Reading the Comics, January 9, 2018: Be Squared Edition


It wasn’t just another busy week from Comic Strip Master Command. And a week busy enough for me to split the mathematics comics into two essays. It was one where I recognized one of the panels as one I’d featured before. Multiple times. Some of the comics I feature are in perpetual reruns and don’t have your classic, deep, Peanuts-style decades of archives to draw from. I don’t usually go checking my archives to see if I’ve mentioned a comic before, not unless something about it stands out. So for me to notice I’ve seen this strip repeatedly can mean only one thing: there was something a little bit annoying about it. Recognize it yet? You will.

Hy Eisman’s Popeye for the 7th of January, 2018 is an odd place for mathematics to come in. J Wellington Wimpy regales Popeye with all the intellectual topics he tried to impress his first love with, and “Euclidean postulates in the original Greek” made the cut. And, fair enough. Euclid’s books are that rare thing that’s of important mathematics (or scientific) merit and that a lay person can just pick up and read, even for pleasure. These days we’re more likely to see a division between mathematics writing that’s accessible but unimportant (you know, like, me) or that’s important but takes years of training to understand. Doing it in the original Greek is some arrogant showing-off, though. Can’t blame Carolyn for bailing on someone pulling that stunt.

Popeye: 'Did ya ever think of gittin' hitched?' Wimpy: 'Many times! I didn't plan to be a bachelor. In fact, my first love was Carolyn. While we dined on burgers at Roughhouse's she listened to my discourse on Schopenhauer, followed by my chat that included both Kafka and Camus. Then, as I walked her home, I recited Euclidean postulates in the original Greek!' Popeye: 'Y'wuz really on a roll!' Wimpy: 'When we got to her door she said, 'Wimpy, it's been a perfect evening. Please don't spoil it by EVER asking me out again!''.
Hy Eisman’s Popeye for the 7th of January, 2018. Why does Wimpy’s shirt have a belly button?

Mark O’Hare’s Citizen Dog rerun for the 7th continues last essay’s storyline about Fergus taking Maggie’s place at school. He’s having trouble understanding the story within a story problem. I sympathize.

John Hambrock’s The Brilliant Mind of Edison Lee for the 8th is set in mathematics class. And Edison tries to use a pile of mathematically-tinged words to explain why it’s okay to read a Star Wars book instead of paying attention. Or at least to provide a response the teacher won’t answer. Maybe we can make something out of this by allowing the monetary value of something to be related to its relevance. But if we allow that then Edison’s messed up. I don’t know what quantity is measured by multiplying “every Star Wars book ever written” by “all the movies and merchandise”. But dividing that by the value of the franchise gets … some modest number in peculiar units divided by a large number of dollars. The number value is going to be small. And the dimensions are obviously crazy. Edison needs to pay better attention to the mathematics.

Teacher: 'Mister Lee, what are you reading?' Edison Lee: 'The Legends of Luke Skywalker.' Teacher: 'Ah, and how would that be relevant to this math class?' Edison: 'If you take every Star Wars book ever written, multiply them by all the movies and merchandise, and divide that by the net worth of the franchise, you have a small fortune of relevance.' (Teacher looks away.) Edison thinks: 'My mouth needs a seven-second broadcast delay.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 8th of January, 2018. No, I haven’t got any idea how the third panel leads to the fourth. I mean, I know what should lead from there to there — a moment of Edison realizing he’s said something so impolitic he can’t carry on — but that moment isn’t there. The teacher seems to just shrug the whole nonsense off. Something went wrong in the composing of the joke.

Johnny Hart’s B.C. for the 14th of July, 1960 shows off the famous equation of the 20th century. All part of the comic’s anachronism-comedy chic. The strip reran the 9th of January. “E = mc2” is, correctly, associated with Albert Einstein and some of his important publications of 1905. But the expression does have some curious precursors, people who had worked out the relationship (or something close to it) before Einstein and who didn’t quite know what they had. A short piece from Scientific American a couple years back describes pre-Einstein expressions of the equation from Oliver Heaviside, Henri Poincaré, and Fritz Hasenöhrl. I’m not surprised Poincaré had something close to this; it seems like he spent twenty years almost discovering Relativity. That’s all right; he did enough in dynamical systems that mathematicians aren’t going to forget him.

