In Our Time podcast repeated its Emmy Noether episode


One of the podcasts I regularly listen to is the BBC’s In Our Time. This is a roughly 50-minute chat, each week, about some topic of general interest. It’s broad in its subjects; they can be historical, cultural, scientific, artistic, and even sometimes mathematical.

Recently they repeated an episode about Emmy Noether. I knew, before, that she was one of the great figures in our modern understanding of physics. Noether’s Theorem tells us how the geometry of a physics problem constrains the physics we have, and in useful ways. That, for example, what we understand as the conservation of angular momentum results from a physical problem being rotationally symmetric. (That if we rotated everything about the problem by the same angle around the same axis, we’d not see any different behaviors.) Similarly, that you could start a physics scenario at any time, sooner or later, without changing the results forces the physics scenario to have a conservation of energy. This is a powerful and stunning way to connect physics and geometry.

What I had not appreciated until listening to this episode was her work in group theory, and in organizing it in the way we still learn the subject. This startled and embarrassed me. It forced me to realize I knew little about the history of group theory. Group theory has over the past two centuries been a key piece of mathematics. It’s given us results as basic as showing there are polynomials that no quadratic formula-type expression will ever solve. It’s given results as esoteric as predicting what kinds of exotic subatomic particles we should expect to exist. And her work’s led into the modern understanding of the fundamentals of mathematics. So it’s exciting to learn some more about this.

This episode of In Our Time should be at this link although I just let iTunes grab episodes from the podcast’s feed. There are a healthy number of mathematics- and science-related conversations in its archives.

Advertisements

Did The Greatest Generation Hosts Get As Drunk As I Expected?


I finally finished listening to Benjamin Ahr Harrison and Adam Pranica’s Greatest Generation podcast reviews of the first season of Star Trek: Deep Space Nine. (We’ve had fewer long car trips for this.) So I can return to my projection of how their drinking game would turn out.

Their plan was to make more exciting the discussion of some of Deep Space Nine‘s episodes by recording their reviews while drinking a lot. The plan was, for the fifteen episodes they had in the season, there would be a one-in-fifteen chance of doing any particular episode drunk. So how many drunk episodes would you expect to get, on this basis?

It’s a well-formed expectation value problem. There could be as few as zero or as many as fifteen, but some cases are more likely than others. Each episode could be recorded drunk or not-drunk. There’s an equal chance of each episode being recorded drunk. Whether one episode is drunk or not doesn’t depend on whether the one before was, and doesn’t affect whether the next one is. (I’ll come back to this.)

The most likely case was for there to be one drunk episode. The probability of exactly one drunk episode was a little over 38%. No drunk episodes was also a likely outcome. There was a better than 35% chance it would never have turned up. The chance of exactly two drunk episodes was about 19%. There drunk episodes had a slightly less than 6% chance of happening. Four drunk episodes a slightly more than 1% chance of happening. And after that you get into the deeply unlikely cases.

As the Deep Space Nine season turned out, this one-in-fifteen chance came up twice. It turned out they sort of did three drunk episodes, though. One of the drunk episodes turned out to be the first of two they planned to record that day. I’m not sure why they didn’t just swap what episode they recorded first, but I trust they had logistical reasons. As often happens with probability questions, the independence of events — whether a success for one affects the outcome of another — changes calculations.

There’s not going to be a second-season update to this. They’ve chosen to make a more elaborate recording game of things. They’ve set up a modified Snakes and Ladders type board with a handful of spots marked for stunts. Some sound like fun, such as recording without taking any notes about the episode. Some are, yes, drinking episodes. But this is all a very different and more complicated thing to project. If I were going to tackle that it’d probably be by running a bunch of simulations and taking averages from that.

Still from Deep Space Nine, season 6, episode 23, 'Profit and Lace', the sex-changed Quark feeling her breasts and looking horrified.
Real actual episode that was really actually made and really actually aired for real. I’m going to go ahead and guess that it hasn’t aged well.

Also I trust they’ve been warned about the episode where Quark has a sex change so he can meet a top Ferengi soda magnate after accidentally giving his mother a heart attack because gads but that was a thing that happened somehow.

How Drunk Can We Expect The Greatest Generation Podcast Hosts To Get?


Among my entertainments is listening to the Greatest Generation podcast, hosted by Benjamin Ahr Harrison and Adam Pranica. They recently finished reviewing all the Star Trek: The Next Generation episodes, and have started Deep Space Nine. To add some fun and risk to episode podcasts the hosts proposed to record some episodes while drinking heavily. I am not a fun of recreational over-drinking, but I understand their feelings. There’s an episode where Quark has a sex-change operation because he gave his mother a heart attack right before a politically charged meeting with a leading Ferengi soda executive. Nobody should face that mess sober.

At the end of the episode reviewing “Babel”, Harrison proposed: there’s 15 episodes left in the season. Use a random number generator to pick a number from 1 to 15; if it’s one, they do the next episode (“Captive Pursuit”) drunk. And it was; what are the odds? One in fifteen. I just said.

Still from Next Generation season 1, episode 3, 'The Naked Now', causing all us Trekkies at home to wonder if maybe this new show wasn't going to be as good as we so desperately needed it to be?
Space-drunk engineer Jim Shimoda throwing control chips around in the moment that made him a Greatest Generation running joke. In the podcast’s context this makes sense. In the original context this made us all in 1987 grit our teeth and say, “No, no, this really is as good a show as we need this to be shut up shut up shut up”.

The question: how many episodes would they be doing drunk? As they discussed in the next episode, this would imply they’d always get smashed for the last episode of the season. This is a straightforward expectation-value problem. The expectation value of a thing is the sum of all the possible outcomes times the chance of each outcome. Here, the possible outcome is adding 1 to the number of drunk episodes. The chance of any particular episode being a drunk episode is 1 divided by ‘N’, if ‘N’ is the number of episodes remaining. So the next-to-the-last episode has 1 chance in 2 of being drunk. The second-from-the-last has 1 chance in 3 of being drunk. And so on.

This expectation value isn’t hard to calculate. If we start counting from the last episode of the season, then it’s easy. Add up 1 + \frac12 + \frac13 + \frac14 + \frac15 + \frac16 + \cdots , ending when we get up to one divided by the number of episodes in the season. 25 or 26, for most seasons of Deep Space Nine. 15, from when they counted here. This is the start of the harmonic series.

The harmonic series gets taught in sequences and series in calculus because it does some neat stuff if you let it go on forever. For example, every term in this sequence gets smaller and smaller. (The “sequence” is the terms that go into the sum: 1, \frac12, \frac13, \frac14, \frac{1}{1054}, \frac{1}{2038} , and so on. The “series” is the sum of a sequence, a single number. I agree it seems weird to call a “series” that sum, but it’s the word we’re stuck with. If it helps, consider: when we talk about “a TV series” we usually mean the whole body of work, not individual episodes.) You can pick any number, however tiny you like. I can then respond with the last term in the sequence bigger than your number. Infinitely many terms in the sequence will be smaller than your pick. And yet: you can pick any number you like, however big. And I can take a finite number of terms in this sequence to make a sum bigger than whatever number you liked. The sum will eventually be bigger than 10, bigger than 100, bigger than a googolplex. These two facts are easy to prove, but they seem like they ought to be contradictory. You can see why infinite series are fun and produce much screaming on the part of students.

No Star Trek show has a season has infinitely many episodes, though, however long the second season of Enterprise seemed to drag out. So we don’t have to worry about infinitely many drunk episodes.

Since there were 15 episodes up for drunkenness in the first season of Deep Space Nine the calculation’s easy. I still did it on the computer. For the first season we could expect 1 + \frac12 + \frac13 + \cdots + \frac{1}{15} drunk episodes. This is a number a little bigger than 3.318. So, more likely three drunk episodes, four being likely. For the 25-episode seasons (seasons four and seven, if I’m reading this right), we could expect 1 + \frac12 + \frac13 + \cdots + \frac{1}{25} or just over 3.816 drunk episodes. Likely four, maybe three. For the 26-episode seasons (seasons two, five, and six), we could expect 1 + \frac12 + \frac13 + \cdots + \frac{1}{26} drunk episodes. That’s just over 3.854.

The number of drunk episodes to expect keeps growing. The harmonic series grows without bounds. But it keeps growing slower, compared to the number of terms you add together. You need a 31-episode season to be able to expect at four drunk episodes. To expect five drunk episodes you’d need an 83-episode season. If the guys at Worst Episode Ever, reviewing The Simpsons, did all 625-so-far episodes by this rule we could only expect seven drunk episodes.

Still, three, maybe four, drunk episodes of the 15 remaining first season is a fair number. They shouldn’t likely be evenly spaced. The chance of a drunk episode rises the closer they get to the end of the season. Expected length between drunk episodes is interesting but I don’t want to deal with that. I’ll just say that it probably isn’t the five episodes the quickest, easiest suggested by taking 15 divided by 3.

And it’s moot anyway. The hosts discussed it just before starting “Captive Pursuit”. Pranica pointed out, for example, the smashed-last-episode problem. What they decided they meant was there would be a 1-in-15 chance of recording each episode this season drunk. For the 25- or 26-episode seasons, each episode would get its 1-in-25 or 1-in-26 chance.

That changes the calculations. Not in spirit: that’s still the same. Count the number of possible outcomes and the chance of each one being a drunk episode and add that all up. But the work gets simpler. Each episode has a 1-in-15 chance of adding 1 to the total of drunk episodes. So the expected number of drunk episodes is the number of episodes (15) times the chance each is a drunk episode (1 divided by 15). We should expect 1 drunk episode. The same reasoning holds for all the other seasons; we should expect 1 drunk episode per season.

Still, since each episode gets an independent draw, there might be two drunk episodes. Could be three. There’s no reason that all 15 couldn’t be drunk. (Except that at the end of reviewing “Captive Pursuit” they drew for the next episode and it’s not to be a drunk one.) What are the chances there’s no drunk episodes? What are the chances there’s two, or three, or eight drunk episodes?

There’s a rule for this. This kind of problem is a mathematically-famous one. We get our results from the “binomial distribution”. This applies whenever there’s a bunch of attempts at something. And each attempt can either clearly succeed or clearly fail. And the chance of success (or failure) each attempt is always the same. That’s what applies here. If there’s ‘N’ episodes, and the chance is ‘p’ that any one will be drunk, then we get the chance ‘y’ of turning up exactly ‘k’ drunk episodes by the formula:

y = \frac{N!}{k! \cdot \left(n - k\right)!} p^k \left(1 - p\right)^{n - k}

That looks a bit ugly, yeah. (I don’t like using ‘y’ as the name for a probability. I ran out of good letters and didn’t want to do subscripts.) It’s just tedious to calculate is all. Factorials and everything. Better to let the computer work it out. There is a formula that’s easy enough to work with, though. That’s because the chance of a drunk episode is the same each episode. I don’t know a formula to get the chance of exactly zero or one or four drunk episodes with the first, one-in-N chance. Probably the only thing to do is run a lot of simulations and trust that’s approximately right.

But for this rule it’s easy enough. There’s this formula, like I said. I figured out the chance of all the possible drunk episode combinations for the seasons. I mean I had the computer work it out. All I figured out was how to make it give me the results in a format I liked. Here’s what I got.

The chance of these many drunk episodes In a 15-episode season is
0 0.355
1 0.381
2 0.190
3 0.059
4 0.013
5 0.002
6 0.000
7 0.000
8 0.000
9 0.000
10 0.000
11 0.000
12 0.000
13 0.000
14 0.000
15 0.000

Sorry it’s so dull, but the chance of a one-in-fifteen event happening 15 times in a row? You’d expect that to be pretty small. It’s got a probability of something like 0.000 000 000 000 000 002 28 of happening. Not technically impossible, but yeah, impossible.

How about for the 25- and 26-episode seasons? Here’s the chance of all the outcomes:

The chance of these many drunk episodes In a 25-episode season is
0 0.360
1 0.375
2 0.188
3 0.060
4 0.014
5 0.002
6 0.000
7 0.000
8 or more 0.000

And things are a tiny bit different for a 26-episode season.

The chance of these many drunk episodes In a 26-episode season is
0 0.361
1 0.375
2 0.188
3 0.060
4 0.014
5 0.002
6 0.000
7 0.000
7 0.000
8 or more 0.000

Yes, there’s a greater chance of no drunk episodes. The difference is really slight. It only looks so big because of rounding. A no-drunk 25 episode season has a chance of about 0.3604, while a no-drunk 26 episodes season has a chance of about 0.3607. The difference comes from the chance of lots of drunk episodes all being even worse somehow.

And there’s some neat implications through this. There’s a slightly better than one in three chance that each of the second through seventh seasons won’t have any drunk episodes. We could expect two dry seasons, hopefully not the one with Quark’s sex-change episode. We can reasonably expect at least one season with two drunk episodes. There’s a slightly more than 40 percent chance that some season will have three drunk episodes. There’s just under a 10 percent chance some season will have four drunk episodes.

Still from Deep Space Nine, season 6, episode 23, 'Profit and Lace', the sex-changed Quark feeling her breasts and looking horrified.
Real actual episode that was really actually made and really actually aired for real. I don’t know when I last saw it. I’m going to go ahead and guess that it hasn’t aged well.

There’s no guarantees, though. Probability has a curious blend. There’s no predicting when any drunk episode will come. But we can make meaningful predictions about groups of episodes. These properties seem like they should be contradictions. And they’re not, and that’s wonderful.

Mathematics Stuff To Read Or Listen To


I concede January was a month around here that could be characterized as “lazy”. Not that I particularly skimped on the Reading the Comics posts. But they’re relatively easy to do: the comics tell me what to write about, and I could do a couple paragraphs on most anything, apparently.

While I get a couple things planned out for the coming month, though, here’s some reading for other people.

The above links to a paper in the Proceedings of the National Academy of Sciences. It’s about something I’ve mentioned when talking about knot before. And it’s about something everyone with computer cables or, like the tweet suggests, holiday lights finds. The things coil up. Spontaneous knotting of an agitated string by Dorian M Raymer and Douglas E Smith examines when these knots are likely to form, and how likely they are. It’s not a paper for the lay audience, but there are a bunch of fine pictures. The paper doesn’t talk about Christmas lights, no matter what the tweet does, but the mathematics carries over to this.

MathsByAGirl, meanwhile, had a post midmonth listing a couple of mathematics podcasts. I’m familiar with one of them, BBC Radio 4’s A Brief History of Mathematics, which was a set of ten-to-twenty-minute sketches of historically important mathematics figures. I’ll trust MathsByAGirl’s taste on other podcasts. I’d spent most of this month finishing off a couple of audio books (David Hackett Fischer’s Washington’s Crossing which I started listening to while I was in Trenton for a week, because that’s the sort of thing I think is funny, and Robert Louis Stevenson’s Doctor Jekyll and Mister Hyde And Other Stories) and so fell behind on podcasts. But now there’s some more stuff to listen forward to.

And then I’ll wrap up with this from KeplerLounge. It looks to be the start of some essays about something outside the scope of my Why Stuff Can Orbit series. (Which I figure to resume soon.) We start off talking about orbits as if planets were “point masses”. Which is what the name suggests: a mass that fills up a single point, with no volume, no shape, no features. This makes the mathematics easier. The mathematics is just as easy if the planets are perfect spheres, whether hollow or solid. But real planets are not perfect spheres. They’re a tiny bit blobby. And they’re a little lumpy as well. We can ignore that if we’re doing rough estimates of how orbits work. But if we want to get them right we can’t ignore that anymore. And this essay describes some of how we go about dealing with that.