Reading the Comics, December 9, 2017: Zach Weinersmith Wants My Attention Edition

If anything dominated the week in mathematically-themed comic strips it was Zach Weinersmith’s Saturday Morning Breakfast Cereal. I don’t know how GoComics selects the strips to (re?)print on their site. But there were at least four that seemed on-point enough for me to mention. So, okay. He’s got my attention. What’s he do with it?

On the 3rd of December is a strip I can say is about conditional probability. The mathematician might be right that the chance someone will be murdered by a serial killer are less than one in ten million. But that is the chance of someone drawn from the whole universe of human experiences. There are people who will never be near a serial killer, for example, or who never come to his attention or who evade his interest. But if we know someone is near a serial killer, or does attract his interest? The information changes the probability. And this is where you get all those counter-intuitive and somewhat annoying logic puzzles about, like, the chance someone’s other child is a girl if the one who just walked in was, and how that changes if you’re told whether the girl who just entered was the elder.

On the 5th is a strip about sequences. And built on the famous example of exponential growth from doubling a reward enough times. Well, you know these things never work out for the wise guy. The “Fibonacci Spiral” spoken of in the next-to-last panel is a spiral, like you figure. The dimensions of the spiral are based on those of golden-ratio rectangles. It looks a great deal like a logarithmic spiral to the untrained eye. Also to the trained eye, but you knew that. I think it’s supposed to be humiliating that someone would call such a spiral “random”. But I admit I don’t get that part.

The strip for the 6th has a more implicit mathematical content. It hypothesizes that mathematicians, given the chance, will be more interested in doing recreational puzzles than even in eating and drinking. It’s amusing, but I’ll admit I’ve found very few puzzles all that compelling. This isn’t to say there aren’t problems I keep coming back to because I’m curious about them, just that they don’t overwhelm my common sense. Don’t ask me when I last received actual pay for doing something mathematical.

And then on the 9th is one more strip, about logicians. And logic puzzles, such as you might get in a Martin Gardner collection. The problem is written out on the chalkboard with some shorthand logical symbols. And they’re symbols both philosophers and mathematicians use. The letter that looks like a V with a crossbar means “for all”. (The mnemonic I got was “it’s an A-for-all, upside-down”. This paired with the other common symbol, which looks like a backwards E and means there exists: “E-for-exists, backwards”. Later I noticed upside-down A and backwards E could both be just 180-degree-rotated A and E. But try saying “180-degree-rotated” in a quick way.) The curvy E between the letters ‘x’ and ‘S’ means “belongs to the set”. So that first line says “for all x that belong to the set S this follows”. Writing out “isLiar(x)” instead of, say, “L(x)”, is more a philosopher’s thing than a mathematician’s. But it wouldn’t throw anyway. And the T just means emphasizing that this is true.

And that is as much about Saturday Morning Breakfast Cereal as I have to say this week.

Sam Hurt’s Eyebeam for the 4th tells a cute story about twins trying to explain infinity to one another. I’m not sure I can agree with the older twin’s assertion that infinity means there’s no biggest number. But that’s just because I worry there’s something imprecise going on there. I’m looking forward to the kids learning about negative numbers, though, and getting to wonder what’s the biggest negative real number.

Percy Crosby’s Skippy for the 4th starts with Skippy explaining a story problem. One about buying potatoes, in this case. I’m tickled by how cranky Skippy is about boring old story problems. Motivation is always a challenge. The strip originally ran the 7th of October, 1930.

Dave Whamond’s Reality Check for the 6th uses a panel of (gibberish) mathematics as an example of an algorithm. Algorithms are mathematical, in origin at least. The word comes to us from the 9th century Persian mathematician Al-Khwarizmi’s text about how to calculate. The modern sense of the word comes from trying to describe the methods by which a problem can be solved. So, legitimate use of mathematics to show off the idea. The symbols still don’t mean anything.

Joe: 'Grandpa, what's 5x7?' Grandpa: 'Why do you wanna know?' Joe: 'I'm testing your memory.' Grandpa: 'Oh! The answer's 35.' Joe: 'Thanks! Now what is 8x8?' Grandpa: 'Joe, is that last night's homework?' Joe: 'We're almost done! Only 19 more!'
Rick Detorie’s One Big Happy for the 7th of December, 2017. And some attention, please, for Ruthie there. She’s completely irrelevant to the action, but it makes sense for her to be there if Grandpa is walking them to school, and she adds action — and acting — to the scenes.

Rick Detorie’s One Big Happy for the 7th has Joe trying to get his mathematics homework done at the last minute. … And it’s caused me to reflect on how twenty multiplication problems seems like a reasonable number to do. But there’s only fifty multiplications to even do, at least if you’re doing the times tables up to the 10s. No wonder students get so bored seeing the same problems over and over. It’s a little less dire if you’re learning times tables up to the 12s, but not that much better. Yow.

Olivia Walch’s Imogen Quest for the 8th looks pretty legitimate to me. It’s going to read as gibberish to people who haven’t done parametric functions, though. Start with the plane and the familiar old idea of ‘x’ and ‘y’ representing how far one is along a horizontal and a vertical direction. Here, we’re given a dummy variable ‘t’, and functions to describe a value for ‘x’ and ‘y’ matching each value of ‘t’. The plot then shows all the points that ever match a pair of ‘x’ and ‘y’ coordinates for some ‘t’. The top drawing is a shape known as the cardioid, because it kind of looks like a Valentine-heart. The lower figure is a much more complicated parametric equation. It looks more anatomically accurate,

Still no sign of Mark Anderson’s Andertoons and the drought is worrying me, yes.

But they’re still going on the cartoonist’s web site, so there’s that.


Reading the Comics, November 18, 2017: Story Problems and Equation Blackboards Edition

It was a normal-paced week at Comic Strip Master Command. It was also one of those weeks that didn’t have anything from Comics Kingdom or Creators.Com. So I’m afraid you’ll all just have to click the links for strips you want to actually see. Sorry.

Bill Amend’s FoxTrot for the 12th has Jason and Marcus creating “mathic novels”. They, being a couple of mathematically-gifted smart people, credit mathematics knowledge with smartness. A “chiliagon” is a thousand-sided regular polygon that’s mostly of philosophical interest. A regular polygon with a thousand equal sides and a thousand equal angles looks like a circle. There’s really no way to draw one so that the human eye could see the whole figure and tell it apart from a circle. But if you can understand the idea of a regular polygon it seems like you can imagine a chilagon and see how that’s not a circle. So there’s some really easy geometry things that can’t be visualized, or at least not truly visualized, and just have to be reasoned with.

Rick Detorie’s One Big Happy for the 12th is a story-problem-subversion joke. The joke’s good enough as it is, but the supposition of the problem is that the driving does cover fifty miles in an hour. This may not be the speed the car travels at the whole time of the problem. Mister Green is maybe speeding to make up for all the time spent travelling slower.

Brandon Sheffield and Dami Lee’s Hot Comics for Cool People for the 13th uses a blackboard full of equations to represent the deep thinking being done on a silly subject.

Shannon Wheeler’s Too Much Coffee Man for the 15th also uses a blackboard full of equations to represent the deep thinking being done on a less silly subject. It’s a really good-looking blackboard full of equations, by the way. Beyond the appearance of our old friend E = mc2 there’s a lot of stuff that looks like legitimate quantum mechanics symbols there. They’re at least not obvious nonsense, as best I can tell without the ability to zoom the image in. I wonder if Wheeler didn’t find a textbook and use some problems from it for the feeling of authenticity.

Samson’s Dark Side of the Horse for the 16th is a story-problem subversion joke.

Jef Mallett’s Frazz for the 18th talks about making a bet on the World Series, which wrapped up a couple weeks ago. It raises the question: can you bet on an already known outcome? Well, sure, you can bet on anything you like, given a willing partner. But there does seem to be something fundamentally different between betting on something whose outcome isn’t in principle knowable, such as the winner of the next World Series, and betting on something that could be known but happens not to be, such as the winner of the last. We see this expressed in questions like “is it true the 13th of a month is more likely to be Friday than any other day of the week?” If you know which month and year is under discussion the chance the 13th is Friday is either 1 or 0. But we mean something more like, if we don’t know what month and year it is, what’s the chance this is a month with a Friday the 13th? Something like this is at work in this World Series bet. (The Astros won the recently completed World Series.)

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th is also featured on some underemployed philosopher’s “Reading the Comics” WordPress blog and fair enough. Utilitarianism exists in an odd triple point, somewhere on the borders of ethics, economics, and mathematics. The idea that one could quantize the good or the utility or the happiness of society, and study how actions affect it, is a strong one. It fits very well the modern mindset that holds everything can be quantified even if we don’t know how to do it well just yet. And it appeals strongly to a mathematically-minded person since it sounds like pure reason. It’s not, of course, any more than any ethical scheme can be. But it sounds like the ethics a Vulcan would come up with and that appeals to a certain kind of person. (The comic is built on one of the implications of utilitarianism that makes it seem like the idea’s gone off the rails.)

There’s some mathematics symbols on The Utilitarian’s costume. The capital U on his face is probably too obvious to need explanation. The \sum u on his chest relies on some mathematical convention. For maybe a half-millennium now mathematicians have been using the capital sigma to mean “take a sum of things”. The things are whatever the expression after that symbol is. Usually, the Sigma will have something below and above which carries meaning. It says what the index is for the thing after the symbol, and what the bounds of the index are. Here, it’s not set. This is common enough, though, if this is understood from context. Or if it’s obvious. The small ‘u’ to the right suggests the utility of whatever’s thought about. (“Utility” being the name for the thing measured and maximized; it might be happiness, it might be general well-being, it might be the number of people alive.) So the symbols would suggest “take the sum of all the relevant utilities”. Which is the calculation that would be done in this case.

Reading the Comics, February 15, 2017: SMBC Does Not Cut In Line Edition

On reflection, that Saturday Morning Breakfast Cereal I was thinking about was not mathematically-inclined enough to be worth including here. Helping make my mind up on that was that I had enough other comic strips to discuss here that I didn’t need to pad my essay. Yes, on a slow week I let even more marginal stuff in. Here’s the comic I don’t figure to talk about. Enjoy!

Jack Pullan’s Boomerangs rerun for the 16th is another strip built around the “algebra is useless in real life” notion. I’m too busy noticing Mom in the first panel saying “what are you doing play [sic] video games?” to respond.

Ruben Bolling’s Super-Fun-Pak Comix excerpt for the 16th is marginal, yeah, but fun. Numeric coincidence and numerology can sneak into compulsions with terrible ease. I can believe easily the need to make the number of steps divisible by some favored number.

Rich Powell’s Wide Open for the 16th is a caveman science joke, and it does rely on a chalkboard full of algebra for flavor. The symbols come tantalizingly close to meaningful. The amount of kinetic energy, K or KE, of a particle of mass m moving at speed v is indeed K = \frac{1}{2} m v^2 . Both 16 and 32 turn up often in the physics of falling bodies, at least if we’re using feet to measure. a = -\frac{k}{m} x turns up in physics too. It comes from the acceleration of a mass on a spring. But an equation of the same shape turns up whenever you describe things that go through tiny wobbles around the normal value. So the blackboard is gibberish, but it’s a higher grade of gibberish than usual.

Rick Detorie’s One Big Happy rerun for the 17th is a resisting-the-word-problem joke, made fresher by setting it in little Ruthie’s playing at school.

T Lewis and Michael Fry’s Over The Hedge for the 18th mentions the three-body problem. As Verne the turtle says, it’s a problem from physics. The way two objects — sun and planet, planet and moon, pair of planets, whatever — orbit each other if they’re the only things in the universe is easy. You can describe it all perfectly and without using more than freshman physics majors know. Introduce a third body, though, and we don’t know anymore. Chaos can happen.

Emphasis on can. There’s no good way to solve the “general” three-body problem, the one where the star and planets can have any sizes and any starting positions and any starting speeds. We can do well for special cases, though. If you have a sun, a planet, and a satellite — each body negligible compared to the other — we can predict orbits perfectly well. If the bodies have to stay in one plane of motion, instead of moving in three-dimensional space, we can do pretty well. If we know two of the bodies orbit each other tightly and the third is way off in the middle of nowhere we can do pretty well.

But there’s still so many interesting cases for which we just can’t be sure chaos will not break out. Three interacting bodies just offer so much more chance for things to happen. (To mention something surely coincidental, it does seem to be a lot easier to write good comedy, or drama, with three important characters rather than two. Any pair of characters can gang up on the third, after all. I notice how much more energetic Over The Hedge became when Hammy the Squirrel joined RJ and Verne as the core cast.)

Dave Whamond’s Reality Check for the 18th is your basic mathematics-illiteracy joke, done well enough.

Reading the Comics, February 3, 2017: Counting Edition

And now I can close out last week’s mathematically-themed comic strips. Two of them are even about counting, which is enough for me to make that the name of this set.

John Allen’s Nest Heads for the 2nd mentions a probability and statistics class and something it’s supposed to be good for. I would agree that probability and statistics are probably (I can’t find a better way to write this) the most practically useful mathematics one can learn. At least once you’re past arithmetic. They’re practical by birth; humans began studying them because they offer guidance in uncertain situations. And one can use many of their tools without needing more than arithmetic.

I’m not so staunchly anti-lottery as many mathematics people are. I’ll admit I play it myself, when the jackpot is large enough. When the expectation value of the prize gets to be positive, it’s harder to rationalize not playing. This happens only once or twice a year, but it’s fun to watch and see when it happens. I grant it’s a foolish way to use two dollars (two tickets are my limit), but you know? My budget is not so tight I can’t spend four dollars foolishly a year. Besides, I don’t insist on winning one of those half-billion-dollar prizes. I imagine I’d be satisfied if I brought in a mere $10,000.

'Hey, Ruthie's Granny, how old are you?' 'You can't count that high, James.' 'I can too!' 'Fine! Start at one and I'll tell you when you get to my age.' '1, 2, 3, 4, 11, 22, 88, 99, 200, a gazillion!' 'Very good! It's somewhere between 22 and a gazillion!' 'Gazowie!'
Rick Detorie’s One Big Happy for the 3rd of February, 2017. A ‘gazillion’ is actually a surprisingly low number, hovering as it does somewhere around 212. Fun fact!

Rick Detorie’s One Big Happy for the 3rd continues my previous essay’s bit of incompetence at basic mathematics, here, counting. But working out that her age is between 22 an a gazillion may be worth doing. It’s a common mathematical challenge to find a correct number starting from little information about it. Usually we find it by locating bounds: the number must be larger than this and smaller than that. And then get the bounds closer together. Stop when they’re close enough for our needs, if we’re numerical mathematicians. Stop when the bounds are equal to each other, if we’re analytic mathematicians. That can take a lot of work. Many problems in number theory amount to “improve our estimate of the lowest (or highest) number for which this is true”. We have to start somewhere.

Samson’s Dark Side of the Horse for the 3rd is a counting-sheep joke and I was amused that the counting went so awry here. On looking over the strip again for this essay, though, I realize I read it wrong. It’s the fences that are getting counted, not the sheep. Well, it’s a cute little sheep having the same problems counting that Horace has. We don’t tend to do well counting more than around seven things at a glance. We can get a bit farther if we can group things together and spot that, say, we have four groups of four fences each. That works and it’s legitimate; we’re counting and we get the right count out of it. But it does feel like we’re doing something different from how we count, say, three things at a glance.

Mick Mastroianni and Mason MastroianniDogs of C Kennel for the 3rd is about the world’s favorite piece of statistical mechanics, entropy. There’s room for quibbling about what exactly we mean by thermodynamics saying all matter is slowly breaking down. But the gist is fair enough. It’s still mysterious, though. To say that the disorder of things is always increasing forces us to think about what we mean by disorder. It’s easy to think we have an idea what we mean by it. It’s hard to make that a completely satisfying definition. In this way it’s much like randomness, which is another idea often treated as the same as disorder.

Bill Amend’s FoxTrot Classics for the 3rd reprinted the comic from the 10th of February, 2006. Mathematics teachers always want to see how you get your answers. Why? … Well, there are different categories of mistakes someone can make. One can set out trying to solve the wrong problem. One can set out trying to solve the right problem in a wrong way. One can set out solving the right problem in the right way and get lost somewhere in the process. Or one can be doing just fine and somewhere along the line change an addition to a subtraction and get what looks like the wrong answer. Each of these is a different kind of mistake. Knowing what kinds of mistakes people make is key to helping them not make these mistakes. They can get on to making more exciting mistakes.