Reblog: Factorization diagrams


The Math Less Traveled over here shows off a lovely way of visualizing the factoring of integers by putting them into patterns inspired by the regular polygons. Some numbers factor into wonderfully obvious patterns; some turn into muddles of dots because integers just work that way. They’re all attractive ways to look at numbers, though.

The Math Less Traveled

In an idle moment a while ago I wrote a program to generate "factorization diagrams". Here’s 700:

It’s easy to see (I hope), just by looking at the arrangement of dots, that there are $latex 7 \times 5 \times 5 \times 2 \times 2$ in total.

Here’s how I did it. First, a few imports: a function to do factorization of integers, and a library to draw pictures (yes, this is the library I wrote myself; I promise to write more about it soon!).

>moduleFactorizationwhere>>importMath.NumberTheory.Primes.Factorisation(factorise)>>importDiagrams.Prelude>importDiagrams.Backend.Cairo.CmdLine>>typePicture=DiagramCairoR2

The primeLayout function takes an integer n (assumed to be a prime number) and some sort of picture, and symmetrically arranges n copies of the picture.

View original post 583 more words

Setting Out To Trap A Zoid


I was ready to go with a little essay about how I ultimately figured out the area of a trapezoid, based on the formula for the area of triangles, when I realized that it was much easier to show this with a diagram. And I had a diagram drawn out pretty well, at least to the limits of my drawing ability and my power to use Photoshop Elements to do the drawing. But then it struck me that there’s a peril in using a diagram when you want to prove anything, and the nature of those perils deserved some attention.
Continue reading “Setting Out To Trap A Zoid”