Reading the Comics, April 11, 2018: Monkeys at Typewriters Edition


This is closing out a busy week’s worth of comic strips mentioning some mathematics theme. Three of these are of extremely slight mathematical content, but I’ll carry on anyway.

Reza Farazmand’s Poorly Drawn Lines for the 8th has a bear admit the one thing which frightens him still is mathematics. It adds to it a joke showing that he’s not very good at mathematics, by making a mistake with percentages.

Will Henry’s Wallace the Brave for the 8th has Wallace working out an arithmetic problem in class.

Dana Simpson’s Ozy and Millie rerun for the 9th is part of a sequence of Ozy being home-schooled. The joke puts the transient nature of knowledge up against the apparent permanent of arithmetic. The joke does get at one of those fundamental questions in the philosophy of mathematics: is mathematics created or discovered? The expression of mathematics is unmistakably created. There is nothing universal in declaring “six times eight is forty-eight” and if you wish to say there is, then ask someone who speaks only Tamil and not a word of English whether they agree with exactly that proposition.

Llewelyn: 'All right, son, we've now explored the provisional, representational nature of ideas. We've discussed the futility of believing one actually knows anything ... the wisdom of focusing on one's inevitable ignorance. Now let's move on to the multiplication tables.' Ozy, to camera: 'Dad's career as a motivational speaker was short lived.' Llewelyn: 'Memorize them by tomorrow. No errors.'
Dana Simpson’s Ozy and Millie rerun for the 9th of April, 2020. Essays in which I discuss something raised by Ozy and Millie are at this link.

But, grant that while we may have different representations of the concept, it is the case that “eight” exists, right? We get right back into trouble if we follow up by asking, all right, will “eight” fit in my hand? Is “eight” larger than the weather? Is “eight” more or less red than nominalism? I chose nouns that made those questions obviously ridiculous. But if we want to talk about a mathematical construct existing, someone’s going to ask what traits that existence implies. It’s convenient for mathematicians, and good publicity, for us to think that we work on things that exist independently of the accidental facts of the universe. But then we’re stuck when we’re asked how we, stuck in the universe, can have anything to do with a thing that’s not part of it.

Not mentioned in this particular Ozy and Millie strip is that the characters are Buddhist. The (American) pop culture interpretation of Buddhism includes an emphasis on understanding the transient nature of … everything … which would seem to include mathematical knowledge. Still, there is a long history of great mathematical work done by Buddhist scholars; the oldest known manuscript of Indian mathematics is written in a Buddhist Hybrid Sanskrit. The author of that manuscript is unknown, but it’s not as if that were the lone piece of mathematical writing.

My limited understanding is that Indian mathematics used an interesting twist on the problem of the excluded middle. This is a question important to proofs. Can we take every logical proposition as being either true or false? If we can, then we are able to prove statements by contradiction: suppose the reverse of what we want to prove and show that implies nonsense. This is common in western mathematics. But there is a school of thought that we should not do this, and only allow as true statements we have directly proven to be true. My understanding is that at least one school of Indian mathematics allowed proof by contradiction if it proved that a thing did not exist. It would not be used to show that a thing existed. So, for example, it would allow the ordinary proof that the square root of two can’t be a rational number; it would not allow an indirect proof that, say, a kind of mapping must have a fixed point. (It would allow a proof that showed you how to find that point, though.) It’s an interesting division, and a reminder that even what counts as a logical derivation is a matter of custom.

Full-page comic strip titled 'How they put out a Newspaper on the Ark', with a string of little vignettes of animals doing the job of a 1901-era newspaper, eg, a tiger writing how there's no baseball until it stops raining, a seal writing that Ararat is not yet in sight. A monkey turns the crank of the press, and another monkey is at a typewriter, taking dictation from Noah ('As we go to press it is still raining'); more monkeys set type and hawk printed papers.
James Swinnerton’s The Troubles of Noah for the 21st of July, 1901, and reprinted the 10th of April, 2020. I don’t seem to have ever discussed this series before, which is not all that surprising. But if I ever do have an essay mentioning the Origins of the Sunday Comics series I will try to put it at this link.

Peter Maresca’s Origins of the Sunday Comics for the 9th reprints The Troubles of Noah, a comic strip drawn by James Swinnerton and originally printed the 21st of July, 1901. And this is really included just because it depicts a monkey at a typewriter, a dozen years before Émile Borel created the perfect image of endless random processes. (Look to the lower right corner, taking dictation from Noah.) There’s also a bonus monkey setting type in the lower left.


That’s finally taken care of a week. Time to take care of another week! When I have some of last week’s comic strips written up I will post the essay at this link. Thanks for reading.

Reading the Comics, October 21, 2017: Education Week Edition


Comic Strip Master Command had a slow week for everyone. This is odd since I’d expect six to eight weeks ago, when the comics were (probably) on deadline, most (United States) school districts were just getting back to work. So education-related mathematics topics should’ve seemed fresh. I think I can make that fit. No way can I split this pile of comics over two days.

Hector D Cantu and Carlos Castellanos’s Baldo for the 17th has Gracie quizzed about percentages of small prices, apparently as a test of her arithmetic. Her aunt has other ideas in mind. It’s hard to dispute that this is mathematics people use in real life. The commenters on GoComics got into an argument about whether Gracie gave the right answers, though. That is, not that 20 percent of $5.95 is anything about $1.19. But did Tia Carmen want to know what 20 percent of $5.95, or did she want to know what $5.95 minus 20 percent of that price was? Should Gracie have answered $4.76 instead? It took me a bit to understand what the ambiguity was, but now that I see it, I’m glad I didn’t write a multiple-choice test with both $1.19 and $4.76 as answers. I’m not sure how to word the questions to avoid ambiguity yet still sound like something one of the hew-mons might say.

Dan Thompson’s Brevity for the 19th uses the blackboard and symbols on it as how a mathematician would prove something. In this case, love. Arithmetic’s a good visual way of communicating the mathematician at work here. I don’t think a mathematician would try arguing this in arithmetic, though. I mean if we take the premise at face value. I’d expect an argument in statistics, so, a mathematician showing various measures of … feelings or something. And tests to see whether it’s plausible this cluster of readings could come out by some reason other than love. If that weren’t used, I’d expect an argument in propositional logic. And that would have long strings of symbols at work, but they wouldn’t look like arithmetic. They look more like Ancient High Martian. Just saying.

Reza Farazmand’s Poorly Drawn Lines for the 20th you maybe already saw going around your social media. It’s well-designed for that. Also for grad students’ office doors.

Dave Coverly’s Speed Bump for the 20th is designed with crossover appeal in mind and I wonder if whoever does Reading the Comics for English Teacher Jokes is running this same strip in their collection for the week.

Darrin Bell’s Candorville for the 21st sees Lemont worry that he’s forgotten how to do long division. And, fair enough: any skill you don’t use in long enough becomes stale, whether it’s division or not. You have to keep in practice and, in time, have to decide what you want to keep in practice about. (That said, I have a minor phobia about forgetting how to prove the Contraction Mapping Theorem, as several professors in grad school stressed how it must always be possible to give a coherent proof of that, even if you’re startled awake in the middle of the night by your professor.) Me, I would begin by estimating what 4,858.8 divided by 297.492 should be. 297.492 is very near 300. And 4,858.8 is a little over 4800. And that’s suggestive because it’s obvious that 48 divided by 3 is 16. Well, it’s obvious to me. So I would expect the answer to be “a little more than 16” and, indeed, it’s about 16.3.

(Don’t read the comments on GoComics. There’s some slide-rule-snobbishness, and some snark about the uselessness of the skill or the dumbness of Facebook readers, and one comment about too many people knowing how to multiply by someone who’s reading bad population-bomb science fiction of the 70s.)

%d bloggers like this: