Reading the Comics, February 1, 2020: I Never Talk About Marvin Edition


There’s some comic strips that get mentioned here all the time. Then there’s comic strips that I have been reading basically my whole life, and that never give me a thread to talk about. Although I’ve been reading comic strips for their mathematics content for a long while now, somehow, I am still surprised when these kinds of comic strip are not the same thing. So here’s the end of last week’s comics, almost in time for next week to start:

Kevin Fagan’s Drabble for the 28th has Penny doing “math” on colors. Traditionally I use an opening like this to mention group theory. In that we study things that can be added together, in ways like addition works on the integers. Colors won’t quite work like this, unfortunately. A group needs an element that’s an additive identity. This works like zero: it can be added to anything without changing its value. There isn’t a color that you can mix with other colors that leaves the other color unchanged, though. Even white or clear will dilute the original color.

Mom: 'How was school today, Penny?' Penny: 'Great, Mommy! I learned how to do math! Want me to show you? Blue plus red equals purple!'
Kevin Fagan’s Drabble for the 28th of January, 2020. It doesn’t come up often, but when it does, Drabble appears in essays at this link.

If you’ve thought of the clever workaround, that each color can be the additive identity to itself, you get credit for ingenuity. Unfortunately, to be a group there has to be a lone additive identity. Having more than one makes a structure that’s so unlike the integers that mathematicians won’t stand for it. I also don’t know of any interesting structures that have more than one additive identity. This suggests that nobody has found a problem that they represent well. But the strip suggests maybe it could tell us something useful for colors. I don’t know.

Marvin: 'After all the talk about 'fake news' I'm starting to question EVERYTHING big people tell me.' He's looking at a teacher holding up the flashcard 1 + 1 = 2.
Tom Armstrong’s Marvin for the 28th of January, 2020. I don’t think it has ever come up before, but what the heck. Any essays which mention Marvin should be at this link.

Tom Armstrong’s Marvin for the 28th is a strip which follows from the discovery that “fake news” is a thing that people say. Here the strip uses a bit of arithmetic as the sort of incontrovertibly true thing that Marvin is dumb to question. Well, that 1 + 1 equals 2 is uncontrovertibly true, unless we are looking at some funny definitions of ‘1’ or ‘plus’ or something. I remember, as a kid, being quite angry with a book that mentioned “one cup of popcorn plus one cup of water does not give us two cups of soggy popcorn”, although I didn’t know how to argue the point.

Title: 'The Math Homework.' Dad, in the kitchen, to kid: 'What's surface area? Ask your mother.' The mother is in the kitchen, working, and has every bit of surface area that isn't being used for homework with cooking tools. Footer joke: Mom asks, 'Can you please move? I need this space.'
Hilary Price and Rina Piccolo’s Rhymes with Orange for the 30th of January, 2020. Essays with some mention of Rhymes With Orange should be at this link.

Hilary Price and Rina Piccolo’s Rhymes with Orange for the 30th is … well, I’m in this picture and I don’t like it. I come from a long line of people who cover every surface with stuff. But as for what surface area is? … Well, there’s a couple of possible definitions. One that I feel is compelling is to think of covering sets. Take a shape that’s set, by definition, to have an area of 1 unit of area. What is the smallest number of those unit shapes which will cover the original shape? Cover is a technical term here. But also, here, the ordinary English word describes what we need it for. How many copies of the unit shape do you need to exactly cover up the whole original shape? That’s your area. And this fits to the mother’s use of surfaces in the comic strip neatly enough.

Mutt: 'What's the matter, you stuck?' Jeff, looking at his car: 'Yes and no! I tried the cary products they advertise on TV. They claimed this car would use 50% less gas. Then I bought a carburettor which saves 30%, special spark plugs which save 20% and a new brand of gas which saved 10%! Now when I drive the gas tank overflows!' Jeff shows gas pouring out of the tank.
Bud Fisher’s Mutt and Jeff for the 31st of January, 2020. And the essays which have mentioned Mutt and Jeff comics appear at this link.

Bud Fisher’s Mutt and Jeff for the 31st is a rerun of vintage unknown to me. I’m not sure whether it’s among the digitally relettered strips. The lettering’s suspiciously neat, but, for example, there’s at least three different G’s in there. Anyway, it’s an old joke about adding together enough gas-saving contraptions that it uses less than zero gas. So far as it’s tenable at all, it comes from treating percentage savings from different schemes as additive, instead of multiplying together. Also, I suppose, that the savings are independent, that (in this case) Jeff’s new gas saving ten percent still applies even with the special spark plugs or the new carburettor [sic]. The premise is also probably good for a word problem, testing out understanding of percentages and multiplication, which is just a side observation here.


This wraps up last week’s mathematically-themed comic strips. This week I can tell you already was a bonanza week. When I start getting to its comics I should have an essay at this link. Thanks for reading.

Reading the Comics, April 26, 2019: Absurd Equation Edition


And now I’ll cover the handful of comic strips which ran last week and which didn’t fit in my Sunday report. And link to a couple of comics that ultimately weren’t worth discussion in their own right, mostly because they were repeats of ones I’ve already discussed. I have been trimming rerun comics out of my daily reading. But there are ones I like too much to give up, at least not right now.

Bud Blake’s Tiger for the 25th has Tiger quizzing Punkinhead on counting. The younger kid hasn’t reached the point where he can work out numbers without a specific physical representation. It would come, if he were in one of those comics where people age.

Tiger: 'What comes after eleven?' Punkinhead: 'I can't do it. I don't have enough fingers to count on!' Tiger, handing a baseball glove: 'Use this.'
Bud Blake’s Tiger for the 25th of April, 2019. Essays that bring up something in Tiger appear at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 24th is an optimization problem, and an expectation value problem. The wisdom-seeker searches for the most satisfying life. The mathematician-guru offers an answer based in probability and expectation values. List all the possible outcomes, and how probable each are, and how much of the relevant quantity you get (or lose) with each outcome. This is a quite utilitarian view of life-planning. Finding the best possible outcome, given certain constraints, is another big field of mathematics.

Woman seeking enlightenment: 'Should human being strive for pleasure or fulfillment?' Mathematician guru: 'That's a math question, not a philosophy question. Life of pleasure: probability of success 80%, life satisfaction is 5 on scale of 0 to 10; weighted value is 0.8 * 5 = 4. Life of fulfilment: probability of success is 20%, satisfaction is 10; weighted value is 0.2 * 10 = 2.' 'So no life strategy gets you even halfway to the maximum value?' 'There is one. Muddle through: probability of success is 100%. Life satisfaction if successful is 7. 7 * 1.0 = 7.' Woman: 'I tell you, we are here on Earth to ---- around. Kurt Vonnegut.' Mathematician: 'Did you know he trained as a scientist before writing books?'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 24th of April, 2019. There’s plenty of discussion of Saturday Morning Breakfast Cereal at this link.

John Atkinson’s Wrong Hands for the 26th is a nonsense-equation panel. It’s built on a cute idea. If you do wan to know how many bears you can fit in the kitchen you would need something like this. Not this, though. You can tell by the dimensions. ‘x’, as the area of the kitchen, has units of, well, area. Square feet, or square meters, or square centimeters, or whatever is convenient to measure its area. The average volume of a bear, meanwhile, has units of … volume. Cubic feet, or cubic meters, or cubic centimeters, or the like. The one divided by the other has units of one-over-distance.

Powerpoint-style slide: Impractical Equation 1. Number of bears you can fit in your kitchen. (x / y) x d = ... x: area of your kitchen. y: average volume of a bear. d: desire to have bears in your kitchen.
John Atkinson’s Wrong Hands for the 26th of April, 2019. Other essays featuring by Wrong Hands are at this link.

And I don’t know what the units of desire to have bears in your kitchen are, but I’m guessing it’s not “bear-feet”, although that would be worth a giggle. The equation would parse more closely if y were the number of bears that can fit in a square foot, or something similar. I say all this just to spoil Atkinson’s fine enough bit of nonsense.

Skippy: 'I can run ten miles in 3520 seconds flat!' Sooky: 'How do ya know?' Skippy: ''Cause I ran fifty yards an' timed myself.'
Percy Crosby’s Skippy rerun for the 26th of April, 2019. It first ran the 3rd of December, 1931. This and other mentions of Crosby’s brilliant Skippy should appear at this link.

Percy Crosby’s Skippy for the 26th is a joke built on inappropriate extrapolation. 3520 seconds is a touch under an hour. Skippy’s pace, if he could keep it up, would be running a mile every five minutes, 52 seconds. That pace isn’t impossible — I find it listed on charts for marathon runners. But that would be for people who’ve trained to be marathon or other long-distance runners. They probably have different fifty-yard run times.


And now for some of the recent comics that didn’t seem worth their own discussion, and why they didn’t.

Niklas Eriksson’s Carpe Diem for the 20th features reciting the digits of π as a pointless macho stunt. There are people who make a deal of memorizing digits of π. Everyone needs hobbies, and memorizing meaningless stuff is a traditional fanboy’s way of burying oneself in the thing appreciated. Me, I can give you π to … I want to say sixteen digits. I might have gone farther in my youth, but I was heartbroken when I learned one of the digits I had memorized I got wrong, and so after correcting that mess I gave up going farther.

Rick Detorie’s One Big Happy rerun for the 22nd has Ruthie seeking mathematics help from the homework hotline. The mathematics is just a pretext. And Richard Thompson’s Richard’s Poor Almanac for the 22nd is the color version of that comic with the Platonic Fir tree, discussed several times. Bud Fisher’s Mutt and Jeff for the 25th reprints the pre-relettering version of >the eating-the-roast-beef joke This is the strip that I’d found changed to “eating ham” in 2018, part of the strip’s mysterious and unexplained relettering.


And now I am, briefly, caught up on the comic strips. I’ll be behind again by Sunday, though. I’ll do something about that, in an essay you should be able to find at this link.

Reading the Comics, January 5, 2019: Start of the Year Edition


With me wrapping up the mathematically-themed comic strips that ran the first of the year, you can see how far behind I’m falling keeping everything current. In my defense, Monday was busier than I hoped it would be, so everything ran late. Next week is looking quite slow for comics, so maybe I can catch up then. I will never catch up on anything the rest of my life, ever.

Scott Hilburn’s The Argyle Sweater for the 2nd is a bit of wordplay about regular and irregular polygons. Many mathematical constructs, in geometry and elsewhere, come in “regular” and “irregular” forms. The regular form usually has symmetries that make it stand out. For polygons, this is each side having the same length, and each interior angle being congruent. Irregular is everything else. The symmetries which constrain the regular version of anything often mean we can prove things we otherwise can’t. But most of anything is the irregular. We might know fewer interesting things about them, or have a harder time proving them.

Teacher: 'Well, class, who'd like to show Mr Hoffmeyer how to correctly make an irregular polygon regular?' On the blackboard is an irregular pentagon and, drawn by Mr Hoffmeyer, a box of Ex-Lax.
Scott Hilburn’s The Argyle Sweater for the 2nd of January, 2019. The many appearances of Argyle Sweater in these pages are at this link.

I’m not sure what the teacher would be asking for in how to “make an irregular polygon regular”. I mean if we pretend that it’s not setting up the laxative joke. I can think of two alternatives that would make sense. One is to draw a polygon with the same number of sides and the same perimeter as the original. The other is to draw a polygon with the same number of sides and the same area as the original. I’m not sure of the point of either. I suppose polygons of the same area have some connection to quadrature, that is, integration. But that seems like it’s higher-level stuff than this class should be doing. I hate to question the reality of a comic strip but that’s what I’m forced to do.

Mutt, to Jeff in the hospital bed: 'Don't be afraid! Surgery on the tonsils is very simple!' Doctor: 'Don't you worry about the results!' Jeff: 'How do you know I'll be all right?' Doctor: 'Well, I lost my last eleven patients! So if the law of probabilities doesn't lie, you'll be all right! May I do something for you before I begin?' Jeff: 'Oh, yes, Doc! Help me put on my trousers and my jacket!'
Bud Fisher’s Mutt and Jeff rerun for the 4th of January, 2019. The several appearances of Mutt and Jeff in these pages are at this link.

Bud Fisher’s Mutt and Jeff rerun for the 4th is a gambler’s fallacy joke. Superficially the gambler’s fallacy seems to make perfect sense: the chance of twelve bad things in a row has to be less than the chance of eleven bad things in a row. So after eleven bad things, the twelfth has to come up good, right? But there’s two ways this can go wrong.

Suppose each attempted thing is independent. In this case, what if each patient is equally likely to live or die, regardless of what’s come before? And in that case, the eleven deaths don’t make it more likely that the next will live.

Suppose each attempted thing is not independent, though. This is easy to imagine. Each surgery, for example, is a chance for the surgeon to learn what to do, or not do. He could be getting better, that is, more likely to succeed, each operation. Or the failures could reflect the surgeon’s skills declining, perhaps from overwork or age or a loss of confidence. Impossible to say without more data. Eleven deaths on what context suggests are low-risk operations suggest a poor chances of surviving any given surgery, though. I’m on Jeff’s side here.

On the blackboard: 'Ratios: Apples 9, Oranges 6'. Wavehead, to teacher: 'Technically the ratio is 3:2, but as a practical matter we shouldn't even really be considering this.'
Mark Anderson’s Andertoons for the 5th of January, 2019. The amazingly many appearances of Andertoons in these pages are at this link.

Mark Anderson’s Andertoons for the 5th is a welcome return of Wavehead. It’s about ratios. My impression is that ratios don’t get much attention in themselves anymore, except to dunk on stupid Twitter comments. It’s too easy to jump right into fractions, and division. Ratios underlie this, at least historically. It’s even in the name, ‘rational numbers’.

Wavehead’s got a point in literally comparing apples and oranges. It’s at least weird to compare directly different kinds of things. This is one of those conceptual gaps between ancient mathematics and modern mathematics. We’re comfortable stripping the units off of numbers, and working with them as abstract entities. But that does mean we can calculate things that don’t make sense. This produces the occasional bit of fun on social media where we see something like Google trying to estimate a movie’s box office per square inch of land in Australia. Just because numbers can be combined doesn’t mean they should be.

Kid: 'Dad, I need help with a math problem. If striking NFL players who get $35,000 a game are replaced by scab players who get $1,000 a game ... what will be the point spread in a game between the Lions and the Packers?'
Larry Wright’s Motley rerun for the 5th of January, 2019. The occasional appearances of Motley in these pages are at this link.

Larry Wright’s Motley rerun for the 5th has the form of a story problem. And one timely to the strip’s original appearance in 1987, during the National Football League players strike. The setup, talking about the difference in weekly pay between the real players and the scabs, seems like it’s about the payroll difference. The punchline jumps to another bit of mathematics, the point spread. Which is an estimate of the expected difference in scoring between teams. I don’t know for a fact, but would imagine the scab teams had nearly meaningless point spreads. The teams were thrown together extremely quickly, without much training time. The tools to forecast what a team might do wouldn’t have the data to rely on.


The at-least-weekly appearances of Reading the Comics in these pages are at this link.

How November 2018 Treated My Mathematics Blog


I knew that November 2018 was going to be a less busy month around here than October would. I didn’t have the benefit of hosting the Playful Mathematics Education Blog Carnival for it. I’m hoping to host the carnival again, though. Not until after the new year. Not until after I’ve finished the Fall 2018 A To Z and have had some time to recuperate. It’s a weird thing but writing two 1500-to-2000-word essays each week hasn’t lightened my workload the way I figured. If you’re interested in the current Blog Carnival, by the way, here it is. Anyway, as reversions to the norm go, November was not bad. Here’s what it looked like.

November 2018. Views: 1,611. Visitors: 846. Views per visitor 1.90. Total posts: 23.
WordPress readership figures around here for July 2016 through November 2018. I was able to capture this picture just before anyone visited me in December, which I’m going to say is because I had really good reflexes and not because nobody wanted to deal with me the first Saturday of the month.

So there were 1,611 pages viewed here in November. Down from the 2,010 of October, but noticeably higher than September’s 1,505. That’s still a third-highest month (March 2018 was busier still). But it’s weirdly gratifying. There were 847 unique visitors logged in November. That’s down from October’s 1,063, and even September’s 874. I make this out as my fifth-most-visitors month on record. All those months have been this year.

85 things got liked in November. That’s down from October’s 94, up from September’s 65, and overall part of a weird pattern. My likes are definitely declining over time. But there’s little local peaks. If there’s any pattern it’s kind of a sawtooth, with the height of the teeth dropping. I have no explanation for this phenomenon. There were 36 comments in November, well down from October’s 60, but equal to September’s. It’s above the running average of the last two months (28.5 comments per month) but it’s still well below, like, the average commentary you can expect on the Comics Curmudgeon. Granted, we serve different purposes.

Of the most popular essays this month the top two were perennials. Some A to Z stuff filled out the rest. I’m including the top six posts here there was a tie for fourth place, and sixth place was barely behind that. If this reason seems ad hoc, you understand it correctly. Read a lot around here were:

Mutt, hauling a Victrola in: 'Have I ever shown you these valuable records I have?' Jeff: 'No!' Mutt: 'These records are very valuable! They are the first records ever made!' Jeff: 'They sound scratchy!' Mutt: 'Yes, they have some scratches, but they are worth five dollars each!' [ Later that Day ... Jeff is sandpapering a record. ] Jeff: 'I'll surprise Mutt.' (To Mutt). Jeff: 'Now they don't have scratches any more! I sanded them until they were smooth!'
Bud Fisher’s Mutt and Jeff rerun for the 1st of December, 2018. Clearly an attempt to get itself added to my page about how many grooves are on a record’s side. I have no information about when this strip first ran. My gut says the art dates to the 1940s. The word balloons are all recent, computer-assisted reletterings. (Look at the lower end of each letter ‘S’.) The relettering is certainly easier to read than the original cramped and shakily reproduced lettering. (Look at the record player’s ‘Come, Josephine’ text, or the sound effect of Jeff scratching the record clean in the fourth panel to see how bad it could be.) But the relettering is probably why the dialogue has that slightly over-edited, not-quite-human flow we’re used to from Funky Winkerbean.

And where were all these readers coming from? Here’s the roster of countries and their readership totals:

Country Readers
United States 1,038
United Kingdom 72
Philippines 66
Canada 63
India 46
Denmark 37
Singapore 32
Australia 26
Sweden 15
Slovenia 14
Italy 12
Netherlands 12
Spain 11
Hong Kong SAR China 9
Germany 8
Brazil 7
Croatia 7
United Arab Emirates 7
Romania 6
Thailand 6
France 5
Puerto Rico 5
South Africa 5
Venezuela 5
European Union 4
Indonesia 4
Mexico 4
Norway 4
Pakistan 4
Poland 4
Austria 3
Israel 3
Nepal 3
Russia 3
Switzerland 3
Turkey 3
Algeria 2
Argentina 2
Bangladesh 2
Belgium 2
Bulgaria 2
China 2
Finland 2
Georgia 2
Ghana 2
Greece 2
Japan 2
Jordan 2
Malaysia 2
New Zealand 2
Nigeria 2
Panama 2
Peru 2
Portugal 2
South Korea 2
Sri Lanka 2
Taiwan 2
Belize 1
Bhutan 1
Colombia 1 (***)
Costa Rica 1
Czech Republic 1 (**)
El Salvador 1
Guernsey 1
Kenya 1
Lebanon 1
Namibia 1
Palestinian Territories 1
Qatar 1
Saudi Arabia 1

70 countries sent me readers in November 2018. That’s down from October’s 74 but up from September’s 58. 13 of them were single-reader countries, down from October’s 23 and September’s 14. Czech Republic has been a single-reader country for three months. Colombia for four months now.

According to the Insights panel, I start the month at 71,506 total page views for the 1,185 posts I’ve done altogether. It also records 35,384 unique visitors, but I again have to defensively insist WordPress didn’t count unique visitors for the first couple months I was around here. I swear.

I published 23 posts in October. A to Z months tend to be busy ones. These posts held something like 26,644 words in total. For the 165 things I had posted this year, through to the start of December, I averaged 1,108 words per post. That’s up from the start of November’s 996 words per post, but still. I’m averaging 5.3 likes per post, and 2.7 comments per post. At the start of last month I was averaging 5.5 likes and 2.8 comments per post. This is probably not any important kind of variation. There’ve been 450 total comments and 870 total likes this year, as of the start of December.

Are you interested in reading me more regularly? You can put my posts in your RSS reader and enjoy them at your convenience. You can also add me to your WordPress Reader, using the button at the upper-right corner of the page. Also possibly a pop-up menu from the lower-right corner. On Twitter I’m @Nebusj. Through the end of the year I’ll keep working on the Fall 2018 A To Z. And every Sunday plus, usually, some other day of the week I’ll be Reading the Comics for the mathematics stuff. Thanks for considering any of this.

Reading the Comics, September 11, 2018: 60% Reruns Edition


Three of the five comic strips I review today are reruns. I think that I’ve only mentioned two of them before, though. But let me preface all this with a plea I’ve posted before: I’m hosting the Playful Mathematics Blog Carnival the last week in September. Have you run across something mathematical that was educational, or informative, or playful, or just made you glad to know about? Please share it with me, and we can share it with the world. It can be for any level of mathematical background knowledge. Thank you.

Tom Batiuk’s Funky Winkerbean vintage rerun for the 10th is part of an early storyline of Funky attempting to tutor football jock Bull Bushka. Mathematics — geometry, particularly — gets called on as a subject Bull struggles to understand. Geometry’s also well-suited for the joke because it has visual appeal, in a way that English or History wouldn’t. And, you know, I’ll take “pretty” as a first impression to geometry. There are a lot of diagrams whose beauty is obvious even if their reasons or points or importance are obscure.

Funky: 'Okay, Bull, I'm going to help you with your math! Now this is a hexagon.' Bull: 'Pretty!' Funky, to camera: 'This is going to take a little longer than I thought!'
Tom Batiuk’s Funky Winkerbean vintage rerun for the 10th of September, 2018. It originally ran the 28th of September, 1972.

Dan Collins’s Looks Good on Paper for the 10th is about everyone’s favorite non-orientable surface. The first time this strip appeared I noted that the road as presented isn’t a Möbius strip. The opossums and the car are on different surfaces. Unless there’s a very sudden ‘twist’ in the road in the part obscured from the viewer, anyway. If I’d drawn this in class I would try to save face by saying that’s where the ‘twist’ is, but none of my students would be convinced. But we’d like to have it that the car would, if it kept driving, go over all the pavement.

Mobius Trip. A car, loaded for vacation, with someone in it asking 'Are we there yet? Are we there yet? Are we there yet?' The road is along a Mobius strip, with roadside bits like deer or road signs or opossums crossing the road on the margins.
Dan Collins’s Looks Good on Paper for the 10th of September, 2018. It originally ran the 10th of September, 2016.

Bud Fisher’s Mutt and Jeff for the 10th is a joke about story problems. The setup suggests that there’s enough information in what Jeff has to say about the cop’s age to work out what it must be. Mutt isn’t crazy to suppose there is some solution possible. The point of this kind of challenge is realizing there are constraints on possible ages which are not explicit in the original statements. But in this case there’s just nothing. We would call the cop’s age “underdetermined”. The information we have allows for many different answers. We’d like to have just enough information to rule out all but one of them.

Jeff: 'If Mario the policeman at our corner has been in the force for nine years ... he has been married for 17 years and has two kids, seven and twelve years old ... HOW OLD is Mario?' Mutt: 'I give up! How old is he?' Jeff: 'He's 40 years old!' Mutt: 'How did you calculate that?' Jeff: 'Oh, I didn't! I just asked him and he told me!' (Jeff, fleeing.) Jeff: 'I might as well stop running! Sooner or later he'll catch me anyway!'
Bud Fisher’s Mutt and Jeff for the 10th of September, 2018. No guessing when this originally ran, and the lettering has been re-done. This is probably why Jeff’s word balloons in the first and second panel don’t quite low logically together.

John Rose’s Barney Google and Snuffy Smith for the 11th is here by popular request. Jughead hopes that a complicated process of dubious relevance will make his report card look not so bad. Loweezey makes a New Math joke about it. This serves as a shocking reminder that, as most comic strip characters are fixed in age, my cohort is now older than Snuffy and Loweezey Smith. At least is plausibly older than them.

Jughead, explaining his report card: 'If ya add the two B's together, subtract th' C an' cancel out th' F, then I got mostly A's!' Ma, skeptical: 'Did they replace that new math wif even newer math?'
John Rose’s Barney Google and Snuffy Smith for the 11th of September, 2018. Not a rerun! As far as I know. But see how Henry fooled me about its rerun cycle lately. Not answered: a report card in early-to-mid September?

Anyway it’s also a nice example of the lasting cultural reference of the New Math. It might not have lasted long as an attempt to teach mathematics in ways more like mathematicians do. But it’s still, nearly fifty years on, got an unshakable and overblown reputation for turning mathematics into doubletalk and impossibly complicated rules. I imagine it’s the name; “New Math” is a nice, short, punchy name. But the name also looks like what you’d give something that was being ruined, under the guise of improvement. It looks like that terrible moment of something familiar being ruined even if you don’t know that the New Math was an educational reform movement. Common Core’s done well in attracting a reputation for doing problems the complicated way. But I don’t think its name is going to have the cultural legacy of the New Math.

Wavehead, facing a set of blackboard subtraction problems: 'This is why no one likes math; it's a branding issue. Everything's a problem.'
Mark Anderson’s Andertoons for the 11th of September, 2018. All right, but another problem they have: no chalk.

Mark Anderson’s Andertoons for the 11th is another kid-resisting-the-problem joke. Wavehead’s obfuscation does hit on something that I have wondered, though. When we describe things, we aren’t just saying what we think of them. We’re describing what we think our audience should think of them. This struck me back around 1990 when I observed to a friend that then-current jokes about how hard VCRs were to use failed for me. Everyone in my family, after all, had no trouble at all setting the VCR to record something. My friend pointed out that I talked about setting the VCR. Other people talk about programming the VCR. Setting is what you do to clocks and to pots on a stove and little things like that; an obviously easy chore. Programming is what you do to a computer, an arcane process filled with poor documentation and mysterious problems. We framed our thinking about the task as a simple, accessible thing, and we all found it simple and accessible. Mathematics does tend to look at “problems”, and we do, especially in teaching, look at “finding solutions”. Finding solutions sounds nice and positive. But then we just go back to new problems. And the most interesting problems don’t have solutions, at least not ones that we know about. What’s enjoyable about facing these new problems?


One thing that’s not a problem: finding other Reading the Comics posts. They should all appear at this link. Appearances by the current-run and the vintage Funky Winkerbean are at this link. Essays with a mention of Looks Good On Paper are at this link. Meanwhile, essays with Mutt and Jeff in the are at this link. Other appearances by Barney Google and Snuffy Smith — current and vintage, if vintage ever does something on-topic — are at this link. And the many appearances by Andertoons are at this link, or just use any Reading the Comics post, really. Thank you.

Reading the Comics, July 7, 2018: Mutt and Jeff Relettering Scandal Edition


I apologize for not having a more robust introduction here. My week’s been chopped up by concern with the health of the older of our rabbits. Today’s proved to be less alarming than we had feared, but it’s still a lot to deal with. I appreciate your kind thoughts. Thank you.

Meanwhile the comics from last week have led me to discover something really weird going on with the Mutt and Jeff reruns.

Charles Schulz’s Peanuts Classics for the 6th has the not-quite-fully-formed Lucy trying to count the vast. She’d spend a while trying to count the stars and it never went well. It does inspire the question of how to count things when doing a simple tally is too complicated. There are many mathematical approaches. Most of them are some kind of sampling. Take a small enough part that you can tally it, and estimate the whole based on what your sample is. This can require ingenuity. For example, when estimating our goldfish population, it was impossible to get a good sample at one time. When tallying the number of visible stars in the sky, we have the problem that the Galaxy has a shape, and there are more stars in some directions than in others. This is why we need statisticians.

Lucy, going out in twilight with a pencil and sheet of paper: 'I'm going to count all the stars even if it kills me! People say I'm crazy, but I know I'm not , and that's what counts! I think I'll just sit here until it gets dark. This way I can take my time counting the stars. I'll mark 'em down as they come out. HA! There's the first one ... dum te ta te dum. There's another one. Two, three, four ... this is a cinch. Five, six, oh oh! SevenEightNineTen ... ElevenTwelveThirteen Oh, MY! They're coming out all over! SLOW DOWN! 21, 22, 23, 24, ... 35, 35, 40! Whew! (Gasp, gasp!) 41, 42 ... ' (Defeated Lucy sitting on the curb, exhausted, beneath the night sky.) 'Rats!'
Charles Schulz’s Peanuts Classics for the 6th of July, 2018. It originally ran the 4th of April, 1954. That is an adorable little adding machine and stool that Lucy has in the title panel there.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th looks initially like it’s meant for a philosophy blog’s Reading the Comics post. It’s often fruitful in the study of ethics to ponder doing something that is initially horrible, but would likely have good consequences. Or something initially good, but that has bad effects. These questions challenge our ideas about what it is to do good or bad things, and whether transient or permanent effects are more important, and whether it is better to be responsible for something (or to allow something) by action or inaction.

It comes to mathematics in the caption, though, and with an assist from the economics department. Utilitarianism seems to offer an answer to many ethical problems. It posits that we need to select a primary good of society, and then act so as to maximize that good. This does have an appeal, I suspect even to people who don’t thrill of the idea of finding the formula that describes society. After all, if we know the primary good of society, why should we settle for anything but the greatest value of that good? It might be difficult in practice, say, to discount the joy a musician would bring over her lifetime with her performances fairly against the misery created by making her practice the flute after school when she’d rather be playing. But we can imagine working with a rough approximation, at least. Then the skilled thinkers point out even worse problems and we see why utilitarianism didn’t settle all the big ethical questions, even in principle.

Professor: 'Suppose you want to kill a baker. But, if you kill him, a bunch of starving people will get access to his bread. Should you do it anyway?' Caption: 'All moral dilemmas can be rephrased as evil-maximization problems.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th of July, 2018. Confess I’m not sure the precise good-maximization reversal of this. I suppose it’s implying that the baker is refusing to give bread to starving people who can’t pay, and the hungry could alleviate the problem a while by eating the rich?

The mathematics, though. As Weinersmith’s caption puts it, we can phrase moral dilemmas as problems of maximizing evil. Typically we pose them as ones of maximizing good. Or at least of minimizing evil. But if we have the mechanism in place to find where evil is maximized, don’t we have the tools to find where good is? If we can find the set of social parameters x, y, and z which make E(x, y, z) as big as possible, can’t we find where -E(x, y, z) is as big, too? And isn’t that then where E(x, y, z) has to be smallest?

And, sure. As long as the maximum exists, or the minimum exists. Maybe we can tell whether or not there is one. But this is why when you look at the mathematics of finding maximums you realize you’re also doing minimums, or vice-versa. Pretty soon you either start referring to what you find as extremums. Or you stop worrying about the difference between a maximum and a minimum, at least unless you need to check just what you have found. Or unless someone who isn’t mathematically expert looks at you wondering if you know the difference between positive and negative numbers.

Jeff: 'You're such a fool, I'll bet you can't solve this simple problem!' Mutt: 'Which problem?' Jeff: 'If five men can eat a ham in five minutes, how long it will take ten men to eat that same ham?' Mutt: 'Well, some people eat slower.' Jeff: 'See? You just can't do it!' Mutt: 'Neither can you! It can't be solved!' Jeff: 'You say it can't be solved? Why?' Mutt: 'Because the first five men have ALREADY eaten the ham!'
Bud Fisher’s Mutt and Jeff for the 7th of July, 2018. So I found a previous iteration of this strip, from the 21st of February, 2015. They had relettered things, changing the wording slightly and making it overall somehow clunkier. The thing is, that 2015 strip looks to me like it might be a computer-lettered typeface too; look at the C’s, and the little loops on top of the letters. On the other hand, there’s some variation in the ? marks there. I understand relettering the more impenetrable old strips, especially if they don’t have the original material and have to go from archived newspaper prints. But the 2015 edition seems quite clear enough; why change that?

Bud Fisher’s Mutt and Jeff for the 7th has run here before. Except that was before they redid the lettering; it was a roast beef in earlier iterations. I was thinking to drop Mutt and Jeff from my Reading the Comics routine before all these mysteries in the lettering turned up. Anyway. The strip’s joke starts with a work-rate problems. Given how long some people take to do a thing, how long does it take a different number of people to do a thing? These are problems that demand paying attention to units, to the dimensions of a thing. That seems to be out of fashion these days, which is probably why these questions get to be baffling. But if eating a ham takes 25 person-minutes to do, and you have ten persons eating, you can see almost right away how long to expect it to take. If the ham’s the same size, anyway.

Teacher: 'Can you tell me how many triangles are in this diagram?' (It's an equilateral triangle, divided into thirds horizontally, and with the angle up top trisected, so that there are nine discrete figures inside.) Nancy, with a dozen scraps of used paper strewn around: 'Can you tell me how many pages we have to waste trying to solve this accursed puzzle?'
Olivia Jaimes’s Nancy for the 7th of July, 2018. There’s some real Old People Complaining in the comments, by the way, about how dare Nancy go sassing her elders like that. So, if you want to read those comments, judge wisely.

Olivia Jaimes’s Nancy for the 7th is built on a spot of recreational mathematics. Also on the frustration one can have when a problem looks like it’s harmless innocent fun and turns out to take just forever and you’re never sure you have the answers just right. The commenters on GoComics.com have settled on 18. I’m content with that answer.


Care for more of this? You can catch all my Reading the Comics posts at this link. Essays with Saturday Morning Breakfast Cereal content are at this link. Essays with Peanuts are at this link. Those with Mutt and Jeff are at this link. And those with Nancy are here. Thank you.

Reading the Comics, May 8, 2018: Insecure http Edition


Last week had enough mathematically-themed comics for me to split the content. Usually I split the comics temporally, and this time I will too. What’s unusual is that somewhere along the week the URLs that GoComics pages provide switched from http to https. https is the less-openly-insecure version of the messaging protocol that sends web pages around. It’s good practice; we should be using https wherever possible. I don’t know why they switched that on, and why switch it on midweek. I suppose someone there knew what they were doing.

Tom Wilson’s Ziggy for the 6th of May uses mathematical breakthroughs as shorthand for inspiration. In two ways, too, one with a basically geometric figure and one with a bunch of equations. The geometric figure doesn’t seem to have any significance to me. The equations … that’s a bit harder. They’re probably nonsense. But it’s hard to look at ‘a’ and not see acceleration; the letter is often used for that. And it’s hard to look at ‘v’ and not see velocity. ‘x’ is often a position and ‘t’ is often a time. ‘xf – xi‘ looks meaningful too. It almost begs to be read as “position, final, minus position, initial”. “tf – ti” almost begs to be read as “time, final, minus time, initial”. And the difference in position divided by a difference in time suggests a velocity.

People at Inspiration Point all saying Eureka. one things of an arithmetic formula, one of a geometric proof, one of a bar of music. Ziggy thinks of a vacuum cleaner.
Tom Wilson’s Ziggy for the 6th of May, 2018. I’m also curious whether the geometric figure means anything. But the spray of “x3 – 1” and “x2” and all don’t seem to fit a pattern to me.

So here’s something peculiar inspired by looking at the units that have to follow. If ‘v’ is velocity, then it’s got units of distance over time. \left(\frac{av}{V}\right)^2 and \left(\frac{av}{I}\right)^2 would have units of distance-squared over time-squared. At least unless ‘a ‘or ‘V’ or ‘I’ are themselves measurements. But the square root of their sum then gets us back to distance over time. And then a distance-over-time divided by … well, distance-over-time suggests a pure number. Or something of whatever units ‘R’ carries with it.

So this equation seems arbitrary, and of course the expression doesn’t need to make sense for the joke. But it’s odd that the most-obvious choice of meanings for v and x and t means that the symbols work out so well. At least almost: an acceleration should have units of distance-over-time-squared, and this has units of (nothing). But I may have guessed wrong in thinking ‘a’ meant acceleration here. It might be a description of how something in one direction corresponds to something in another. And that would make sense as a pure number. I wonder whether Wilson got this expression from from anything, or if any readers recognize something that I should have seen right away.

Monty: 'Exactly ONE month of school left, Mrs Lola!' Lola: 'How 'bout that, Monty.' Monty: 'So, subtracting weekends ... that's, um, let's see. Carry the 2, add the 6 ... only 47 days!' Lola: 'Your folks got you signed up for math camp?' Monty: 'How'd you know?'
Todd Clark’s Lola for the 7th of May, 2018. I’m not sure whether Monty means the 6th or the 7th of June is the last day of school, too, but either way I’m pretty sure that’s at least a week and maybe closer to two weeks before we ever got out of school. But we also never started before US Labor Day and it feels indecent when I see schools that do.

Todd Clark’s Lola for the 7th jokes about being bad at mathematics. The number of days left to the end of school isn’t something that a kid should have trouble working out. However, do remember the first rule of calculating the span between two dates on the calendar: never calculate the span between two dates on the calendar. There is so much that goes wrong trying. All right, there’s a method. That method is let someone else do it.

Mutt: 'You want to know what I bought you for Christmas? Think in the number ten!' Jeff: 'Ten? Done!' Mutt: 'Then divide it by two!' Jeff: 'Yes!' Mutt: 'Now you must take away five!' Jeff: 'Yes!' Mutt: 'How much is left?' Jeff: 'Nothing!' (Mutt leaves, while Jeff ponders '?'.)
Bud Fisher’s Mutt and Jeff rerun for the 7th of May, 2018. No idea when the original was from and the word balloons have been relettered with a computer typeface. (Look at the K’s or E’s.) The copyright is given as Aedita S de Beaumont, rather than Bud Fisher or any of the unnamed assistants who actually wrote and drew the strip by this point. Beaumont had married Fisher in 1925 and while they separated after a month they never divorced, so on Fisher’s death Beaumont inherited the rights. Some strips have the signature Pierre S de Beaumont, her son and it happens founder of the Brookstone retail stores. Every bit of this seems strange but I keep looking it over and it seems like I have it right.

Bud Fisher’s Mutt and Jeff for the 7th uses the form of those mathematics-magic games. You know, the ones where you ask someone to pick a number, then do some operations, and then tell you the result. From that you reverse-engineer the original number. They’re amusing enough tricks even if they are all basically the same. It’s instructive to figure out how they work. Replace your original number with symbols and follow the steps then. If you just need the number itself you can replace that with ‘x’. If you need the digits of the number then you’d replace it with something like “10*a + b”, to represent the numerals “ab”. Here, yeah, Mutt’s just being arbitrarily mean.

Robot 55: 'EXTERMINATE ALL LIFE!' Oliver, dressed as a robot: 'Quick, Jorge, act like a robot!' Jorge, dressed like a robot: '20 times 30 equals a million.' Robot 44: 'LIFE EMANATING FROM THIS DIRECTION.' (And approaches the kids.) Oliver: 'Just do the robot dance!' Jorge: 'That's ridiculous, Oliver. Who'd actually program a robot to dance?' (The robots laser-blast a flower.) Jorge, twitching: o/` BOOP BOOP BOOP-BE-BOOP! O/`
Paul Gilligan and Kory Merritt’s Poptropica rerun for the 7th of May, 2018. Sad to say the comic seems to have lapsed into perpetual rerun; I enjoyed the silly adventure and the illustration style.

Paul Gilligan and Kory Merritt’s Poptropica for the 7th depicts calculating stuff as the way to act like a robot. Can’t deny; calculation is pretty much what we expect computers to do. It may hide. It may be done so abstractly it looks like we’re playing Mini Metro instead. This is a new comics tag. I’m sad to say this might be the last use of that tag. Poptropica is fun, but it doesn’t touch on mathematics much at all.

Written on a wood fence: 'Kindergarten teachers know how to make the little things count'.
Gene Mora’s Graffiti for the 8th of May, 2018. I don’t know whether this is a rerun. The copyright date is new but so much about this comic’s worldview is from 1978 at the latest.

Gene Mora’s Graffiti for the 8th mentions arithmetic, albeit obliquely. It’s meant to be pasted on the doors of kindergarten teachers and who am I to spoil the fun?

Anthropomorphic 3/5: 'Honey, what's wrong?' Anthropomorphic 1/4: 'Sour son is leaving the faith! He said he's converting to decimals!'
Scott Hilburn’s The Argyle Sweater for the 9th of May, 2018. I like the shout-out to Archimedes in the background art, too. Archimedes, though, didn’t use fractions in the way we’d recognize them. He’d write out a number as a combination of ratios of some reference number. So he might estimate the length of something being as to the length of something else as 19 is to 7, or something like that. This seems like a longwinded and cumbersome way to write out numbers, or much of anything, and makes one appreciate his indefatigability as much as his insight.

Scott Hilburn’s The Argyle Sweater for the 9th is the anthropomorphic-numerals joke for this week. Converting between decimals and fractions has been done since decimals got worked out in the late 16th century. There’s advantages to either representation. To my eyes the biggest advantage of fractions is they avoid hypnotizing people with the illusion of precision. 0.25 reads as more exact than 1/4. We can imagine it being 0.2500000000000000 and think we know the quantity to any desired precision. 1/4 reads (to me, anyway) as being open to the possibility we’re rounding off from 0.998 out of 4.00023.

Another advantage fractions do have is flexibility. There are infinitely many ways to express the same number as a fraction. In decimals, there are at most two. If you’re trying to calculate something that would be more easily done with a denominator of 30 than of 5, you’re free to do that. Decimals can have advantages in computing, certainly, especially if you’re already set up to manipulate digits. And you can tell at a glance whether, say, 14/29th is greater or less than 154/317th. In case you ever find reason to wonder, I mean. I’m not saying either is always the right way to go.

Reading the Comics, March 17, 2018: Pi Day 2018 Edition


So today I am trying out including images for all the mathematically-themed comic strips here. This is because of my discovery that some links even on GoComics.com vanish without warning. I’m curious how long I can keep doing this. Not for legal reasons. Including comics for the purpose of an educational essay about topics raised by the strips is almost the most fair use imaginable. Just because it’s a hassle copying the images and putting them up on WordPress.com and that’s even before I think about how much image space I have there. We’ll see. I might try to figure out a better scheme.

Also in this batch of comics are the various Pi Day strips. There was a healthy number of mathematically-themed comics on the 14th of March. Many of those were just coincidence, though, with no Pi content. I’ll group the Pi Day strips together.

Counselor: 'Come in Funky! What seems to be troubling you?' Funky: 'We're nothing but computer numbers at this school, Mr Fairgood! Nobody cares about us as persons! I'm tired of being just a number! I want a chance to make some of my own decisions!' Counselor: 'Okay! What would you like to be, odd or even?'
Tom Batiuk’s Funky Winkerbean for the 2nd of April, 1972 and rerun the 11th of March, 2018. Maybe I’m just overbalancing for the depression porn that Funky Winkerbean has become, but I find this a funny bordering-on-existential joke.

Tom Batiuk’s Funky Winkerbean for the 2nd of April, 1972 is, I think, the first appearance of Funky Winkerbean around here. Comics Kingdom just started running the strip, as well as Bud Blake’s Tiger and Bill Hoest’s Lockhorns, from the beginning as part of its Vintage Comics roster. And this strip really belonged in Sunday’s essay, but I noticed the vintage comics only after that installment went to press. Anyway, this strip — possibly the first Sunday Funky Winkerbean — plays off a then-contemporary fear of people being reduced to numbers in the face of a computerized society. If you can imagine people ever worrying about something like that. The early 1970s were a time in American society when people first paid attention to the existence of, like, credit reporting agencies. Just what they did and how they did it drew a lot of critical examination. Josh Lauer’s recently published Creditworthy: a History of Consumer Surveillance and Financial Identity in America gets into this.

Bear: 'Can I come in?' Molly: 'Sure.' Bear: 'What happened?' Molly: 'I got an F on my math test.' Bear: 'But you're a genius at math.' Molly: 'I didn't have time to study.' Bear: 'Is it because I distracted you with my troubles yesterday?' Molly: 'No. Well, maybe. Not really. Okay, sure. Yes. I don't know. ARRGHHHH!!!'
Bob Scott’s Bear With Me for the 14th of March, 2018. Every conversation with a high-need, low-self-esteem friend.

Bob Scott’s Bear With Me for the 14th sees Molly struggling with failure on a mathematics test. Could be any subject and the story would go as well, but I suppose mathematics gets a connotation of the subject everybody has to study for, even the geniuses. (The strip used to be called Molly and the Bear. In either name this seems to be the first time I’ve tagged it, although I only started tagging strips by name recently.)

Jeff: 'Next November you and I will have appeared in this comic strip for 45 years!' Mutt: 'Mmm. 45 years! That's 540 months or 2,340 weeks! So, the boss drew us 1,436 times ... one each day of the year! Now, 16,436 until I'm 90 ... ' Jeff: 'What have you been working on?' Mutt: 'Oh, I'm just calculating what we'll be doing during the next 45 years!' (Jeff leaves having clobbered Mutt.) Mutt: 'No! Not this!'
Bud Fisher’s Mutt and Jeff rerun for the 14th of March, 2018. The comic strip ended the 26th of June, 1983 — I remember the announcement of its ending in the (Perth Amboy) News-Tribune, our evening paper, and thinking it seemed illicit that an ancient comic strip like that could end. It was a few months from being 76 years old then.

Bud Fisher’s Mutt and Jeff rerun for the 14th is a rerun from sometime in 1952. I’m tickled by the problem of figuring out how many times Fisher and his uncredited assistants drew Mutt and Jeff. Mutt saying that the boss “drew us 14,436 times” is the number of days in 45 years, so that makes sense if he’s counting the number of strips drawn. The number of times that Mutt and Jeff were drawn is … probably impossible to calculate. There’s so many panels each strip, especially going back to earlier and earlier times. And how many panels don’t have Mutt or don’t have Jeff or don’t have either in them? Jeff didn’t appear in the strip until March of 1908, for example, four months after the comic began. (With a different title, so the comic wasn’t just dangling loose all that while.)

Diagram: Pie Chart, Donut Chart (pie chart with the center missing), Tart Charts (several small pie charts), Shepherd's Pie Chart (multiple-curve plot with different areas colored differently), Tiramisu Chart (multiple-curve plot with all areas colored the same), and Lobster Thermidor Chart (lobster with chunks labelled).
Doug Savage’s Savage Chickens for the 14th of March, 2018. Yeah, William Playfair invented all these too.

Doug Savage’s Savage Chickens for the 14th is a collection of charts. Not all pie charts. And yes, it ran the 14th but avoids the pun it could make. I really like the tart charts, myself.

And now for the Pi Day strips proper.

[PI sces ] Guy at bar talking to Pi: 'Wow, so you were born on March 14th at 1:59, 26 seconds? What're the odds?'
Scott Hilburn’s The Argyle Sweater for the 14th of March, 2018. Also a free probability question, if you’re going to assume that every second of the year is equally likely to be the time of birth.

Scott Hilburn’s The Argyle Sweater for the 14th starts the Pi Day off, of course, with a pun and some extension of what makes 3/14 get its attention. And until Hilburn brought it up I’d never thought about the zodiac sign for someone born the 14th of March, so that’s something.

Pi figure, wearing glasses, reading The Neverending Story.
Mark Parisi’s Off The Mark for the 14th of March, 2018. Really the book seems a little short for that.

Mark Parisi’s Off The Mark for the 14th riffs on one of the interesting features of π, that it’s an irrational number. Well, that its decimal representation goes on forever. Rational numbers do that too, yes, but they all end in the infinite repetition of finitely many digits. And for a lot of them, that digit is ‘0’. Irrational numbers keep going on with more complicated patterns. π sure seems like it’s a normal number. So we could expect that any finite string of digits appears somewhere in its decimal expansion. This would include a string of digits that encodes any story you like, The Neverending Story included. This does not mean we might ever find where that string is.

[ How ancient mathematicians amused themselves, AKA how to celebrate Pi Day today; third annual Pi-Easting Contest. Emcee: 'And HERE he is, our defending champ, that father of conic sections --- ARCHIMEDES!' They're all eating cakes shaped like pi.
Michael Cavna’s Warped for the 14th of March, 2018. Yes, but have you seen Pythagoras and his golden thigh?

Michael Cavna’s Warped for the 14th combines the two major joke threads for Pi Day. Specifically naming Archimedes is a good choice. One of the many things Archimedes is famous for is finding an approximation for π. He’d worked out that π has to be larger than 310/71 but smaller than 3 1/7. Archimedes used an ingenious approach: we might not know the precise area of a circle given only its radius. But we can know the area of a triangle if we know the lengths of its legs. And we can draw a series of triangles that are enclosed by a circle. The area of the circle has to be larger than the sum of the areas of those triangles. We can draw a series of triangles that enclose a circle. The area of the circle has to be less than the sum of the areas of those triangles. If we use a few triangles these bounds are going to be very loose. If we use a lot of triangles these bounds can be tight. In principle, we could make the bounds as close together as we could possibly need. We can see this, now, as a forerunner to calculus. They didn’t see it as such at the time, though. And it’s a demonstration of what amazing results can be found, even without calculus, but with clever specific reasoning. Here’s a run-through of the process.

[ To Stephen Hawking, Thanks for making the Universe a little easier for the rest of us to understand ] Jay: 'I suppose it's only appropriate that he'd go on Pi Day.' Roy: 'Not to mention, Einstein's birthday.' Katherine: 'I'll bet they're off in some far reach of the universe right now playing backgammon.'
John Zakour and Scott Roberts’s Working Daze for the 15th of March, 2018. No, you should never read the comments, but here, really, don’t read the comments.

John Zakour and Scott Roberts’s Working Daze for the 15th is a response to Dr Stephen Hawking’s death. The coincidence that he did die on the 14th of March made for an irresistibly interesting bit of trivia. Zakour and Roberts could get there first, thanks to working on a web comic and being quick on the draw. (I’m curious whether they replaced a strip that was ready to go for the 15th, or whether they normally work one day ahead of publication. It’s an exciting but dangerous way to go.)

Reading the Comics, February 3, 2018: Overworked Edition


And this should clear out last week’s mathematically-themed comic strips. I didn’t realize just how busy last week had been until I looked at what I thought was a backlog of just two days’ worth of strips and it turned out to be about two thousand comics. I exaggerate, but as ever, not by much. This current week seems to be a more relaxed pace. So I’ll have to think of something to write for the Tuesday and Thursday slots. Hm. (I’ll be all right. I’ve got one thing I need to stop bluffing about and write, and there’s usually a fair roundup of interesting tweets or articles I’ve seen that I can write. Those are often the most popular articles around here.)

Hilary Price and Rina Piccolo’s Rhymes with Orange for the 1st of February, 2018 gives us an anthropomorphic geometric figures joke for the week. Also a side of these figures that I don’t think I’ve seen in the newspaper comics before. It kind of raises further questions.

The Geometry. A pair of parallel lines, one with a rectangular lump. 'Not true --- parallel lines *do* meet. In fact, Peter and I are expected.' ('We met at a crossroads in both our lives.')
Hilary Price and Rina Piccolo’s Rhymes with Orange for the 1st of February, 2018. All right, but they’re line segments, but I suppose you can’t reasonably draw infinitely vast things in a daily newspaper strip’s space. The lean of that triangle makes it look way more skeptical, even afraid, than I think Price and Piccolo intended, but I’m not sure there’s a better way to get these two in frame without making the composition weird.

Jason Chatfield’s Ginger Meggs for the 1st just mentions that it’s a mathematics test. Ginger isn’t ready for it.

Mark Tatulli’s Heart of the City rerun for the 1st finally has some specific mathematics mentioned in Heart’s efforts to avoid a mathematics tutor. The bit about the sum of adjacent angles forming a right line being 180 degrees is an important one. A great number of proofs rely on it. I can’t deny the bare fact seems dull, though. I know offhand, for example, that this bit about adjacent angles comes in handy in proving that the interior angles of a triangle add up to 180 degrees. At least for Euclidean geometry. And there are non-Euclidean geometries that are interesting and important and for which that’s not true. Which inspires the question: on a non-Euclidean surface, like say the surface of the Earth, is it that adjacent angles don’t add up to 180 degrees? Or does something else in the proof of a triangle’s interior angles adding up to 180 degrees go wrong?

The Eric the Circle rerun for the 2nd, by JohnG, is one of the occasional Erics that talk about π and so get to be considered on-topic here.

Bill Whitehead’s Free Range for the 2nd features the classic page full of equations to demonstrate some hard mathematical work. And it is the sort of subject that is done mathematically. The equations don’t look to me anything like what you’d use for asteroid orbit projections. I’d expect forecasting just where an asteroid might hit the Earth to be done partly by analytic formulas that could be done on a blackboard. And then made precise by a numerical estimate. The advantage of the numerical estimate is that stuff like how air resistance affects the path of something in flight is hard to deal with analytically. Numerically, it’s tedious, but we can let the computer deal with the tedium. So there’d be just a boring old computer screen to show on-panel.

Bud Fisher’s Mutt and Jeff reprint for the 2nd is a little baffling. And not really mathematical. It’s just got a bizarre arithmetic error in it. Mutt’s fiancee Encee wants earrings that cost ten dollars (each?) and Mutt takes this to be fifty dollars in earring costs and I have no idea what happened there. Thomas K Dye, the web cartoonist who’s done artwork for various article series, has pointed out that the lettering on these strips have been redone with a computer font. (Look at the letters ‘S’; once you see it, you’ll also notice it in the slightly lumpy ‘O’ and the curly-arrow ‘G’ shapes.) So maybe in the transcription the earring cost got garbled? And then not a single person reading the finished product read it over and thought about what they were doing? I don’t know.

Zach Weinersmith’s Saturday Morning Breakfast Cereal reprint for the 2nd is based, as his efforts to get my attention often are, on a real mathematical physics postulate. As the woman postulates: given a deterministic universe, with known positions and momentums of every particle, and known forces for how all these interact, it seems like it should be possible to predict the future perfectly. It would also be possible to “retrodict” the past. All the laws of physics that we know are symmetric in time; there’s no reason you can’t predict the motion of something one second into the past just as well as you an one second into the future. This fascinating observation took a lot of battery in the 19th century. Many physical phenomena are better described by statistical laws, particularly in thermodynamics, the flow of heat. In these it’s often possible to predict the future well but retrodict the past not at all.

But that looks as though it’s a matter of computing power. We resort to a statistical understanding of, say, the rings of Saturn because it’s too hard to track the billions of positions and momentums we’d need to otherwise. A sufficiently powerful mathematician, for example God, would be able to do that. Fair enough. Then came the 1890s. Henri Poincaré discovered something terrifying about deterministic systems. It’s possible to have chaos. A mathematical representation of a system is a bit different from the original system. There’s some unavoidable error. That’s bound to make some, larger, error in any prediction of its future. For simple enough systems, this is okay. We can make a projection with an error as small as we need, at the cost of knowing the current state of affairs with enough detail. Poincaré found that some systems can be chaotic, though, ones in which any error between the current system and its representation will grow to make the projection useless. (At least for some starting conditions.) And so many interesting systems are chaotic. Incredibly simplified models of the weather are chaotic; surely the actual thing is. This implies that God’s projection of the universe would be an amusing but almost instantly meaningless toy. At least unless it were a duplicate of the universe. In which case we have to start asking our philosopher friends about the nature of identity and what a universe is, exactly.

Ruben Bolling’s Super-Fun-Pak Comix for the 2nd is an installment of Guy Walks Into A Bar featuring what looks like an arithmetic problem to start. It takes a turn into base-ten jokes. There are times I suspect Ruben Bolling to be a bit of a nerd.

Nate Fakes’s Break of Day for the 3rd looks like it’s trying to be an anthropomorphic-numerals joke. At least it’s an anthropomorphic something joke.

Percy Crosby’s Skippy for the 3rd originally ran the 8th of December, 1930. It alludes to one of those classic probability questions: what’s the chance that in your lungs is one of the molecules exhaled by Julius Caesar in his dying gasp? Or whatever other event you want: the first breath you ever took, or something exhaled by Jesus during the Sermon on the Mount, or exhaled by Sue the T-Rex as she died. Whatever. The chance is always surprisingly high, which reflects the fact there’s a lot of molecules out there. This also reflects a confidence that we can say one molecule of air is “the same” as some molecule if air in a much earlier time. We have to make that supposition to have a problem we can treat mathematically. My understanding is chemists laugh at us if we try to suggest this seriously. Fair enough. But whether the air pumped out of a bicycle tire is ever the same as what’s pumped back in? That’s the same kind of problem. At least some of the molecules of air will be the same ones. Pretend “the same ones” makes sense. Please.

Reading the Comics, February 23, 2017: The Week At Once Edition


For the first time in ages there aren’t enough mathematically-themed comic strips to justify my cutting the week’s roundup in two. No, I have no idea what I’m going to write about for Thursday. Let’s find out together.

Jenny Campbell’s Flo and Friends for the 19th faintly irritates me. Flo wants to make sure her granddaughter understands that just because it takes people on average 14 minutes to fall asleep doesn’t mean that anyone actually does, by listing all sorts of reasons that a person might need more than fourteen minutes to sleep. It makes me think of a behavior John Allen Paulos notes in Innumeracy, wherein the statistically wise points out that someone has, say, a one-in-a-hundred-million chance of being killed by a terrorist (or whatever) and is answered, “ah, but what if you’re that one?” That is, it’s a response that has the form of wisdom without the substance. I notice Flo doesn’t mention the many reasons someone might fall asleep in less than fourteen minutes.

But there is something wise in there nevertheless. For most stuff, the average is the most common value. By “the average” I mean the arithmetic mean, because that is what anyone means by “the average” unless they’re being difficult. (Mathematicians acknowledge the existence of an average called the mode, which is the most common value (or values), and that’s most common by definition.) But just because something is the most common result does not mean that it must be common. Toss a coin fairly a hundred times and it’s most likely to come up tails 50 times. But you shouldn’t be surprised if it actually turns up tails 51 or 49 or 45 times. This doesn’t make 50 a poor estimate for the average number of times something will happen. It just means that it’s not a guarantee.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 19th shows off an unusually dynamic camera angle. It’s in service for a class of problem you get in freshman calculus: find the longest pole that can fit around a corner. Oh, a box-spring mattress up a stairwell is a little different, what with box-spring mattresses being three-dimensional objects. It’s the same kind of problem. I want to say the most astounding furniture-moving event I’ve ever seen was when I moved a fold-out couch down one and a half flights of stairs single-handed. But that overlooks the caged mouse we had one winter, who moved a Chinese finger-trap full of crinkle paper up the tight curved plastic to his nest by sheer determination. The trap was far longer than could possibly be curved around the tube. We have no idea how he managed it.

J R Faulkner’s Promises, Promises for the 20th jokes that one could use Roman numerals to obscure calculations. So you could. Roman numerals are terrible things for doing arithmetic, at least past addition and subtraction. This is why accountants and mathematicians abandoned them pretty soon after learning there were alternatives.

Mark Anderson’s Andertoons for the 21st is the Mark Anderson’s Andertoons for the week. Probably anything would do for the blackboard problem, but something geometry reads very well.

Jef Mallett’s Frazz for the 21st makes some comedy out of the sort of arithmetic error we all make. It’s so easy to pair up, like, 7 and 3 make 10 and 8 and 2 make 10. It takes a moment, or experience, to realize 78 and 32 will not make 100. Forgive casual mistakes.

Bud Fisher’s Mutt and Jeff rerun for the 22nd is a similar-in-tone joke built on arithmetic errors. It’s got the form of vaudeville-style sketch compressed way down, which is probably why the third panel could be made into a satisfying final panel too.

'How did you do on the math test?' 'Terrible.' 'Will your mom be mad?' 'Maybe. But at least she'll know I didn't cheat!'
Bud Blake’s Tiger for the 23rd of February, 2017. I want to blame the colorists for making Hugo’s baby tooth look so weird in the second and third panels, but the coloring is such a faint thing at that point I can’t. I’m sorry to bring it to your attention if you didn’t notice and weren’t bothered by it before.

Bud Blake’s Tiger rerun for the 23rd just name-drops mathematics; it could be any subject. But I need some kind of picture around here, don’t I?

Mike Baldwin’s Cornered for the 23rd is the anthropomorphic numerals joke for the week.

Reading the Comics, February 2, 2017: I Haven’t Got A Jumble Replacement Source Yet


If there was one major theme for this week it was my confidence that there must be another source of Jumble strips out there. I haven’t found it, but I admit not making it a priority either. The official Jumble site says I can play if I activate Flash, but I don’t have enough days in the year to keep up with Flash updates. And that doesn’t help me posting mathematics-relevant puzzles here anyway.

Mark Anderson’s Andertoons for January 29th satisfies my Andertoons need for this week. And it name-drops the one bit of geometry everyone remembers. To be dour and humorless about it, though, I don’t think one could likely apply the Pythagorean Theorem. Typically the horizontal axis and the vertical axis in a graph like this measure different things. Squaring the different kinds of quantities and adding them together wouldn’t mean anything intelligible. What would even be the square root of (say) a squared-dollars-plus-squared-weeks? This is something one learns from dimensional analysis, a corner of mathematics I’ve thought about writing about some. I admit this particular insight isn’t deep, but everything starts somewhere.

Norm Feuti’s Gil rerun for the 30th is a geometry name-drop, listing it as the sort of category Jeopardy! features. Gil shouldn’t quit so soon. The responses for the category are “What is the Pythagorean Theorem?”, “What is acute?”, “What is parallel?”, “What is 180 degrees?” (or, possibly, 360 or 90 degrees), and “What is a pentagon?”.

Parents' Glossary Of Terms: 'Mortifraction': That utter shame when you realize you can no longer do math in your head. Parent having trouble making change at a volunteer event.
Terri Libenson’s Pajama Diaries for the 1st of February, 2017. You know even for a fundraising event $17.50 seems a bit much for a hot dog and bottled water. Maybe the friend’s 8-year-old child is way off too.

Terri Libenson’s Pajama Diaries for the 1st of February shows off the other major theme of this past week, which was busy enough that I have to again split the comics post into two pieces. That theme is people getting basic mathematics wrong. Mostly counting. (You’ll see.) I know there’s no controlling what people feel embarrassed about. But I think it’s unfair to conclude you “can no longer” do mathematics in your head because you’re not able to make change right away. It’s normal to be slow or unreliable about something you don’t do often. Inexperience and inability are not the same thing, and it’s unfair to people to conflate them.

Gordon Bess’s Redeye for the 21st of September, 1970, got rerun the 1st of February. And it’s another in the theme of people getting basic mathematics wrong. And even more basic mathematics this time. There’s more problems-with-counting comics coming when I finish the comics from the past week.

'That was his sixth shot!' 'Good! OK, Paleface! You've had it now!' (BLAM) 'I could never get that straight, does six come after four or after five?'
Gordon Bess’s Redeye for the 21st of September, 1970. Rerun the 1st of February, 2017. I don’t see why they’re so worried about counting bullets if being shot just leaves you a little discombobulated.

Dave Whamond’s Reality Check for the 1st hopes that you won’t notice the label on the door is painted backwards. Just saying. It’s an easy joke to make about algebra, also, that it should put letters in to perfectly good mathematics. Letters are used for good reasons, though. We’ve always wanted to work out the value of numbers we only know descriptions of. But it’s way too wordy to use the whole description of the number every time we might speak of it. Before we started using letters we could use placeholder names like “re”, meaning “thing” (as in “thing we want to calculate”). That works fine, although it crashes horribly when we want to track two or three things at once. It’s hard to find words that are decently noncommittal about their values but that we aren’t going to confuse with each other.

So the alphabet works great for this. An individual letter doesn’t suggest any particular number, as long as we pretend ‘O’ and ‘I’ and ‘l’ don’t look like they do. But we also haven’t got any problem telling ‘x’ from ‘y’ unless our handwriting is bad. They’re quick to write and to say aloud, and they don’t require learning to write any new symbols.

Later, yes, letters do start picking up connotations. And sometimes we need more letters than the Roman alphabet allows. So we import from the Greek alphabet the letters that look different from their Roman analogues. That’s a bit exotic. But at least in a Western-European-based culture they aren’t completely novel. Mathematicians aren’t really trying to make this hard because, after all, they’re the ones who have to deal with the hard parts.

Bu Fisher’s Mutt and Jeff rerun for the 2nd is another of the basic-mathematics-wrong jokes. But it does get there by throwing out a baffling set of story-problem-starter points. Particularly interesting to me is Jeff’s protest in the first panel that they couldn’t have been doing 60 miles an hour as they hadn’t been out an hour. It’s the sort of protest easy to use as introduction to the ideas of average speed and instantaneous speed and, from that, derivatives.

Reading the Comics, April 15, 2015: Tax Day Edition


Since it is mid-April, and most of the comic strips at Comics Kingdom and GoComics.com are based in the United States, Comic Strip Master Command ordered quite a few comics about taxes. Most of those are simple grumbling, but the subject naturally comes around to arithmetic and calculation and sometimes even logic. Thus, this is a Tax Day edition, though it’s bookended with Mutt and Jeff.

Bud Fisher’s Mutt And Jeff (April 11) — a rerun rom goodness only knows when, and almost certainly neither written nor drawn by Bud Fisher at that point — recounts a joke that has the form of a word problem in which a person’s age is deduced from information about the age. It’s an old form, but jokes about cutting the Gordion knot are probably always going to be reliable. I’m reminded there’s a story of Thomas Edison giving a new hire, mathematician, the problem of working out the volume of a light bulb. Edison got impatient with the mathematician treating it as a calculus problem — the volume of a rotationally symmetric object like a bulb is the sort of thing you can do by the end of Freshman Calculus — and instead filling a bulb with water, pouring the water into a graduated cylinder, and reading it off that.

Calculus under 50: vectors and stuff. Calculus over 50: diet and exercise problems.
Sandra Bell-Lundy’s Between Friends for the 12th of April, 2015. The link will likely expire around the 12th of May.

Sandra Bell-Lundy’s Between Friends (April 12) uses Calculus as the shorthand for “the hardest stuff you might have to deal with”. The symbols on the left-hand side are fair enough, although I’d think of them more as precalculus or linear algebra or physics, but they do parse well enough as long as I suppose that what sure looks like a couple of extraneous + signs are meant to refer to “t”. But “t” is a common enough variable in calculus problems, usually representing time, sometimes just representing “some parameter whose value we don’t really care about, but we don’t want it to be x”, and it looks an awful lot like a plus sign there too. On the right side, I have no idea what a root of forty minutes on a treadmill might be. It’s symbolic.

Continue reading “Reading the Comics, April 15, 2015: Tax Day Edition”

Some More Comic Strips


I might turn this into a regular feature. A couple more comic strips, all this week on gocomics.com, ran nice little mathematically-linked themes, and as far as I can tell I’m the only one who reads any of them so I might spread the word some.

Grant Snider’s Incidental Comics returns again with the Triangle Circus, in his strip of the 12th of March. This strip is also noteworthy for making use of “scalene”, which is also known as “that other kind of triangle” which nobody can remember the name for. (He’s had several other math-panel comic strips, and I really enjoy how full he stuffs the panels with drawings and jokes in most strips.)

Dave Blazek’s Loose Parts from the 15th of March puts up a version of the Cretan Paradox that amused me much more than I thought it would at first glance. I kept thinking back about it and grinning. (This blurs the line between mathematics and philosophy, but those lines have always been pretty blurred, particularly in the hotly disputed territory of Logic.)

Bud Fisher’s Mutt and Jeff is in reruns, of course, and shows a random scattering of strips from the 1930s and 1940s and, really, seem to show off how far we’ve advanced in efficiency in setup-and-punchline since the early 20th century. But the rerun from the 17th of March (I can’t make out the publication date, although the figures in the article probably could be used to guess at the year) does demonstrate the sort of estimating-a-value that’s good mental exercise too.

I note that where Mutt divides 150,000,000 into 700,000,000 I would instead have divided the 150 million into 750,000,000, because that’s a much easier problem, and he just wanted an estimate anyway. It would get to the estimate of ten cents a week later in the word balloon more easily that way, too. But making estimates and approximations are in part an art. But I don’t think of anything that gives me 2/3ds of a cent as an intermediate value on the way to what I want as being a good approximation.

There’s nothing fresh from Bill Whitehead’s Free Range, though I’m still reading just in case.

%d bloggers like this: