’s all but sure to die the 1st of February, so, sorry about that. Mesopotamia did have the abacus, although I don’t know that the depiction is anything close to what the actual ones looked like. I’d imagine they do, at least within the limits of what will be an understandable drawing.

    I can’t promise that the Jumble for the 11th is the last one I’ll ever feature here. I might find where David L Hoyt and Jeff Knurek keep a linkable reference to their strips and point to them. But just in case of the worst here’s an abacus gag for you to work on.

    Corey Pandolph, Phil Frank, and Joe Troise’s The Elderberries for the 12th is, I have to point out, a rerun. So if you’re trying to do the puzzle the reference to “the number of the last president” isn’t what you’re thinking of. It is an example of the conflation of intelligence with skill at arithmetic. It’s also an example the conflation of intelligence with a mastery of trivia. But I think it leans on arithmetic more. I am not sure when this strip first appeared. “The last president” might have been Bill Clinton (42) or George W Bush (43). But this means we’re taking the square root of either 33 or 34. And there’s no doing that in your head. The square root of a whole number is either a whole number — the way the square root of 36 is — or else it’s an irrational number. You can work out the square root of a non-perfect-square by hand. But it’s boring and it’s worse than just writing “\sqrt{33} ” or “\sqrt{34} ”. Except in figuring out if that number is larger than or smaller than five or six. It’s good for that.

    Dave Blazek’s Loose Parts for the 13th is the actuary joke for this installment. Actuarial studies are built on one of the great wonders of statistics: that it is possible to predict how often things will happen. They can happen to a population, as in forecasts of how many people will be in traffic accidents or fires or will lose their jobs or will move to a new city. We may have no idea to whom any of these will happen, and they may have no way of guessing, but the enormous number of people and great number of things that can combine to make a predictable state of affairs. I suppose it’s imaginable that a group could study its dynamics well enough to identify who screws up the most and most seriously. So they might be able to say what the odds are it is his fault. But I imagine in practice it’s too difficult to define screw-ups or to assign fault consistently enough to get the data needed.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 14th is another multiverse strip, echoing the Dinosaur Comics I featured here Sunday. I’ll echo my comments then. If there is a multiverse — again, there is not evidence for this — then there may be infinitely many versions of every book of the Bible. This suggests, but it does not mandate, that there should be every possible incarnation of the Bible. And a multiverse might be a spendthrift option anyway. Just allow for enough editions, and the chance that any of them will have a misprint at any word or phrase, and we can eventually get infinitely many versions of every book of the Bible. If we wait long enough.

     
  • Joseph Nebus 2:00 pm on Saturday, 17 October, 2015 Permalink | Reply
    Tags: bias, , , multiverse, ,   

    Reading the Comics, October 14, 2015: Shapes and Statistics Edition 


    It’s been another strong week for mathematics in the comic strips. The 15th particularly was a busy enough day I’m going to move its strips off to the next Reading the Comics group. What we have already lets me talk about shapes, and statistics, and what randomness can do for you.

    Carol Lay’s Lay Lines for the 11th of October turns the infinite-monkeys thought-experiment into a contest. It’s an intriguing idea. To have the monkey save correct pages foils the pure randomness that makes the experiment so mind-boggling. However, saving partial successes like correct pages is, essentially, how randomness can be harnessed to do work for us. This is normally in fields known, generally, as Monte Carlo methods, named in honor of the famed casinos.

    Suppose you have a problem in which it’s hard to find the best answer, but it’s easy to compare whether one answer is better than another. For example, suppose you’re trying to find the shortest path through a very complicated web of interactions. It’s easy to say how long a path is, and easy to say which of two paths is shorter. It’s hard to say you’ve found the shortest. So what you can do is pick a path at random, and take its length. Then make an arbitrary, random change in it. The changed path is either shorter or longer. If the random change makes the path shorter, great! If the random change makes the path longer, then (usually) forget it. Repeat this process and you’ll get, by hoarding incremental improvements and throwing away garbage, your shortest possible path. Or at least close to it.

    Properly, you have to sometimes go along with changes that lengthen the path. It might turn out there’s a really short path you can get to if you start out in an unpromising direction. For a monkey-typing problem such as in the comic, there’s no need for that. You can save correct pages and discard the junk.

    Geoff Grogan’s Jetpack Junior for the 12th of October, and after, continues the explorations of a tesseract. The strip uses the familiar idea that a tesseract opens up to a vast, nearly infinite space. I’m torn about whether that’s a fair representation. A four-dimensional hypercube is still a finite (hyper)volume, after all. A four-dimensional cube ten feet on each side contains 10,000 hypercubic feet, not infinitely great a (hyper)volume. On the other hand … well, think of how many two-dimensional squares you could fit in a three-dimensional box. A two-dimensional object has no volume — zero measure, in three-dimensional space — so you could fit anything into it. This may be reasonable but it still runs against my intuition, and my sense of what makes for a fair story premise.

    Ernie Bushmiller’s Nancy for the 13th of October, originally printed in 1955, describes a couple geometric objects. I have to give Nancy credit for a description of a sphere that’s convincing, even if it isn’t exactly correct. Even if the bubble-gum bubble Nancy were blowing didn’t have a distortion to her mouth, it still sags under gravity. But it’s easy, at least if you already have an intuitive understanding of spheres, to go from the bubble-gum bubble to the ideal sphere. (Homework question: why does Sluggo’s description of an octagon need to specify “a figure with eight sides and eight angles”? Why isn’t specifying a figure with eight sides, or eight angles, be enough?)

    Jon Rosenberg’s Scenes From A Multiverse for the 13th of October depicts a playground with kids who’re well-versed in the problems of statistical inference. A “statistically significant sample size” nearly explains itself. It is difficult to draw reliable conclusions from a small sample, because a small sample can be weird. Generally, the difference between the statistics of a sample and the statistics of the broader population it’s drawn from will be smaller the larger the sample is. There are several courses hidden in that “generally” there.

    “Selection bias” is one of the courses hidden in that “generally”. A good sample should represent the population fairly. Whatever’s being measured should appear in the sample about as often as it appears in the population. It’s hard to say that’s so, though, before you know what the population is like. A biased selection over-represents some part of the population, or under-represents it, in some way.

    “Confirmation bias” is another of the courses. That amounts to putting more trust in evidence that supports what we want to believe, and in discounting evidence against it. People tend to do this, without meaning to fool themselves or anyone else. It’s easiest to do with ambiguous evidence: is the car really running smoother after putting in more expensive spark plugs? Is the dog actually walking more steadily after taking this new arthritis medicine? Has the TV program gotten better since the old show-runner was kicked out? If these can be quantified in some way, and a complete record made, it’s typically easier to resist confirmation bias. But not everything can be quantified, and even so, differences can be subtle, and demand more research than we can afford.

    On the 15th, Scenes From A Multiverse did another strip with some mathematical content. It’s about the question of whether it’s possible to determine whether the universe is a computer simulation. But the same ideas apply to questions like whether there could be a multiverse, some other universe than ours. The questions seem superficially to be unanswerable. There are some enthusiastic attempts, based on what things we might conclude. I suspect that the universe is just too small a sample size to draw any good conclusions from, though.

    Dan Thompson’s Brevity for the 14th of October is another anthropomorphized-numerals joke.

     
c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: