And now let me close out a week ago, in the comics. It was a slow week and it finished on a bunch of casual mentions of mathematical topics.
Gary Larson’s The Far Side compilation “Hands Off My Bunsen Burner” features this panel creating a model of how to get rights out of wrongs. The material is a joke, but trying to find a transformation from one mathematical object to another is a reasonable enough occupation.
Ted Shearer’s Quincy rerun for the 15th is one in the lineage of strips about never using mathematics in later life. Quincy challenges us to think of a time a reporter asks the President how much is 34 times 587.
That’s an unpleasant multiplication to do. But I can figure some angles on it. 34 is just a bit over one-third of 100. 587 is just a bit under 600. So, 34 times 587 has to be tolerably near one-third of 100 times 600. So it should be something around 20,000. To get it more exact: 587 is 13 less than 600. So, 587 times one-third of a hundred will be 600 times one-third of a hundred minus 13 times one-third of a hundred. That’s one-third of 130, which is about 40. So the product has to be something close to 19,960. And the product has be some number which ends in an 8, what with 4 times 7 being 28. So the answer has to be one of 19,948, 19,958, or 19,968. And, indeed, it’s 19,958. I doubt I could do that so well during a press conference, I’ll admit. (If I wanted to be sure about that second digit, I’d have worked out: the tens unit in 34 times the ones in 587 is three times seven which is 21; the ones unit in 34 times the tens unit in 587 is four times eight which is 32; and the 4 times 7 being 28 gives me a 2 in the tens unit. So, 1 plus 2 plus 2 is 5, and there we go.)
Brian Anderson’s Dog Eat Doug for the 15th uses blackboards full of equations to represent deep thinking. I can’t make out what the symbols say. They look quite good, though, and seem to have the form of legitimate expressions.
Terri Liebenson’s The Pajama Diaries for the 17th imagines creating a model for the volume of a laundry pile. The problem may seem trivial, but it reflects an important kind of work. Many processes are about how something that’s always accumulating will be handled. There’s usually a hard limit to the rate at which whatever it is gets handled. And there’s usually very little reserve, in either capacity or time. This will cause, for example, a small increase in traffic in a neighborhood to produce great jams, or how a modest rain can overflow the whole city’s sewer systems. Or how a day of missing the laundry causes there to be a week’s backlog of dirty clothes.
And a little final extra comic strip. I don’t generally mention web comics here, except for those that have fallen in with a syndicator like GoComics.com. (This is not a value judgement against web comics. It’s that I have to stop reading sometime.) But Kat Swenski’s KatRaccoon Comics recently posted this nice sequence with a cat facing her worst fear: a calculus date.
I knew by Thursday this would be a brief week. The number of mathematically-themed comic strips has been tiny. I’m not upset, as the days turned surprisingly full on me once again. At some point I would have to stop being surprised that every week is busier than I expect, right?
Anyway, the week gives me plenty of chances to look back to 1936, which is great fun for people who didn’t have to live through 1936.
Elzie Segar’s Thimble Theatre rerun for the 28th of October is part of the story introducing Eugene the Jeep. The Jeep has astounding powers which, here, are finally explained as being due to it being a fourth-dimensional creature. Or at least able to move into the fourth dimension. This is amazing for how it shows off the fourth dimension being something you could hang a comic strip plot on, back in the day. (Also back in the day, humor strips with ongoing plots that might run for months were very common. The only syndicated strips like it today are Gasoline Alley, Alley Oop, the current storyline in Safe Havens where they’ve just gone and terraformed Mars, and Popeye, rerunning old daily stories.) The Jeep has many astounding powers, including that he can’t be kept inside — or outside — anywhere against his will, and he’s able to forecast the future.
Could there be a fourth-dimensional animal? I dunno, I’m not a dimensional biologist. It seems like we need a rich chemistry for life to exist. Lots of compounds, many of them long and complicated ones. Can those exist in four dimensions? I don’t know the quantum mechanics of chemical formation well enough to say. I think there’s obvious problems. Electrical attraction and repulsion would fall off much more rapidly with distance than they do in three-dimensional space. This seems like it argues chemical bonds would be weaker things, which generically makes for weaker chemical compounds. So probably a simpler chemistry. On the other hand, what’s interesting in organic chemistry is shapes of molecules, and four dimensions of space offer plenty of room for neat shapes to form. So maybe that compensates for the chemical bonds. I don’t know.
But if we take the premise as given, that there is a four-dimensional animal? With some minor extra assumptions then yeah, the Jeep’s powers fit well enough. Not being able to be enclosed follows almost naturally. You, a three-dimensional being, can’t be held against your will by someone tracing a line on the floor around you. The Jeep — if the fourth dimension is as easy to move through as the third — has the same ability.
Forecasting the future, though? We have a long history of treating time as “the” fourth dimension. There’s ways that this makes good organizational sense. But we do have to treat time as somehow different from space, even to make, for example, general relativity work out. If the Jeep can see and move through time? Well, yeah, then if he wants he can check on something for you, at least if it’s something whose outcome he can witness. If it’s not, though? Well, maybe the flow of events from the fourth dimension is more obvious than it is from a mere three, in the way that maybe you can spot something coming down the creek easily, from above, in a way that people on the water can’t tell.
Olive Oyl and Popeye use the Jeep to tease one another, asking for definite answers about whether the other is cute or not. This seems outside the realm of things that the fourth dimension could explain. In the 1960s cartoons he even picks up the power to electrically shock offenders; I don’t remember if this was in the comic strips at all.
Elzie Segar’s Thimble Theatre rerun for the 29th of October, 2019. It originally ran the 29th of May, 1936. Also wait, where did Wimpy pick up all this talk about the fourth dimension? I guess if you’re going to let a line of smooth patter take the place of working you have to be on top of anything that might come up, but it still seems like a lot of work he’s gone to here to use the Jeep to win horse races.
Elzie Segar’s Thimble Theatre rerun for the 29th of October has Wimpy doing his best to explain the fourth dimension. I think there’s a warning here for mathematician popularizers here. He gets off to a fair start and then it all turns into a muddle. Explaining the fourth dimension in terms of the three dimensions we’re familiar with seems like a good start. Appealing to our intuition to understand something we have to reason about has a long and usually successful history. But then Wimpy goes into a lot of talk about the mystery of things, and it feels like it’s all an appeal to the strangeness of the fourth dimension. I don’t blame Popeye for not feeling it’s cleared anything up. Segar would come back, in this storyline, to several other attempted explanations of the Jeep’s powers, although they do come back around to, y’know, it’s a magical animal. They’re all over the place in the Popeye comic universe.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 28th of October is a riff on predictability and encryption. Good encryption schemes rely on randomness. Concealing the content of a message means matching it to an alternate message. Each of the alternate messages should be equally likely to be transmitted. This way, someone who hasn’t got the key would not be able to tell what’s being sent. The catch is that computers do not truly do randomness. They mostly rely on quasirandom schemes that could, in principle, be detected and spoiled. There are ways to get randomness, mostly involving putting in something from the real world. Sensors that detect tiny fluctuations in temperature, for example, or radio detectors. I recall one company going for style and using a wall of lava lamps, so that the rise and fall of lumps were in some way encoded into unpredictable numbers.
Robb Armstrong’s JumpStart for the 2nd of November is a riff on the Birthday “Paradox”, the thing where you’re surprised to find someone shares a birthday with you. (I have one small circle of friends featuring two people who share my birthday, neatly enough.) Paradox is in quotes because it defies only intuition, not logic. The logic is clear that you need only a couple dozen people before some pair will probably share a birthday. Marcie goes overboard in trying to guess how many people at her workplace would share their birthday on top of that. Birthdays are nearly uniformly spread across all days of the year. There are slight variations; September birthdays are a little more likely than, say, April ones; the 13th of any month is a less likely birthday than the 12th or the 24th are. But this is a minor correction, aptly ignored when you’re doing a rough calculation. With 615 birthdays spread out over the year you’d expect the average day to be the birthday of about 1.7 people. (To be not silly about this, a ten-day span should see about 17 birthdays.) However, there are going to be “clumps”, days where three or even four people have birthdays. There will be gaps, days nobody has a birthday, or even streaks of days where nobody has a birthday. If there weren’t a fair number of days with a lot of birthdays, and days with none, we’d have to suspect birthdays weren’t random here.
There were also a handful of comic strips just mentioning mathematics, that I can’t make anything in depth about. Here’s two.
Whatever else you say about mathematics we are human. We tell jokes. I will tell some here. You may not understand the words in them. That’s all right. From the Abelian grape there, you gather this is some manner of wordplay. A pun, particularly. It’s built on a technical term. “Abelian groups” come from (not high school) Algebra. In an Abelian group, the group multiplication commutes. That is, if ‘a’ and ‘b’ are any things in the group, then their product “ab” is the same as “ba’. That is, the group works like ordinary addition on numbers does. We say “Abelian” in honor of Niels Henrik Abel, who taught us some fascinating stuff about polynomials. Puns are a common kind of humor. So common, they’re almost base. Even a good pun earns less laughter than groans.
But mathematicians make many puns. A typical page of mathematics jokes has a whole section of puns. “What’s yellow and equivalent to the Axiom of Choice? Zorn’s Lemon.” “What’s nonorientable and lives in the sea?” “Möbius Dick.” “One day Jesus said to his disciples, `The Kingdom of Heaven is like 3x2 + 8x – 9′. Thomas looked very confused and asked peter, `What does the teacher mean?’ Peter replied, `Don’t worry. It’s just another one of his parabolas’.” And there are many jokes built on how it is impossible to tell the difference between the sounds of “π” and “pie”.
It shouldn’t surprise that mathematicians make so many puns. Mathematics trains people to know definitions. To think about precisely what we mean. Puns ignore definitions. They build nonsense out of the ways that sounds interact. Mathematicians practice how to make things interact, even if they don’t know or care what the underlying things are. If you’ve gotten used to proving things about , without knowing what ‘a’ or ‘b’ are, it’s difficult to avoid turning “poles on the half-plane” (which matters in some mathematical physics) to a story about Polish people on an aircraft.
Elzie Segar’s Thimble Theater from the 14th of September, 1929. Rerun on ComicsKingdom on the 26th of February, 2016. That’s Bernice, the magical Whiffle Hen, as the strange birdlike creature in the last panel there.
If there’s a flaw to this kind of humor it’s that these jokes may sound juvenile. One of the first things that strikes kids as funny is that a thing might have several meanings. Or might sound like another thing. “Why do mathematicians like parks? Because of all the natural logs!”
Jokes can be built tightly around definitions. “What do you get if you cross a mosquito with a mountain climber? Nothing; you can’t cross a vector with a scalar.” “There are 10 kinds of people in the world, those who understand binary mathematics and those who don’t.” “Life is complex; it has real and imaginary parts.”
There are more sophisticated jokes. Many of them are self-deprecating. “A mathematician is a device for turning coffee into theorems.” “An introvert mathematician looks at her shoes while talking to you. An extrovert mathematician looks at your shoes.” “A mathematics professor is someone who talks in someone else’s sleep”. “Two people are adrift in a hot air balloon. Finally they see someone and shout down, `Where are we?’ The person looks up, and studies them, watching the balloon drift away. Finally, when they are barely in shouting range, the person on the ground shouts back, `You are in a balloon!’ The first passenger curses their luck at running across a mathematician. `How do you know that was a mathematician?’ `Because her answer took a long time, was perfectly correct, and absolutely useless!”’ These have the form of being about mathematicians. But they’re not really. It would be the same joke to say “a poet is a device for turning coffee into couplets”, the sleep-talker anyone who teachers, or have the hot-air balloonists discover a lawyer or a consultant.
Some of these jokes get more specific, with mathematics harder to extract from the story. The tale of the nervous flyer who, before going to the conference, sends a postcard that she has a proof of the Riemann hypothesis. She arrives and admits she has no such thing, of course. But she sends that word ahead of every conference. She knows if she died in a plane crash after that, she’d be famous forever, and God would never give her that. (I wonder if Ian Randal Strock’s little joke of a story about Pierre de Fermat was an adaptation of this joke.) You could recast the joke for physicists uniting gravity and quantum mechanics. But I can’t imagine a way to make this joke about an ISO 9000 consultant.
A dairy farmer knew he could be milking his cows better. He could surely get more milk, and faster, if only the operations of his farm were arranged better. So he hired a mathematician to find the optimal way to configure everything. The mathematician toured every part of the pastures, the milking barn, the cows, everything relevant. And then the mathematician set to work devising a plan for the most efficient possible cow-milking operation. The mathematician declared, “First, assume a spherical cow.”
This joke is very mathematical. I know of no important results actually based on spherical cows. But the attitude that tries to make spheres of cows comes from observing mathematicians. To describe any real-world process is to make a model of that thing. A model is a simplification of the real thing. You suppose that things behave more predictably than the real thing. You trust the error made by this supposition is small enough for your needs. A cow is complicated, all those pointy ends and weird contours. A sphere is easy. And, besides, cows are funny. “Spherical cow” is a funny string of sounds, at least in English.
The spherical cows approach parodying the work mathematicians do. Many mathematical jokes are burlesques of deductive logic. Or not even burlesques. Charles Dodgson, known to humans as Lewis Carroll, wrote this in Symbolic Logic:
“No one, who means to go by the train and cannot get a conveyance, and has not enough time to walk to the station, can do without running;
This party of tourists mean to go by the train and cannot get a conveyance, but they have plenty of time to walk to the station.
∴ This party of tourists need not run.”
[ Here is another opportunity, gentle Reader, for playing a trick on your innocent friend. Put the proposed Syllogism before him, and ask him what he thinks of the Conclusion.
He will reply “Why, it’s perfectly correct, of course! And if your precious Logic-book tells you it isn’t, don’t believe it! You don’t mean to tell me those tourists need to run? If I were one of them, and knew the Premises to be true, I should be quite clear that I needn’t run — and I should walk!”
And you will reply “But suppose there was a mad bull behind you?”
And then your innocent friend will say “Hum! Ha! I must think that over a bit!” ]
The punch line is diffused by the text being so educational. And by being written in the 19th century, when it was bad form to excise any word from any writing. But you can recognize the joke, and why it should be a joke.
Not every mathematical-reasoning joke features some manner of cattle. Some are legitimate:
Claim. There are no uninteresting whole numbers.
Proof. Suppose there is a smalled uninteresting whole number. Call it N. That N is uninteresting is an interesting fact. Therefore N is not an uninteresting whole number.
Three mathematicians step up to the bar. The bartender asks, “you all want a beer?” The first mathematician says, “I don’t know.” The second mathematician says, “I don’t know.” The third says, “Yes”.
Some mock reasoning uses nonsense methods to get a true conclusion. It’s the fun of watching Mister Magoo walk unharmed through a construction site to find the department store exchange counter:
Terri Libenson’s Pajama Diaries for the 16th of November, 2016. I was never one for buying too much of the bakery aisle, myself, but then I also haven’t got teenagers. And I did go through so much of my life figuring there was no reason I shouldn’t eat another bagel again.
Venn Diagrams are not by themselves jokes (most of the time). But they are a great structure for jokes. And easy to draw, which is great for us who want to be funny but don’t feel sure about their drafting abilities.
And then there are personality jokes. Mathematics encourages people to think obsessively. Obsessive people are often funny people. Alexander Grothendieck was one of the candidates for “greatest 20th century mathematician”. His reputation is that he worked so well on abstract problems that he was incompetent at practical ones. The story goes that he was demonstrating something about prime numbers and his audience begged him to speak about a specific number, that they could follow an example. And that he grumbled a bit and, finally, said, “57”. It’s not a prime number. But if you speak of “Grothendieck’s prime”, many will recognize what you mean, and grin.
There are more outstanding, preposterous personalities. Paul Erdös was prolific, and a restless traveller. The stories go that he would show up at some poor mathematician’s door and stay with them several months. And then co-author a paper with the elevator operator. (Erdös is also credited as the originator of the “coffee into theorems” quip above.) John von Neumann was supposedly presented with this problem:
Two trains are on the same track, 60 miles apart, heading toward each other, each travelling 30 miles per hour. A fly travels 60 miles per hour, leaving one engine flying toward the other. When it reaches the other engine it turns around immediately and flies back to the other engine. This is repeated until the two trains crash. How far does the fly travel before the crash?
The first, hard way to do this is to realize how far the fly travels is a series. The fly starts at, let’s say, the left engine and flies to the right. Add to that the distance from the right to the left train now. Then left to the right again. Right to left. This is a bunch of calculations. Most people give up on that and realize the problem is easier. The trains will crash in one hour. The fly travels 60 miles per hour for an hour. It’ll fly 60 miles total. John von Neumann, say witnesses, had the answer instantly. He recognized the trick? “I summed the series.”
The personalities can be known more remotely, from a handful of facts about who they were or what they did. “Cantor did it diagonally.” Georg Cantor is famous for great thinking about infinitely large sets. His “diagonal proof” shows the set of real numbers must be larger than the set of rational numbers. “Fermat tried to do it in the margin but couldn’t fit it in.” “Galois did it on the night before.” (Évariste Galois wrote out important pieces of group theory the night before a duel. It went badly for him. French politics of the 1830s.) Every field has its celebrities. Mathematicians learn just enough about theirs to know a couple of jokes.
Scott Hilburn’s The Argyle Sweater for the 9th of May, 2018. I like the shout-out to Archimedes in the background art, too. Archimedes, though, didn’t use fractions in the way we’d recognize them. He’d write out a number as a combination of ratios of some reference number. So he might estimate the length of something being as to the length of something else as 19 is to 7, or something like that. This seems like a longwinded and cumbersome way to write out numbers, or much of anything, and makes one appreciate his indefatigability as much as his insight.
The jokes can attach to a generic mathematician personality. “How can you possibly visualize something that happens in a 12-dimensional space?” “Easy, first visualize it in an N-dimensional space, and then let N go to 12.” Three statisticians go hunting. They spot a deer. One shoots, missing it on the left. The second shoots, missing it on the right. The third leaps up, shouting, “We’ve hit it!” An engineer and a mathematician are sleeping in a hotel room when the fire alarm goes off. The engineer ties the bedsheets into a rope and shimmies out of the room. The mathematician looks at this, unties the bedsheets, sets them back on the bed, declares, “this is a problem already solved” and goes back to sleep. (Engineers and mathematicians pair up a lot in mathematics jokes. I assume in engineering jokes too, but that the engineers make wrong assumptions about who the joke is on. If there’s a third person in the party, she’s a physicist.)
Do I have a favorite mathematics joke? I suppose I must. There are jokes I like better than others, and there are — I assume — finitely many different mathematics jokes. So I must have a favorite. What is it? I don’t know. It must vary with the day and my mood and the last thing I thought about. I know a bit of doggerel keeps popping into my head, unbidden. Let me close by giving it to you.
Integral z-squared dz
From 1 to the cube root of 3
Times the cosine
Of three π over nine
Equals log of the cube root of e.
This may not strike you as very funny. I’m not sure it strikes me as very funny. But it keeps showing up, all the time. That has to add up.
Some of the comics last week don’t leave me much to talk about. Well, there should be another half-dozen comics under review later in the week. You’ll stick around, won’t you please?
Anthony Blades’s Bewley for the 16th is a rerun, and an old friend. It’s appeared the 14th of August, 2016, and in April 2015 and in May 2013. Maybe it’s time I dropped the strip from my reading. The scheme by which the kids got the right answer out of their father is a variation on the Clever Hans trick. Clever Hans was a famous example of animal perception: the horse appeared to be able to do arithmetic, tapping his hoof to signal a number. Brilliant experimental design found what was going on. Not that the horse was clever enough to tell (to make up an example) 18 divided by 3. But that the horse was clever enough to recognize the slight change in his trainer’s expression when he had counted off six. Animals (besides humans) do have some sense of numbers, but not that great a sense.
Jeff Stahler’s Moderately Confused for the 16th is the old joke told about accountants and lawyers when they encounter mathematics, recast to star the future disgraced former president. The way we normally define ‘two’ and ‘plus’ and ‘two’ and ‘equals’ and ‘four’ there’s not room for quibbling about their relationship. Not without just lying, anyway. Thus this satisfies the rules of joke formation.
Olivia Jaimes’s Nancy for the 16th is, I think, the point that Jaimes’s Nancy has appeared in my essays more than Guy Gilchrist’s ever did. Well, different artists have different interests. This one depicts Nancy getting the motivation she needed to excel in arithmetic. I’m not convinced of the pedagogical soundness of the Nancy comic strip. But it’s not as though people won’t practice things for rewards.
Olivia Jaimes’s Nancy for the 16th of July, 2018. If Nancy’s phrasing seems needlessly weird in the second and third panels (as it did to me) you might want to know that A Beautiful Genius was the name of a biography of the mathematician/economist John Nash. Yes, the Nash whose life inspired the movie A Beautiful Mind. So now it should seem a little less bizarre. Does it?
Jerry van Amerongen’s Ballard Street for the 17th is somehow a blend of the Moderately Confused and Nancy strips from the day before. All right, then. It’s nice when people share their enthusiasms.
John McPherson’s Close to Home for the 17th of July, 2018. You might think that’s a pretty shaky Colosseum in the background, but McPherson did have to communicate that this was happening in Ancient Rome faster than the reader could mistake the word balloon for a homonym of “ivy”. How would you do it?
Comic Strip Master Command apparently doesn’t want me talking about the chances of Friday’s Showcase Showdown. They sent me enough of a flood of mathematically-themed strips that I don’t know when I’ll have the time to talk about the probability of that episode. (The three contestants spinning the wheel all tied, each spinning $1.00. And then in the spin-off, two of the three contestants also spun $1.00. And this after what was already a perfect show, in which the contestants won all six of the pricing games.) Well, I’ll do what comic strips I can this time, and carry on the last week of the Summer 2017 A To Z project, and we’ll see if I can say anything timely for Thursday or Saturday or so.
Jim Scancarelli’s Gasoline Alley for the 17th is a joke about the student embarrassing the teacher. It uses mathematics vocabulary for the specifics. And it does depict one of those moments that never stops, as you learn mathematics. There’s always more vocabulary. There’s good reasons to have so much vocabulary. Having names for things seems to make them easier to work with. We can bundle together ideas about what a thing is like, and what it may do, under a name. I suppose the trouble is that we’ve accepted a convention that we should define terms before we use them. It’s nice, like having the dramatis personae listed at the start of the play. But having that list isn’t the same as saying why anyone should care. I don’t know how to balance the need to make clear up front what one means and the need to not bury someone under a heap of similar-sounding names.
Mac King and Bill King’s Magic in a Minute for the 17th is another puzzle drawn from arithmetic. Look at it now if you want to have the fun of working it out, as I can’t think of anything to say about it that doesn’t spoil how the trick is done. The top commenter does have a suggestion about how to do the problem by breaking one of the unstated assumptions in the problem. This is the kind of puzzle created for people who want to motivate talking about parity or equivalence classes. It’s neat when you can say something of substance about a problem using simple information, though.
Terri Libenson’s Pajama Diaries for the 18th of September, 2017. When I first read this I assumed that of course the base of the triangle had length 4 and the second leg, at a 45-degree angle to that, had length 2, and I wondered if those numbers could be consistent for a triangle to exist. Of course they could, though. There is a bit of fun to be had working out whether a particular triangle could exist from knowing its side lengths, though.
Terri Libenson’s Pajama Diaries for the 18th uses trigonometry as the marker for deep thinking. It comes complete with a coherent equation, too. It gives the area of a triangle with two legs that meet at a 45 degree angle. I admit I am uncomfortable with promoting the idea that people who are autistic have some super-reasoning powers. (Also with the pop-culture idea that someone who spots things others don’t is probably at least a bit autistic.) I understand wanting to think someone’s troubles have some compensation. But people are who they are; it’s not like they need to observe some “balance”.
Lee Falk and Wilson McCoy’s The Phantom for the 10th of August, 1950 was rerun Monday. It’s a side bit of joking about between stories. And it uses knowledge of mathematics — and an interest in relativity — as signifier of civilization. I can only hope King Hano does better learning tensors on his own than I do.
Mike Thompson’s Grand Avenue for the 18th goes back to classrooms and stuff for clever answers that subvert the teacher. And I notice, per the title given this edition, that the teacher’s trying to make the abstractness of three minus two tangible, by giving it an example. Which pairs it with …
Will Henry’s Wallace the Brace for the 18th, wherein Wallace asserts that arithmetic is easier if you visualize real things. I agree it seems to help with stuff like basic arithmetic. I wouldn’t want to try taking the cosine of an apple, though. Separating the quantity of a thing from the kind of thing measured is one of those subtle breakthroughs. It’s one of the ways that, for example, modern calculations differ from those of the Ancient Greeks. But it does mean thinking of numbers in, we’d say, a more abstract way than they did, and in a way that seems to tax us more.
Wallace the Brave recently had a book collection published, by the way. I mention because this is one of a handful of comics with a character who likes pinball, and more, who really really loves the Williams game FunHouse. This is an utterly correct choice for favorite pinball game. It’s one of the games that made me a pinball enthusiast.
Ryan North’s Dinosaur Comics rerun for the 19th I mention on loose grounds. In it T-Rex suggests trying out an alternate model for how gravity works. The idea, of what seems to be gravity “really” being the shade cast by massive objects in a particle storm, was explored in the late 17th and early 18th century. It avoids the problem of not being able to quite say what propagates gravitational attraction. But it also doesn’t work, analytically. We would see the planets orbit differently if this were how gravity worked. And there’s the problem about mass and energy absorption, as pointed out in the comic. But it can often be interesting or productive to play with models that don’t work. You might learn something about models that do, or that could.
If there was one major theme for this week it was my confidence that there must be another source of Jumble strips out there. I haven’t found it, but I admit not making it a priority either. The official Jumble site says I can play if I activate Flash, but I don’t have enough days in the year to keep up with Flash updates. And that doesn’t help me posting mathematics-relevant puzzles here anyway.
Mark Anderson’s Andertoons for January 29th satisfies my Andertoons need for this week. And it name-drops the one bit of geometry everyone remembers. To be dour and humorless about it, though, I don’t think one could likely apply the Pythagorean Theorem. Typically the horizontal axis and the vertical axis in a graph like this measure different things. Squaring the different kinds of quantities and adding them together wouldn’t mean anything intelligible. What would even be the square root of (say) a squared-dollars-plus-squared-weeks? This is something one learns from dimensional analysis, a corner of mathematics I’ve thought about writing about some. I admit this particular insight isn’t deep, but everything starts somewhere.
Norm Feuti’s Gil rerun for the 30th is a geometry name-drop, listing it as the sort of category Jeopardy! features. Gil shouldn’t quit so soon. The responses for the category are “What is the Pythagorean Theorem?”, “What is acute?”, “What is parallel?”, “What is 180 degrees?” (or, possibly, 360 or 90 degrees), and “What is a pentagon?”.
Terri Libenson’s Pajama Diaries for the 1st of February, 2017. You know even for a fundraising event $17.50 seems a bit much for a hot dog and bottled water. Maybe the friend’s 8-year-old child is way off too.
Terri Libenson’s Pajama Diaries for the 1st of February shows off the other major theme of this past week, which was busy enough that I have to again split the comics post into two pieces. That theme is people getting basic mathematics wrong. Mostly counting. (You’ll see.) I know there’s no controlling what people feel embarrassed about. But I think it’s unfair to conclude you “can no longer” do mathematics in your head because you’re not able to make change right away. It’s normal to be slow or unreliable about something you don’t do often. Inexperience and inability are not the same thing, and it’s unfair to people to conflate them.
Gordon Bess’s Redeye for the 21st of September, 1970, got rerun the 1st of February. And it’s another in the theme of people getting basic mathematics wrong. And even more basic mathematics this time. There’s more problems-with-counting comics coming when I finish the comics from the past week.
Gordon Bess’s Redeye for the 21st of September, 1970. Rerun the 1st of February, 2017. I don’t see why they’re so worried about counting bullets if being shot just leaves you a little discombobulated.
Dave Whamond’s Reality Check for the 1st hopes that you won’t notice the label on the door is painted backwards. Just saying. It’s an easy joke to make about algebra, also, that it should put letters in to perfectly good mathematics. Letters are used for good reasons, though. We’ve always wanted to work out the value of numbers we only know descriptions of. But it’s way too wordy to use the whole description of the number every time we might speak of it. Before we started using letters we could use placeholder names like “re”, meaning “thing” (as in “thing we want to calculate”). That works fine, although it crashes horribly when we want to track two or three things at once. It’s hard to find words that are decently noncommittal about their values but that we aren’t going to confuse with each other.
So the alphabet works great for this. An individual letter doesn’t suggest any particular number, as long as we pretend ‘O’ and ‘I’ and ‘l’ don’t look like they do. But we also haven’t got any problem telling ‘x’ from ‘y’ unless our handwriting is bad. They’re quick to write and to say aloud, and they don’t require learning to write any new symbols.
Later, yes, letters do start picking up connotations. And sometimes we need more letters than the Roman alphabet allows. So we import from the Greek alphabet the letters that look different from their Roman analogues. That’s a bit exotic. But at least in a Western-European-based culture they aren’t completely novel. Mathematicians aren’t really trying to make this hard because, after all, they’re the ones who have to deal with the hard parts.
Bu Fisher’s Mutt and Jeff rerun for the 2nd is another of the basic-mathematics-wrong jokes. But it does get there by throwing out a baffling set of story-problem-starter points. Particularly interesting to me is Jeff’s protest in the first panel that they couldn’t have been doing 60 miles an hour as they hadn’t been out an hour. It’s the sort of protest easy to use as introduction to the ideas of average speed and instantaneous speed and, from that, derivatives.