## Reading the Comics, June 18, 2022: Pizza Edition

I’m back with my longest-running regular feature here. As I’ve warned I’m trying not to include every time one of the newspaper comics (that is, mostly, ones running on Comics Kingdom or GoComics) mentions the existence of arithmetic. So, for example, both Frank and Ernest and Rhymes with Orange did jokes about the names of the kinds of triangles. You can clip those at your leisure; I’m looking to discuss deeper subjects.

Scott Hilburn’s The Argyle Sweater is … well, it’s just an anthropomorphic-numerals joke. I have a weakness for The Wizard of Oz, that’s all. Also, I don’t know but somewhere in the nine kerspillion authorized books written since Baum’s death there be at least one with a “wizard of odds” plot.

Bill Amend’s FoxTrot reads almost like a word problem’s setup. There’s a difference in cost between pizzas of different sizes. Jason and Marcus make the supposition that they could buy the difference in sizes. They are asking for something physically unreasonable, but in a way that mathematics problems might do. The ring of pizza they’d be buying would be largely crust, after all. (Some people like crust, but I doubt any are ten-year-olds like Jason and Marcus.) The obvious word problem to spin out of this is extrapolating the costs of 20-inch or 8-inch pizzas, and maybe the base cost of making any pizza however tiny.

You can think of a 16-inch-wide circle as a 12-inch-wide circle with an extra ring around it. (An annulus, we’d say in the trades.) This is often a useful way to look at circles. If you get into calculus you’ll see the extra area you get from a slight increase in the diameter (or, more likely, the radius) all over the place. Also, in three dimensions, the difference in volume you get from an increase in diameter. There are also a good number of theorems with names like Green’s and Stokes’s. These are all about what you can know about the interior of a shape, like a pizza, from what you know about the ring around the edge.

Jim Meddick’s Monty sees Sedgwick, spoiled scion of New Jersey money, preparing for a mathematics test. He’s allowed the use of an abacus, one of the oldest and best-recognized computational aides. The abacus works by letting us turn the operations of basic arithmetic into physical operations. This has several benefits. We (generally) understand things in space pretty well. And the beads and wires serve as aides to memory, always a struggle. Sedgwick also brings out a “hyperbolic abacus”, a tool for more abstract operations like square roots and sines and cosines. I don’t know of anything by that name, but you can design mechanical tools to do particular computations. Slide rules, for example, generally have markings to let one calculate square roots and cube roots easily. Aircraft pilots might use a flight computer, a set of plastic discs to do quick estimates of flight time, fuel consumption, ground speed, and such. (There’s even an episode of the original Star Trek where Spock fiddles with one!)

I have heard, but not seen, that specialized curves were made to let people square circles with something approximating a compass-and-straightedge method. A contraption to calculate sines and cosines would not be hard to imagine. It would need to be a post on a hinge, mostly, with a set of lines to read off sine and cosine values over a range of angles. I don’t know of one that existed, as it’s easy enough to print out a table of trig functions, but it wouldn’t be hard to make.

And that’s enough for this week. This and all my other Reading the Comics posts should be at this link. I hope to get this back to a weekly column, but that does depend on Comic Strip Master Command doing what’s convenient for me. We’ll see how it turns out.

As though to reinforce how nothing was basically wrong, Comic Strip Master Command sent a normal number of mathematically themed comics around this past week. They bunched the strips up in the first half of the week, but that will happen. It was a fun set of strips in any event.

Rob Harrell’s Adam @ Home for the 11th tells of a teacher explaining division through violent means. I’m all for visualization tools and if we are going to use them, the more dramatic the better. But I suspect Mrs Clark’s students will end up confused about what exactly they’ve learned. If a doll is torn into five parts, is that communicating that one divided by five is five? If the students were supposed to identify the mass of the parts of the torn-up dolls as the result of dividing one by five, was that made clear to them? Maybe it was. But there’s always the risk in a dramatic presentation that the audience will misunderstand the point. The showier the drama the greater the risk, it seems to me. But I did only get the demonstration secondhand; who knows how well it was done?

Greg Cravens’ The Buckets for the 11th has the kid, Toby, struggling to turn a shirt backwards and inside-out without taking it off. As the commenters note this is the sort of problem we get into all the time in topology. The field is about what can we say about shapes when we don’t worry about distance? If all we know about a shape is the ways it’s connected, the number of holes it has, whether we can distinguish one side from another, what else can we conclude? I believe Gocomics.com commenter Mike is right: take one hand out the bottom of the shirt and slide it into the other sleeve from the outside end, and proceed from there. But I have not tried it myself. I haven’t yet started wearing long-sleeve shirts for the season.

Bill Amend’s FoxTrot for the 11th — a new strip — does a story problem featuring pizzas cut into some improbable numbers of slices. I don’t say it’s unrealistic someone might get this homework problem. Just that the story writer should really ask whether they’ve ever seen a pizza cut into sevenths. I have a faint memory of being served a pizza cut into tenths by same daft pizza shop, which implies fifths is at least possible. Sevenths I refuse, though.

Mark Tatulli’s Heart of the City for the 12th plays on the show-your-work directive many mathematics assignments carry. I like Heart’s showiness. But the point of showing your work is because nobody cares what (say) 224 divided by 14 is. What’s worth teaching is the ability to recognize what approaches are likely to solve what problems. What’s tested is whether someone can identify a way to solve the problem that’s likely to succeed, and whether that can be carried out successfully. This is why it’s always a good idea, if you are stumped on a problem, to write out how you think this problem should be solved. Writing out what you mean to do can clarify the steps you should take. And it can guide your instructor to whether you’re misunderstanding something fundamental, or whether you just missed something small, or whether you just had a bad day.

Norm Feuti’s Gil for the 12th, another rerun, has another fanciful depiction of showing your work. The teacher’s got a fair complaint in the note. We moved away from tally marks as a way to denote numbers for reasons. Twelve depictions of apples are harder to read than the number 12. And they’re terrible if we need to depict numbers like one-half or one-third. Might be an interesting side lesson in that.

Brian Basset’s Red and Rover for the 14th is a rerun and one I’ve mentioned in these parts before. I understand Red getting fired up to be an animator by the movie. It’s been a while since I watched Donald Duck in Mathmagic Land but my recollection is that while it was breathtaking and visually inventive it didn’t really get at mathematics. I mean, not at noticing interesting little oddities and working out whether they might be true always, or sometimes, or almost never. There is a lot of play in mathematics, especially in the exciting early stages where one looks for a thing to prove. But it’s also in seeing how an ingenious method lets you get just what you wanted to know. I don’t know that the short demonstrates enough of that.

Bud Blake’s Tiger rerun for the 15th gives Punkinhead the chance to ask a question. And it’s a great question. I’m not sure what I’d say arithmetic is, not if I’m going to be careful. Offhand I’d say arithmetic is a set of rules we apply to a set of things we call numbers. The rules are mostly about how we can take two numbers and a rule and replace them with a single number. And these turn out to correspond uncannily well with the sorts of things we do with counting, combining, separating, and doing some other stuff with real-world objects. That it’s so useful is why, I believe, arithmetic and geometry were the first mathematics humans learned. But much of geometry we can see. We can look at objects and see how they fit together. Arithmetic we have to infer from the way the stuff we like to count works. And that’s probably why it’s harder to do when we start school.

What’s not good about that as an answer is that it actually applies to a lot of mathematical constructs, including those crazy exotic ones you sometimes see in science press. You know, the ones where there’s this impossibly complicated tangle with ribbons of every color and a headline about “It’s Revolutionary. It’s 46-Dimensional. It’s Breaking The Rules Of Geometry. Is It The Shape That Finally Quantizes Gravity?” or something like that. Well, describe a thing vaguely and it’ll match a lot of other things. But also when we look to new mathematical structures, we tend to look for things that resemble arithmetic. Group theory, for example, is one of the cornerstones of modern mathematical thought. It’s built around having a set of things on which we can do something that looks like addition. So it shouldn’t be a surprise that many groups have a passing resemblance to arithmetic. Mathematics may produce universal truths. But the ones we see are also ones we are readied to see by our common experience. Arithmetic is part of that common experience.

Also Jerry Scott and Jim Borgman’s Zits for the 14th I think doesn’t really belong here. It’s just got a cameo appearance by the concept of mathematics. Dave Whamond’s Reality Check for the 17th similarly just mentions the subject. But I did want to reassure any readers worried after last week that Pierce recovered fine. Also that, you know, for not having a stomach for mathematics he’s doing well carrying on. Discipline will carry one far.

## Reading the Comics, March 26, 2014: Kitchen Science Department

It turns out that three of the comic strips to be included in this roundup of mathematics-themed strips mentioned things that could reasonably be found in kitchens, so that’s why I’ve added that as a subtitle. I can’t figure a way to contort the other entries to being things that might be in kitchens, but, given that I don’t get to decide what cartoonists write about I think I’m doing well to find any running themes.

Ralph Hagen’s The Barn (March 19) is built around a possibly accurate bit of trivia which tries to stagger the mind by considering the numinous: how many stars are there? This evokes, to me at least, one of the famous bits of ancient Greek calculations (for which they get much less attention than the geometers and logicians did), as Archimedes made an effort to estimate how many grains of sand could fit inside the universe. Archimedes had apparently little fear of enormous numbers, and had to strain the Greek system for representing numbers to get at such enormous quantities. But he was an ingenious reasoner: he was able to estimate, for example, the sizes and distances to the Moon and the Sun based on observing, with the naked eye, the half-moon; and his work on problems like finding the value of pi get surprisingly close to integral calculus and would probably be a better introduction to the subject than pre-calculus courses are. It’s quite easy in considering how big (and how old) the universe is to get to numbers that are really difficult to envision, so, trying to reduce that by imagining stars as grains of salt might help, if you can imagine a ball of salt eight miles across.