Tim Lachowski’s Get A Life for the 9th is at least the fourth time I’ve seen this panel since I started doing Reading the Comics posts regularly. (Previous times: the 5th of November, 2012 and the 10th of March, 2015 and the 14th of July, 2016.) I’m like this close to concluding the strip’s in perpetual rerun and I can drop it from my daily reading.

Jason Chatfield’s Ginger Meggs for the 9th draws my eye just because the blackboard lists “Prime Numbers”. Fair enough place setting, although what’s listed are 1, 3, 5, and 7. These days mathematicians don’t tend to list 1 as a prime number; it’s inconvenient. (A lot of proofs depend on their being exactly one way to factorize a number. But you can always multiply a number by ‘1’ a couple more times without changing its value. So ‘6’ is 3 times 2, but it’s also 3 times 2 times 1, or 3 times 2 times 1 times 1, or 3 times 2 times 1145,388,434,247. You can write around that, but it’s easier to define ‘1’ as not a prime.) But it could be defended. I can’t think any reason to leave ‘2’ off a list of prime numbers, though. I think Chatfield conflated odd and prime numbers. If he’d had a bit more blackboard space we could’ve seen whether the next item was 9 or 11 and that would prove the matter.

Paul Trap’s Thatababy for the 9th uses arithmetic — square roots — as the kind of thing to test whether a computer’s working. Everyone has their little tests like this. My love’s father likes to test whether the computer knows of the band Walk The Moon or of Christine Korsgaard (a prominent philosopher in my love’s specialty). I’ve got a couple words I like to check dictionaries for. Of course the test is only any good if you know what the answer should be, and what’s the actual square root of 3,278? Goodness knows. It’s got to be between 50 (50 squared is 25 hundred) and 60 (60 squared is 36 hundred). Since 3,278 is so much closer 3,600 than 2,500 its square root should be closer to 60 than to 50. So 57-point-something is plausible. Unfortunately square roots don’t lend themselves to the same sorts of tricks from reading the last digit that cube roots do. And 3,278 isn’t a perfect square anyway. Alexa is right on this one. Also about the specific gravity of cobalt, at least if Wikipedia is right and not conspiring with the artificial intelligences on this one. Catch you in 2021.

Charles Schulz’s Peanuts for the 8th of October, 1953, is about practical uses of mathematics. It got rerun on the 9th of January.

Advertisements

Reading the Comics, January 3, 2018: Explaining Things Edition


There were a good number of mathematically-themed comic strips in the syndicated comics last week. Those from the first part of the week gave me topics I could really sink my rhetorical teeth into, too. So I’m going to lop those off into the first essay for last week and circle around to the other comics later on.

Jef Mallett’s Frazz started a week of calendar talk on the 31st of December. I’ve usually counted that as mathematical enough to mention here. The 1st of January as we know it derives, as best I can figure, from the 1st of January as Julius Caesar established for 45 BCE. This was the first Roman calendar to run basically automatically. Its length was quite close to the solar year’s length. It had leap days added according to a rule that should have been easy enough to understand (one day every fourth year). Before then the Roman calendar year was far enough off the solar year that they had to be kept in synch by interventions. Mostly, by that time, adding a short extra month to put things more nearly right. This had gotten all confusingly messed up and Caesar took the chance to set things right, running 46 BCE to 445 days long.

But why 445 and not, say, 443 or 457? And I find on research that my recollection might not be right. That is, I recall that the plan was to set the 1st of January, Reformed, to the first new moon after the winter solstice. A choice that makes sense only for that one year, but, where to set the 1st is literally arbitrary. While that apparently passes astronomical muster (the new moon as seen from Rome then would be just after midnight the 2nd of January, but hitting the night of 1/2 January is good enough), there’s apparently dispute about whether that was the objective. It might have been to set the winter solstice to the 25th of December. Or it might have been that the extra days matched neatly the length of two intercalated months that by rights should have gone into earlier years. It’s a good reminder of the difficulty of reading motivation.

Brian Fies’s The Last Mechanical Monster for the 1st of January, 2018, continues his story about the mad scientist from the Fleischer studios’ first Superman cartoon, back in 1941. In this panel he’s describing how he realized, over the course of his long prison sentence, that his intelligence was fading with age. He uses the ability to do arithmetic in his head as proof of that. These types never try naming, like, rulers of the Byzantine Empire. Anyway, to calculate the cube root of 50,653 in his head? As he used to be able to do? … guh. It’s not the sort of mental arithmetic that I find fun.

But I could think of a couple ways to do it. The one I’d use is based on a technique called Newton-Raphson iteration that can often be used to find where a function’s value is zero. Raphson here is Joseph Raphson, a late 17th century English mathematician known for the Newton-Raphson method. Newton is that falling-apples fellow. It’s an iterative scheme because you start with a guess about what the answer would be, and do calculations to make the answer better. I don’t say this is the best method, but it’s the one that demands me remember the least stuff to re-generate the algorithm. And it’ll work for any positive number ‘A’ and any root, to the ‘n’-th power.

So you want the n-th root of ‘A’. Start with your current guess about what this root is. (If you have no idea, try ‘1’ or ‘A’.) Call that guess ‘x’. Then work out this number:

\frac{1}{n}\left( (n - 1) \cdot x + \frac{A}{x^{n - 1}} \right)

Ta-da! You have, probably, now a better guess of the n-th root of ‘A’. If you want a better guess yet, take the result you just got and call that ‘x’, and go back calculating that again. Stop when you feel like your answer is good enough. This is going to be tedious but, hey, if you’re serving a prison term of the length of US copyright you’ve got time. (It’s possible with this sort of iterator to get a worse approximation, although I don’t think that happens with n-th root process. Most of the time, a couple more iterations will get you back on track.)

But that’s work. Can we think instead? Now, most n-th roots of whole numbers aren’t going to be whole numbers. Most integers aren’t perfect powers of some other integer. If you think 50,653 is a perfect cube of something, though, you can say some things about it. For one, it’s going to have to be a two-digit number. 103 is 1,000; 1003 is 1,000,000. The second digit has to be a 7. 73 is 343. The cube of any number ending in 7 has to end in 3. There’s not another number from 1 to 9 with a cube that ends in 3. That’s one of those things you learn from playing with arithmetic. (A number ending in 1 cubes to something ending in 1. A number ending in 2 cubes to something ending in 8. And so on.)

So the cube root has to be one of 17, 27, 37, 47, 57, 67, 77, 87, or 97. Again, if 50,653 is a perfect cube. And we can do better than saying it’s merely one of those nine possibilities. 40 times 40 times 40 is 64,000. This means, first, that 47 and up are definitely too large. But it also means that 40 is just a little more than the cube root of 50,653. So, if 50,653 is a perfect cube, then it’s most likely going to be the cube of 37.

Bill Watterson’s Calvin and Hobbes rerun for the 2nd is a great sequence of Hobbes explaining arithmetic to Calvin. There is nothing which could be added to Hobbes’s explanation of 3 + 8 which would make it better. I will modify Hobbes’s explanation of what the numerator. It’s ridiculous to think it’s Latin for “number eighter”. The reality is possibly more ridiculous, as it means “a numberer”. Apparently it derives from “numeratus”, meaning, “to number”. The “denominator” comes from “de nomen”, as in “name”. So, you know, “the thing that’s named”. Which does show the terms mean something. A poet could turn “numerator over denominator” into “the number of parts of the thing we name”, or something near enough that.

Hobbes continues the next day, introducing Calvin to imaginary numbers. The term “imaginary numbers” tells us their history: they looked, when first noticed in formulas for finding roots of third- and fourth-degree polynomials, like obvious nonsense. But if you carry on, following the rules as best you can, that nonsense would often shake out and you’d get back to normal numbers again. And as generations of mathematicians grew up realizing these acted like numbers we started to ask: well, how is an imaginary number any less real than, oh, the square root of six?

Hobbes’s particular examples of imaginary numbers — “eleventenn” and “thirty-twelve” — are great-sounding compositions. They put me in mind, as many of Watterson’s best words do, of a 1960s Peanuts in which Charlie Brown is trying to help Sally practice arithmetic. (I can’t find it online, as that meme with edited text about Sally Brown and the sixty grapefruits confounds my web searches.) She offers suggestions like “eleventy-Q” and asks if she’s close, which Charlie Brown admits is hard to say.

Cherry Trail: 'Good morning, honey! Where's Dad?' Mark Trail: 'He's out on the porch reading the paper!' Cherry: 'Rusty sure is excited about our upcoming trip to Mexico!' Mark: 'Did you get everything worked out with the school?' Cherry: 'Rusty will need to do some math assignments, but he'll get credit for his other subjects since it's an educational trip!'
James Allen’s Mark Trail for the 3rd of January, 2018. James Allen has changed many things about the comic strip since Jack Elrod’s retirement, as I have observed over on the other blog. There are less ruthlessly linear stories. There’s no more odd word balloon placement implying that giant squirrels are talking about the poachers. Mark Trail sometimes has internal thoughts. I’m glad that he does still choose to over-emphasize declarations like “[Your Dad]’s out on the porch reading the paper!” There are some traditions.

And finally, James Allen’s Mark Trail for the 3rd just mentions mathematics as the subject that Rusty Trail is going to have to do some work on instead of allowing the experience of a family trip to Mexico to count. This is of extremely marginal relevance, but it lets me include a picture of a comic strip, and I always like getting to do that.

Reading the Comics, October 2017: Mathematics Anxiety Edition


Comic Strip Master Command hasn’t had many comics exactly on mathematical points the past week. I’ll make do. There are some that are close enough for me, since I like the comics already. And enough of them circle around people being nervous about doing mathematics that I have a title for this edition.

Tony Cochrane’s Agnes for the 24th talks about math anxiety. It’s not a comic strip that will do anything to resolve anyone’s mathematics anxiety. But it’s funny about its business. Agnes usually is; it’s one of the less-appreciated deeply-bizarre comics out there.

John Atkinson’s Wrong Hands for the 24th might be the anthropomorphic numerals joke for this week. Or it might be the anthropomorphic letters joke. Or something else entirely.

Charles Schulz’s Peanuts for the 24th reruns the comic from the 2nd of November, 1970. It has Sally discovering that multiplication is much easier than she imagined. As it is, she’s not in good shape. But if you accept ‘tooty-two’ as another name for ‘four’ and ‘threety-three’ as another name for ‘nine’, why not? And she might do all right in group theory. In that you can select a bunch of things, called ‘elements’, and describe their multiplication to fit anything you like, provided there’s consistency. There could be a four-forty-four if that seems to answer some question.

Patron of the Halloween Costume Advice booth: 'I want to be a zombie!' Regular character whose name I can't remember and can't find: 'That's a tough one ... we have to find a way to get you into character. Here [ handing a textbook over ] --- sit through one of Miss Barnes's math classes.'
Steve Kelley and Jeff Parker’s Dustin for the 25th of October, 2017. The kid’s premise this week is about advice for maximizing trick-or-treating hauls. So it circles around sabermetrics and the measurement of every possible metric relevant to a situation. It’s a bit baffling to me, since I just do not remember the quality of a costume relating to how much candy I’d gotten. Nor to what I give out, at least once you get past “high school kid not even bothering to dress up”. And even they’ll get a couple pieces although, yeah, if they did anything they’d get the full-size peanut butter cups. (We’re trying to build a reputation here.) What I’m saying is, I don’t see how the amount of candy depends on more than “have a costume” and “spend more time out there”. I mean, are people really withholding the fruit-flavored Tootsie Rolls because some eight-year-old doesn’t have an exciting enough costume? Really?

Steve Kelley and Jeff Parker’s Dustin for the 25th might be tied in to mathematics anxiety. At least it expresses how the thought of mathematics will cause some people to shut down entirely. Shame for them, but I can’t deny it’s so.

Young magician touching the wand to the whiteboard to show 15 divided by 3 is 5. His instructor: 'No relying on the wand --- I want to see how you arrived at the right answer.' (The title panel calls the strip The Tutor, with the tutor saying 'Someday when you're wizened you'll thank me.')
Hilary Price’s Rhymes with Orange for the 26th of October, 2017. The signature also credits Rina Piccolo, late of Six Chix and Tina’s Groove. The latter strip ended in July 2017, and she left the former last year. Maybe she’s picking up some hours part-timing on Rhymes With Orange; her signature’s been on many strips recently. Wikipedia doesn’t have anything relevant to say, and the credit on the web site doesn’t reflect Piccolo’s work, if she is a regular coauthor now.

Hilary Price’s Rhymes with Orange for the 26th is a calculator joke, made explicitly magical. I’m amused but also wonder if those are small wizards or large mushrooms. And it brings up again the question: why do mathematics teachers care about seeing how you got the answer? Who cares, as long as the answer is right? And my answer there is that yeah, sometimes all we care about is the answer. But more often we care about why someone knows the answer is this instead of that. The argument about what makes this answer right — or other answers wrong — should make it possible to tell why. And it often will help inform other problems. Being able to use the work done for one problem to solve others, or better, a whole family of problems, is fantastic. It’s the sort of thing mathematicians naturally try to do.

Jason Poland’s Robbie and Bobby for the 26th is an anthropomorphic geometry joke. And it’s a shape joke I don’t remember seeing, at least not under my Reading the Comics line of jokes. (Maybe I’ve just forgotten). Also, trapezoids: my most popular post of all time ever, even though it’s only got a couple months’ lead on the other perennial favorite, about how many grooves are on a record’s side.

Jeremy pours symbols from his mathematics notebook into a funnel in his head. They pour out his ears. He says 'My study habits are ineffective' to Pierce, who asks, 'Have you tried earplugs?'
Jerry Scott and Jim Borgman’s Zits for the 27th of October, 2017. I understand people who don’t find Zits a particularly strong comic. (My experience is it’s more loved by my parent’s cohort than by mine.) But I will say when Scott and Borgman go for visual metaphor the strip is easily ten times better. I think the cartoonists have some editorial-cartoon experience and they’ll sometimes put it to good use.

Jerry Scott and Jim Borgman’s Zits for the 27th uses mathematics as the emblem of complicated stuff in need of study. It’s a good visual. I have to say Jeremy’s material seems unorganized to start with, though.

Reading the Comics, May 9, 2015: Trapezoid Edition


And now I get caught up again, if briefly, to the mathematically-themed comic strips I can find. I’ve dubbed this one the trapezoid edition because one happens to mention the post that will outlive me.

Todd Clark’s Lola (May 4) is a straightforward joke. Monty’s given his chance of passing mathematics and doesn’t understand the prospect is grim.

'What number am I thinking of?' '9,618,210.' 'Right!' 'He always thinks of the same number.'
Joe Martin’s Willy and Ethel for the 4th of May, 2015. The link will likely expire in early June.

Joe Martin’s Willy and Ethel (May 4) shows an astounding feat of mind-reading, or of luck. How amazing it is to draw a number at random from a range depends on many things. It’s less impressive to pick the right number if there are only three possible answers than it is to pick the right number out of ten million possibilities. When we ask someone to pick a number we usually mean a range of the counting numbers. My experience suggests it’s “one to ten” unless some other range is specified. But the other thing affecting how amazing it is is the distribution. There might be ten million possible responses, but if only a few of them are likely then the feat is much less impressive.

The distribution of a random number is the interesting thing about it. The number has some value, yes, and we may not know what it is, but we know how likely it is to be any of the possible values. And good mathematics can be done knowing the distribution of a value of something. The whole field of statistical mechanics is an example of that. James Clerk Maxwell, famous for the equations which describe electromagnetism, used such random variables to explain how the rings of Saturn could exist. It isn’t easy to start solving problems with distributions instead of particular values — I’m not sure I’ve seen a good introduction, and I’d be glad to pass one on if someone can suggest it — but the power it offers is amazing.

Continue reading “Reading the Comics, May 9, 2015: Trapezoid Edition”