My 2018 Mathematics A To Z: Group Action


I got several great suggestions for topics for ‘g’. The one that most caught my imagination was mathtuition88’s, the group action. Mathtuition88 is run by Mr Wu, a mathematics tutor in Singapore. His mathematics blog recounts his own explorations of interesting topics.

Cartoon of a thinking coati (it's a raccoon-like animal from Latin America); beside him are spelled out on Scrabble titles, 'MATHEMATICS A TO Z', on a starry background. Various arithmetic symbols are constellations in the background.
Art by Thomas K Dye, creator of the web comics Newshounds, Something Happens, and Infinity Refugees. His current project is Projection Edge. And you can get Projection Edge six months ahead of public publication by subscribing to his Patreon. And he’s on Twitter as @Newshoundscomic.

Group Action.

This starts from groups. A group, here, means a pair of things. The first thing is a set of elements. The second is some operation. It takes a pair of things in the set and matches it to something in the set. For example, try the integers as the set, with addition as the operation. There are many kinds of groups you can make. There can be finite groups, ones with as few as one element or as many as you like. (The one-element groups are so boring. We usually need at least two to have much to say about them.) There can be infinite groups, like the integers. There can be discrete groups, where there’s always some minimum distance between elements. There can be continuous groups, like the real numbers, where there’s no smallest distance between distinct elements.

Groups came about from looking at how numbers work. So the first examples anyone gets are based on numbers. The integers, especially, and then the integers modulo something. For example, there’s Z_2 , which has two numbers, 0 and 1. Addition works by the rule that 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 0. There’s similar rules for Z_3 , which has three numbers, 0, 1, and 2.

But after a few comfortable minutes on this, group theory moves on to more abstract things. Things with names like the “permutation group”. This starts with some set of things and we don’t even care what the things are. They can be numbers. They can be letters. They can be places. They can be anything. We don’t care. The group is all of the ways to swap elements around. All the relabellings we can do without losing or gaining an item. Or another, the “symmetry group”. This is, for some given thing — plates, blocks, and wallpaper patterns are great examples — all the ways you can rotate or move or reflect the thing without changing the way it looks.

And now we’re creeping up on what a “group action” is. Let me just talk about permutations here. These are where you swap around items. Like, start out with a list of items “1 2 3 4”. And pick out a permutation, say, swap the second with the fourth item. We write that, in shorthand, as (2 4). Maybe another permutation too. Say, swap the first item with the third. Write that out as (1 3). We can multiply these permutations together. Doing these permutations, in this order, has a particular effect: it swaps the second and fourth items, and swaps the first and third items. This is another permutation on these four items.

These permutations, these “swap this item with that” rules, are a group. The set for the group is instructions like “swap this with that”, or “swap this with that, and that with this other thing, and this other thing with the first thing”. Or even “leave this thing alone”. The operation between two things in the set is, do one and then the other. For example, (2 3) and then (3 4) has the effect of moving the second thing to the fourth spot, the (original) fourth thing to the third spot, and the original third thing to the second spot. That is, it’s the permutation (2 3 4). If you ever need something to doodle during a slow meeting, try working out all the ways you can shuffle around, say, six things. And what happens as you do all the possible combinations of these things. Hey, you’re only permuting six items. How many ways could that be?

So here’s what sounds like a fussy point. The group here is made up the ways you can permute these items. The items aren’t part of the group. They just gave us something to talk about. This is where I got so confused, as an undergraduate, working out groups and group actions.

When we move back to talking about the original items, then we get a group action. You get a group action by putting together a group with some set of things. Let me call the group ‘G’ and the set ‘X’. If I need something particular in the group I’ll call that ‘g’. If I need something particular from the set ‘X’ I’ll call that ‘x’. This is fairly standard mathematics notation. You see how subtly clever this notation is. The group action comes from taking things in G and applying them to things in X, to get things in X. Usually other things, but not always. In the lingo, we say the group action maps the pair of things G and X to the set X.

There are rules these actions have to follow. They’re what you would expect, if you’ve done any fiddling with groups. Don’t worry about them. What’s interesting is what we get from group actions.

First is group orbits. Take some ‘g’ out of the group G. Take some ‘x’ out of the set ‘X’. And build this new set. First, x. Then, whatever g does to x, which we write as ‘gx’. But ‘gx’ is still something in ‘X’, so … what does g do to that? So toss in ‘ggx’. Which is still something in ‘X’, so, toss in ‘gggx’. And ‘ggggx’. And keep going, until you stop getting new things. If ‘X’ is finite, this sequence has to be finite. It might be the whole set of X. It might be some subset of X. But if ‘X’ is finite, it’ll get back, eventually, to where you started, which is why we call this the “group orbit”. We use the same term even if X isn’t finite and we can’t guarantee that all these iterations of g on x eventually get back to the original x. This is a subgroup of X, based on the same group operation that G has.

There can be other special groups. Like, are there elements ‘g’ that map ‘x’ to ‘x’? Sure. The has to be at least one, since the group G has an identity element. There might be others. So, for any given ‘x’, what are all the elements in ‘g’ that don’t change it? The set of all the values of g for which gx is x is the “isotropy group” Gx. Or the “stabilizer subgroup”. This is a subgroup of G, based on x.

Yes, but the point?

Well, the biggest thing we get from group actions is the chance to put group theory principles to work on specific things. A group might describe the ways you can rotate or reflect a square plate without leaving an obvious change in the plate. The group action lets you make this about the plate. Much of modern physics is about learning how the geometry of a thing affects its behavior. This can be the obvious sorts of geometry, like, whether it’s rotationally symmetric. But it can be subtler things, like, whether the forces in the system are different at different times. Group actions let us put what we know from geometry and topology to work in specifics.

A particular favorite of mine is that they let us express the wallpaper groups. These are the ways we can use rotations and reflections and translations (linear displacements) to create different patterns. There are fewer different patterns than you might have guessed. (Different, here, overlooks such petty things as whether the repeated pattern is a diamond, a flower, or a hexagon. Or whether the pattern repeats every two inches versus every three inches.)

And they stay useful for abstract mathematical problems. All this talk about orbits and stabilizers lets us find something called the Orbit Stabilization Theorem. This connects the size of the group G to the size of orbits of x and of the stabilizer subgroups. This has the exciting advantage of letting us turn many proofs into counting arguments. A counting argument is just what you think: showing there’s as many of one thing as there are another. here’s a nice page about the Orbit Stabilization Theorem, and how to use it. This includes some nice, easy-to-understand problems like “how many different necklaces could you make with three red, two green, and one blue bead?” Or if that seems too mundane a problem, an equivalent one from organic chemistry: how many isomers of naphthol could there be? You see where these group actions give us useful information about specific problems.


If you should like a more detailed introduction, although one that supposes you’re more conversant with group theory than I do here, this is a good sequence: Group Actions I, which actually defines the things. Group actions II: the orbit-stabilizer theorem, which is about just what it says. Group actions III — what’s the point of them?, which has the sort of snappy title I like, but which gives points that make sense when you’re comfortable talking about quotient groups and isomorphisms and the like. And what I think is the last in the sequence, Group actions IV: intrinsic actions, which is about using group actions to prove stuff. And includes a mention of one of my favorite topics, the points the essay-writer just didn’t get the first time through. (And more; there’s a point where the essay goes wrong, and needs correction. I am not the Joseph who found the problem.)

The Summer 2017 Mathematics A To Z: Young Tableau


I never heard of today’s entry topic three months ago. Indeed, three weeks ago I was still making guesses about just what Gaurish, author of For the love of Mathematics,, was asking about. It turns out to be maybe the grand union of everything that’s ever been in one of my A To Z sequences. I overstate, but barely.

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

Young Tableau.

The specific thing that a Young Tableau is is beautiful in its simplicity. It could almost be a recreational mathematics puzzle, except that it isn’t challenging enough.

Start with a couple of boxes laid in a row. As many or as few as you like.

Now set another row of boxes. You can have as many as the first row did, or fewer. You just can’t have more. Set the second row of boxes — well, your choice. Either below the first row, or else above. I’m going to assume you’re going below the first row, and will write my directions accordingly. If you do things the other way you’re following a common enough convention. I’m leaving it on you to figure out what the directions should be, though.

Now add in a third row of boxes, if you like. Again, as many or as few boxes as you like. There can’t be more than there are in the second row. Set it below the second row.

And a fourth row, if you want four rows. Again, no more boxes in it than the third row had. Keep this up until you’ve got tired of adding rows of boxes.

How many boxes do you have? I don’t know. But take the numbers 1, 2, 3, 4, 5, and so on, up to whatever the count of your boxes is. Can you fill in one number for each box? So that the numbers are always increasing as you go left to right in a single row? And as you go top to bottom in a single column? Yes, of course. Go in order: ‘1’ for the first box you laid down, then ‘2’, then ‘3’, and so on, increasing up to the last box in the last row.

Can you do it in another way? Any other order?

Except for the simplest of arrangements, like a single row of four boxes or three rows of one box atop another, the answer is yes. There can be many of them, turns out. Seven boxes, arranged three in the first row, two in the second, one in the third, and one in the fourth, have 35 possible arrangements. It doesn’t take a very big diagram to get an enormous number of possibilities. Could be fun drawing an arbitrary stack of boxes and working out how many arrangements there are, if you have some time in a dull meeting to pass.

Let me step away from filling boxes. In one of its later, disappointing, seasons Futurama finally did a body-swap episode. The gimmick: two bodies could only swap the brains within them one time. So would it be possible to put Bender’s brain back in his original body, if he and Amy (or whoever) had already swapped once? The episode drew minor amusement in mathematics circles, and a lot of amazement in pop-culture circles. The writer, a mathematics major, found a proof that showed it was indeed always possible, even after many pairs of people had swapped bodies. The idea that a theorem was created for a TV show impressed many people who think theorems are rarer and harder to create than they necessarily are.

It was a legitimate theorem, and in a well-developed field of mathematics. It’s about permutation groups. These are the study of the ways you can swap pairs of things. I grant this doesn’t sound like much of a field. There is a surprising lot of interesting things to learn just from studying how stuff can be swapped, though. It’s even of real-world relevance. Most subatomic particles of a kind — electrons, top quarks, gluons, whatever — are identical to every other particle of the same kind. Physics wouldn’t work if they weren’t. What would happen if we swap the electron on the left for the electron on the right, and vice-versa? How would that change our physics?

A chunk of quantum mechanics studies what kinds of swaps of particles would produce an observable change, and what kind of swaps wouldn’t. When the swap doesn’t make a change we can describe this as a symmetric operation. When the swap does make a change, that’s an antisymmetric operation. And — the Young Tableau that’s a single row of two boxes? That matches up well with this symmetric operation. The Young Tableau that’s two rows of a single box each? That matches up with the antisymmetric operation.

How many ways could you set up three boxes, according to the rules of the game? A single row of three boxes, sure. One row of two boxes and a row of one box. Three rows of one box each. How many ways are there to assign the numbers 1, 2, and 3 to those boxes, and satisfy the rules? One way to do the single row of three boxes. Also one way to do the three rows of a single box. There’s two ways to do the one-row-of-two-boxes, one-row-of-one-box case.

What if we have three particles? How could they interact? Well, all three could be symmetric with each other. This matches the first case, the single row of three boxes. All three could be antisymmetric with each other. This matches the three rows of one box. Or you could have two particles that are symmetric with each other and antisymmetric with the third particle. Or two particles that are antisymmetric with each other but symmetric with the third particle. Two ways to do that. Two ways to fill in the one-row-of-two-boxes, one-row-of-one-box case.

This isn’t merely a neat, aesthetically interesting coincidence. I wouldn’t spend so much time on it if it were. There’s a matching here that’s built on something meaningful. The different ways to arrange numbers in a set of boxes like this pair up with a select, interesting set of matrices whose elements are complex-valued numbers. You might wonder who introduced complex-valued numbers, let alone matrices of them, into evidence. Well, who cares? We’ve got them. They do a lot of work for us. So much work they have a common name, the “symmetric group over the complex numbers”. As my leading example suggests, they’re all over the place in quantum mechanics. They’re good to have around in regular physics too, at least in the right neighborhoods.

These Young Tableaus turn up over and over in group theory. They match up with polynomials, because yeah, everything is polynomials. But they turn out to describe polynomial representations of some of the superstar groups out there. Groups with names like the General Linear Group (square matrices), or the Special Linear Group (square matrices with determinant equal to 1), or the Special Unitary Group (that thing where quantum mechanics says there have to be particles whose names are obscure Greek letters with superscripts of up to five + marks). If you’d care for more, here’s a chapter by Dr Frank Porter describing, in part, how you get from Young Tableaus to the obscure baryons.

Porter’s chapter also lets me tie this back to tensors. Tensors have varied ranks, the number of different indicies you can have on the things. What happens when you swap pairs of indices in a tensor? How many ways can you swap them, and what does that do to what the tensor describes? Please tell me you already suspect this is going to match something in Young Tableaus. They do this by way of the symmetries and permutations mentioned above. But they are there.

As I say, three months ago I had no idea these things existed. If I ever ran across them it was from seeing the name at MathWorld’s list of terms that start with ‘Y’. The article shows some nice examples (with each rows a atop the previous one) but doesn’t make clear how much stuff this subject runs through. I can’t fit everything in to a reasonable essay. (For example: the number of ways to arrange, say, 20 boxes into rows meeting these rules is itself a partition problem. Partition problems are probability and statistical mechanics. Statistical mechanics is the flow of heat, and the movement of the stars in a galaxy, and the chemistry of life.) I am delighted by what does fit.

The End 2016 Mathematics A To Z: Monster Group


Today’s is one of my requested mathematics terms. This one comes to us from group theory, by way of Gaurish, and as ever I’m thankful for the prompt.

Monster Group.

It’s hard to learn from an example. Examples are great, and I wouldn’t try teaching anything subtle without one. Might not even try teaching the obvious without one. But a single example is dangerous. The learner has trouble telling what parts of the example are the general lesson to learn and what parts are just things that happen to be true for that case. Having several examples, of different kinds of things, saves the student. The thing in common to many different examples is the thing to retain.

The mathematics major learns group theory in Introduction To Not That Kind Of Algebra, MAT 351. A group extracts the barest essence of arithmetic: a bunch of things and the ability to add them together. So what’s an example? … Well, the integers do nicely. What’s another example? … Well, the integers modulo two, where the only things are 0 and 1 and we know 1 + 1 equals 0. What’s another example? … The integers modulo three, where the only things are 0 and 1 and 2 and we know 1 + 2 equals 0. How about another? … The integers modulo four? Modulo five?

All true. All, also, basically the same thing. The whole set of integers, or of real numbers, are different. But as finite groups, the integers modulo anything are nice easy to understand groups. They’re known as Cyclic Groups for reasons I’ll explain if asked. But all the Cyclic Groups are kind of the same.

So how about another example? And here we get some good ones. There’s the Permutation Groups. These are fun. You start off with a set of things. You can label them anything you like, but you’re daft if you don’t label them the counting numbers. So, say, the set of things 1, 2, 3, 4, 5. Start with them in that order. A permutation is the swapping of any pair of those things. So swapping, say, the second and fifth things to get the list 1, 5, 3, 4, 2. The collection of all the swaps you can make is the Permutation Group on this set of things. The things in the group are not 1, 2, 3, 4, 5. The things in the permutation group are “swap the second and fifth thing” or “swap the third and first thing” or “swap the fourth and the third thing”. You maybe feel uneasy about this. That’s all right. I suggest playing with this until you feel comfortable because it is a lot of fun to play with. Playing in this case mean writing out all the ways you can swap stuff, which you can always do as a string of swaps of exactly two things.

(Some people may remember an episode of Futurama that involved a brain-swapping machine. Or a body-swapping machine, if you prefer. The gimmick of the episode is that two people could only swap bodies/brains exactly one time. The problem was how to get everybody back in their correct bodies. It turns out to be possible to do, and one of the show’s writers did write a proof of it. It’s shown on-screen for a moment. Many fans were awestruck by an episode of the show inspiring a Mathematical Theorem. They’re overestimating how rare theorems are. But it is fun when real mathematics gets done as a side effect of telling a good joke. Anyway, the theorem fits well in group theory and the study of these permutation groups.)

So the student wanting examples of groups can get the Permutation Group on three elements. Or the Permutation Group on four elements. The Permutation Group on five elements. … You kind of see, this is certainly different from those Cyclic Groups. But they’re all kind of like each other.

An “Alternating Group” is one where all the elements in it are an even number of permutations. So, “swap the second and fifth things” would not be in an alternating group. But “swap the second and fifth things, and swap the fourth and second things” would be. And so the student needing examples can look at the Alternating Group on two elements. Or the Alternating Group on three elements. The Alternating Group on four elements. And so on. It’s slightly different from the Permutation Group. It’s certainly different from the Cyclic Group. But still, if you’ve mastered the Alternating Group on five elements you aren’t going to see the Alternating Group on six elements as all that different.

Cyclic Groups and Alternating Groups have some stuff in common. Permutation Groups not so much and I’m going to leave them in the above paragraph, waving, since they got me to the Alternating Groups I wanted.

One is that they’re finite. At least they can be. I like finite groups. I imagine students like them too. It’s nice having a mathematical thing you can write out in full and know you aren’t missing anything.

The second thing is that they are, or they can be, “simple groups”. That’s … a challenge to explain. This has to do with the structure of the group and the kinds of subgroup you can extract from it. It’s very very loosely and figuratively and do not try to pass this off at your thesis defense kind of like being a prime number. In fact, Cyclic Groups for a prime number of elements are simple groups. So are Alternating Groups on five or more elements.

So we get to wondering: what are the finite simple groups? Turns out they come in four main families. One family is the Cyclic Groups for a prime number of things. One family is the Alternating Groups on five or more things. One family is this collection called the Chevalley Groups. Those are mostly things about projections: the ways to map one set of coordinates into another. We don’t talk about them much in Introduction To Not That Kind Of Algebra. They’re too deep into Geometry for people learning Algebra. The last family is this collection called the Twisted Chevalley Groups, or the Steinberg Groups. And they .. uhm. Well, I never got far enough into Geometry I’m Guessing to understand what they’re for. I’m certain they’re quite useful to people working in the field of order-three automorphisms of the whatever exactly D4 is.

And that’s it. That’s all the families there are. If it’s a finite simple group then it’s one of these. … Unless it isn’t.

Because there are a couple of stragglers. There are a few finite simple groups that don’t fit in any of the four big families. And it really is only a few. I would have expected an infinite number of weird little cases that don’t belong to a family that looks similar. Instead, there are 26. (27 if you decide a particular one of the Steinberg Groups doesn’t really belong in that family. I’m not familiar enough with the case to have an opinion.) Funny number to have turn up. It took ten thousand pages to prove there were just the 26 special cases. I haven’t read them all. (I haven’t read any of the pages. But my Algebra professors at Rutgers were proud to mention their department’s work in tracking down all these cases.)

Some of these cases have some resemblance to one another. But not enough to see them as a family the way the Cyclic Groups are. We bundle all these together in a wastebasket taxon called “the sporadic groups”. The first five of them were worked out in the 1860s. The last of them was worked out in 1980, seven years after its existence was first suspected.

The sporadic groups all have weird sizes. The smallest one, known as M11 (for “Mathieu”, who found it and four of its siblings in the 1860s) has 7,920 things in it. They get enormous soon after that.

The biggest of the sporadic groups, and the last one described, is the Monster Group. It’s known as M. It has a lot of things in it. In particular it’s got 808,017,424,794,512,875,886,459,904,961,710,757,005,754,368,000,000,000 things in it. So, you know, it’s not like we’ve written out everything that’s in it. We’ve just got descriptions of how you would write out everything in it, if you wanted to try. And you can get a good argument going about what it means for a mathematical object to “exist”, or to be “created”. There are something like 1054 things in it. That’s something like a trillion times a trillion times the number of stars in the observable universe. Not just the stars in our galaxy, but all the stars in all the galaxies we could in principle ever see.

It’s one of the rare things for which “Brobdingnagian” is an understatement. Everything about it is mind-boggling, the sort of thing that staggers the imagination more than infinitely large things do. We don’t really think of infinitely large things; we just picture “something big”. A number like that one above is definite, and awesomely big. Just read off the digits of that number; it sounds like what we imagine infinity ought to be.

We can make a chart, called the “character table”, which describes how subsets of the group interact with one another. The character table for the Monster Group is 194 rows tall and 194 columns wide. The Monster Group can be represented as this, I am solemnly assured, logical and beautiful algebraic structure. It’s something like a polyhedron in rather more than three dimensions of space. In particular it needs 196,884 dimensions to show off its particular beauty. I am taking experts’ word for it. I can’t quite imagine more than 196,883 dimensions for a thing.

And it’s a thing full of mystery. This creature of group theory makes us think of the number 196,884. The same 196,884 turns up in number theory, the study of how integers are put together. It’s the first non-boring coefficient in a thing called the j-function. It’s not coincidence. This bit of number theory and this bit of group theory are bound together, but it took some years for anyone to quite understand why.

There are more mysteries. The character table has 194 rows and columns. Each column implies a function. Some of those functions are duplicated; there are 171 distinct ones. But some of the distinct ones it turns out you can find by adding together multiples of others. There are 163 distinct ones. 163 appears again in number theory, in the study of algebraic integers. These are, of course, not integers at all. They’re things that look like complex-valued numbers: some real number plus some (possibly other) real number times the square root of some specified negative number. They’ve got neat properties. Or weird ones.

You know how with integers there’s just one way to factor them? Like, fifteen is equal to three times five and no other set of prime numbers? Algebraic integers don’t work like that. There’s usually multiple ways to do that. There are exceptions, algebraic integers that still have unique factorings. They happen only for a few square roots of negative numbers. The biggest of those negative numbers? Minus 163.

I don’t know if this 163 appearance means something. As I understand the matter, neither does anybody else.

There is some link to the mathematics of string theory. That’s an interesting but controversial and hard-to-experiment-upon model for how the physics of the universe may work. But I don’t know string theory well enough to say what it is or how surprising this should be.

The Monster Group creates a monster essay. I suppose it couldn’t do otherwise. I suppose I can’t adequately describe all its sublime mystery. Dr Mark Ronan has written a fine web page describing much of the Monster Group and the history of our understanding of it. He also has written a book, Symmetry and the Monster, to explain all this in greater depths. I’ve not read the book. But I do mean to, now.

Reading the Comics, April 27, 2015: Anthropomorphic Mathematics Edition


They’re not running at the frantic pace of April 21st, but there’s still been a fair clip of comic strips that mention some kind of mathematical topic. I imagine Comic Strip Master Command wants to be sure to use as many of these jokes up as possible before the (United States) summer vacation sets in.

Dan Thompson’s Brevity (April 23) is a straightforward pun strip. It also shows a correct understanding of how to draw a proper Venn Diagram. And after all why shouldn’t an anthropomorphized Venn Diagram star in movies too?

John Atkinson’sWrong Hands (April 23) gets into more comfortable territory with plain old numbers being anthropomorphized. The 1 is fair to call this a problem. What kind of problem depends on whether you read the x as a multiplication sign or as a variable x. If it’s a multiplication sign then I can’t think of any true statement that can be made from that bundle of symbols. If it’s the variable x then there are surprisingly many problems which could be made, particularly if you’re willing to count something like “x = 718” as a problem. I think that it works out to 24 problems but would accept contrary views. This one ended up being the most interesting to me once I started working out how many problems you could make with just those symbols. There’s a fun question for your combinatorics exam in that.

Continue reading “Reading the Comics, April 27, 2015: Anthropomorphic Mathematics Edition”