My All 2020 Mathematics A to Z: K-Theory


I should have gone with Vayuputrii’s proposal that I talk about the Kronecker Delta. But both Jacob Siehler and Mr Wu proposed K-Theory as a topic. It’s a big and an important one. That was compelling. It’s also a challenging one. This essay will not teach you K-Theory, or even get you very far in an introduction. It may at least give some idea of what the field is about.

Color cartoon illustration of a coati in a beret and neckerchief, holding up a director's megaphone and looking over the Hollywood hills. The megaphone has the symbols + x (division obelus) and = on it. The Hollywood sign is, instead, the letters MATHEMATICS. In the background are spotlights, with several of them crossing so as to make the letters A and Z; one leg of the spotlights has 'TO' in it, so the art reads out, subtly, 'Mathematics A to Z'.
Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

K-Theory.

This is a difficult topic to discuss. It’s an important theory. It’s an abstract one. The concrete examples are either too common to look interesting or are already deep into things like “tangent bundles of Sn-1”. There are people who find tangent bundles quite familiar concepts. My blog will not be read by a thousand of them this month. Those who are familiar with the legends grown around Alexander Grothendieck will nod on hearing he was a key person in the field. Grothendieck was of great genius, and also spectacular indifference to practical mathematics. Allegedly he once, pressed to apply something to a particular prime number for an example, proposed 57, which is not prime. (One does not need to be a genius to make a mistake like that. If I proposed 447 or 449 as prime numbers, how long would you need to notice I was wrong?)

K-Theory predates Grothendieck. Now that we know it’s a coherent mathematical idea we can find elements leading to it going back to the 19th century. One important theorem has Bernhard Riemann’s name attached. Henri Poincaré contributed early work too. Grothendieck did much to give the field a particular identity. Also a name, the K coming from the German Klasse. Grothendieck pioneered what we now call Algebraic K-Theory, working on the topic as a field of abstract algebra. There is also a Topological K-Theory, early work on which we thank Michael Atiyah and Friedrick Hirzebruch for. Topology is, popularly, thought of as the mathematics of flexible shapes. It is, but we get there from thinking about relationships between sets, and these are the topologies of K-Theory. We understand these now as different ways of understandings structures.

Still, one text I found described (topological) K-Theory as “the first generalized cohomology theory to be studied thoroughly”. I remember how much handwaving I had to do to explain what a cohomology is. The subject looks intimidating because of the depth of technical terms. Every field is deep in technical terms, though. These look more rarefied because we haven’t talked much, or deeply, into the right kinds of algebra and topology.

You find at the center of K-Theory either “coherent sheaves” or “vector bundles”. Which alternative depends on whether you prefer Algebraic or Topological K-Theory. Both alternatives are ways to encode information about the space around a shape. Let me talk about vector bundles because I find that easier to describe. Take a shape, anything you like. A closed ribbon. A torus. A Möbius strip. Draw a curve on it. Every point on that curve has a tangent plane, the plane that just touches your original shape, and that’s guaranteed to touch your curve at one point. What are the directions you can go in that plane? That collection of directions is a fiber bundle — a tangent bundle — at that point. (As ever, do not use this at your thesis defense for algebraic topology.)

Now: what are all the tangent bundles for all the points along that curve? Does their relationship tell you anything about the original curve? The question is leading. If their relationship told us nothing, this would not be a subject anyone studies. If you pick a point on the curve and look at its tangent bundle, and you move that point some, how does the tangent bundle change?

If we start with the right sorts of topological spaces, then we can get some interesting sets of bundles. What makes them interesting is that we can form them into a ring. A ring means that we have a set of things, and an operation like addition, and an operation like multiplication. That is, the collection of things works somewhat like the integers do. This is a comfortable familiar behavior after pondering too much abstraction.

Why create such a thing? The usual reasons. Often it turns out calculating something is easier on the associated ring than it is on the original space. What are we looking to calculate? Typically, we’re looking for invariants. Things that are true about the original shape whatever ways it might be rotated or stretched or twisted around. Invariants can be things as basic as “the number of holes through the solid object”. Or they can be as ethereal as “the total energy in a physics problem”. Unfortunately if we’re looking at invariants that familiar, K-Theory is probably too much overhead for the problem. I confess to feeling overwhelmed by trying to learn enough to say what it is for.

There are some big things which it seems well-suited to do. K-Theory describes, in its way, how the structure of a set of items affects the functions it can have. This links it to modern physics. The great attention-drawing topics of 20th century physics were quantum mechanics and relativity. They still are. The great discovery of 20th century physics has been learning how much of it is geometry. How the shape of space affects what physics can be. (Relativity is the accessible reflection of this.)

And so K-Theory comes to our help in string theory. String theory exists in that grand unification where mathematics and physics and philosophy merge into one. I don’t toss philosophy into this as an insult to philosophers or to string theoreticians. Right now it is very hard to think of ways to test whether a particular string theory model is true. We instead ponder what kinds of string theory could be true, and how we might someday tell whether they are. When we ask what things could possibly be true, and how to tell, we are working for the philosophy department.

My reading tells me that K-Theory has been useful in condensed matter physics. That is, when you have a lot of particles and they interact strongly. When they act like liquids or solids. I can’t speak from experience, either on the mathematics or the physics side.

I can talk about an interesting mathematical application. It’s described in detail in section 2.3 of Allen Hatcher’s text Vector Bundles and K-Theory, here. It comes about from consideration of the Hopf invariant, named for Heinz Hopf for what I trust are good reasons. It also comes from consideration of homomorphisms. A homomorphism is a matching between two sets of things that preserves their structure. This has a precise definition, but I can make it casual. If you have noticed that, every (American, hourlong) late-night chat show is basically the same? The host at his desk, the jovial band leader, the monologue, the show rundown? Two guests and a band? (At least in normal times.) Then you have noticed the homomorphism between these shows. A mathematical homomorphism is more about preserving the products of multiplication. Or it preserves the existence of a thing called the kernel. That is, you can match up elements and how the elements interact.

What’s important is Adams’ Theorem of the Hopf Invariant. I’ll write this out (quoting Hatcher) to give some taste of K-Theory:

The following statements are true only for n = 1, 2, 4, and 8:
a. R^n is a division algebra.
b. S^{n - 1} is parallelizable, ie, there exist n – 1 tangent vector fields to S^{n - 1} which are linearly independent at each point, or in other words, the tangent bundle to S^{n - 1} is trivial.

This is, I promise, low on jargon. “Division algebra” is familiar to anyone who did well in abstract algebra. It means a ring where every element, except for zero, has a multiplicative inverse. That is, division exists. “Linearly independent” is also a familiar term, to the mathematician. Almost every subject in mathematics has a concept of “linearly independent”. The exact definition varies but it amounts to the set of things having neither redundant nor missing elements.

The proof from there sprawls out over a bunch of ideas. Many of them I don’t know. Some of them are simple. The conditions on the Hopf invariant all that S^{n - 1} stuff eventually turns into finding values of n for for which 2^n divides 3^n - 1 . There are only three values of ‘n’ that do that. For example.

What all that tells us is that if you want to do something like division on ordered sets of real numbers you have only a few choices. You can have a single real number, R^1 . Or you can have an ordered pair, R^2 . Or an ordered quadruple, R^4 . Or you can have an ordered octuple, R^8 . And that’s it. Not that other ordered sets can’t be interesting. They will all diverge far enough from the way real numbers work that you can’t do something that looks like division.

And now we come back to the running theme of this year’s A-to-Z. Real numbers are real numbers, fine. Complex numbers? We have some ways to understand them. One of them is to match each complex number with an ordered pair of real numbers. We have to define a more complicated multiplication rule than “first times first, second times second”. This rule is the rule implied if we come to R^2 through this avenue of K-Theory. We get this matching between real numbers and the first great expansion on real numbers.

The next great expansion of complex numbers is the quaternions. We can understand them as ordered quartets of real numbers. That is, as R^4 . We need to make our multiplication rule a bit fussier yet to do this coherently. Guess what fuss we’d expect coming through K-Theory?

R^8 seems the odd one out; who does anything with that? There is a set of numbers that neatly matches this ordered set of octuples. It’s called the octonions, sometimes called the Cayley Numbers. We don’t work with them much. We barely work with quaternions, as they’re a lot of fuss. Multiplication on them doesn’t even commute. (They’re very good for understanding rotations in three-dimensional space. You can also also use them as vectors. You’ll do that if your programming language supports quaternions already.) Octonions are more challenging. Not only does their multiplication not commute, it’s not even associative. That is, if you have three octonions — call them p, q, and r — you can expect that p times the product of q-and-r would be different from the product of p-and-q times r. Real numbers don’t work like that. Complex numbers or quaternions don’t either.

Octonions let us have a meaningful division, so we could write out p \div q and know what it meant. We won’t see that for any bigger ordered set of R^n . And K-Theory is one of the tools which tells us we may stop looking.

This is hardly the last word in the field. It’s barely the first. It is at least an understandable one. The abstractness of the field works against me here. It does offer some compensations. Broad applicability, for example; a theorem tied to few specific properties will work in many places. And pure aesthetics too. Much work, in statements of theorems and their proofs, involve lovely diagrams. You’ll see great lattices of sets relating to one another. They’re linked by chains of homomorphisms. And, in further aesthetics, beautiful words strung into lovely sentences. You may not know what it means to say “Pontryagin classes also detect the nontorsion in \pi_k(SO(n)) outside the stable range”. I know I don’t. I do know when I hear a beautiful string of syllables and that is a joy of mathematics never appreciated enough.


Thank you for reading. The All 2020 A-to-Z essays should be available at this link. The essays from all A-to-Z sequence, 2015 to present, should be at this link. And I am still open for M, N, and O essay topics. Thanks for your attention.

Some More Mathematics I’ve Been Reading, 6 October 2018


I have a couple links I’d not included in the recent Playful Mathematics Education Blog Carnival. Looking at them, I can’t say why.

The top page of this asks, with animated text, whether you want to see something amazing. Forgive its animated text. It does do something amazing. This paper by Javier Cilleruelo, Florian Luca, and Lewis Baxter proves that every positive whole number is the sum of at most three palindromic numbers. The web site, by Mathstodon host Christian Lawson-Perfect, demonstrates it. Enter a number and watch the palindromes appear and add up.

Next bit is an article that relates to my years-long odd interest in pasta making. Mathematicians solve age-old spaghetti mystery reports a group of researchers at MIT — the renowned “Rensselaer Polytechnic Institute of Boston” [*] — studying why dry spaghetti fractures the way it does. Like many great problems, it sounds ridiculous to study at first. Who cares why, basically, you can’t snap a dry spaghetti strand in two equal pieces by bending it at the edges? The problem has familiarity to it and seems to have little else. But then you realize this is a matter of how materials work, and how they break. And realize it’s a great question. It’s easy to understand and subtle to solve.

And then, how about quaternions? Everybody loves quaternions. Well, @SheckyR here links to an article from Thatsmath.com, The Many Modern Uses of Quaternions. It’s some modern uses anyway. The major uses for quaternions are in rotations. They’re rather good at representing rotations. And they’re really good at representing doing several rotations, along different axes, in a row.

The article finishes with (as teased in the tweet above) a report of an electric toothbrush that should keep track of positions inside the user’s head, even as the head rotates. This is intriguing. I say as a person who’s reluctantly started using an electric toothbrush. I’m one of those who brushes, manually, too hard, to the point of damaging my gums. The electric toothbrush makes that harder to do. I’m not sure how an orientation-aware electric toothbrush will improve the situation any, but I’m open-minded.


[*] I went to graduate school at Rensselaer Polytechnic Institute, the “RPI of New York”. The school would be a rival to MIT if RPI had any self-esteem. I’m guessing, as I never went to a school that had self-esteem.

The End 2016 Mathematics A To Z: Hat


I was hoping to pick a term that was a quick and easy one to dash off. I learned better.

Hat.

This is a simple one. It’s about notation. Notation is never simple. But it’s important. Good symbols organize our thoughts. They tell us what are the common ordinary bits of our problem, and what are the unique bits we need to pay attention to here. We like them to be easy to write. Easy to type is nice, too, but in my experience mathematicians work by hand first. Typing is tidying-up, and we accept that being sluggish. Unique would be nice, so that anyone knows what kind of work we’re doing just by looking at the symbols. I don’t think anything manages that. But at least some notation has alternate uses rare enough we don’t have to worry about it.

“Hat” has two major uses I know of. And we call it “hat”, although our friends in the languages department would point out this is a caret. The little pointy corner that goes above a letter, like so: \hat{i} . \hat{x} . \hat{e} . It’s not something we see on its own. It’s always above some variable.

The first use of the hat like this comes up in statistics. It’s a way of marking that something is an estimate. By “estimate” here we mean what anyone might mean by “estimate”. Statistics is full of uses for this sort of thing. For example, we often want to know what the arithmetic mean of some quantity is. The average height of people. The average temperature for the 18th of November. The average weight of a loaf of bread. We have some letter that we use to mean “the value this has for any one example”. By some letter we mean ‘x’, maybe sometimes ‘y’. We can use any and maybe the problem begs for something. But it’s ‘x’, maybe sometimes ‘y’.

For the arithmetic mean of ‘x’ for the whole population we write the letter with a horizontal bar over it. (The arithmetic mean is the thing everybody in the world except mathematicians calls the average. Also, it’s what mathematicians mean when they say the average. We just get fussy because we know if we don’t say “arithmetic mean” someone will come along and point out there are other averages.) That arithmetic mean is \bar{x} . Maybe \bar{y} if we must. Must be some number. But what is it? If we can’t measure whatever it is for every single example of our group — the whole population — then we have to make an estimate. We do that by taking a sample, ideally one that isn’t biased in some way. (This is so hard to do, or at least be sure you’ve done.) We can find the mean for this sample, though, because that’s how we picked it. The mean of this sample is probably close to the mean of the whole population. It’s an estimate. So we can write \hat{x} and understand. This is not \bar{x} but it does give us a good idea what \hat{x} should be.

(We don’t always use the caret ^ for this. Sometimes we use a tilde ~ instead. ~ has the advantage that it’s often used for “approximately equal to”. So it will carry that suggestion over to its new context.)

The other major use of the hat comes in vectors. Mathematics types do a lot of work with vectors. It turns out a lot of mathematical structures work the way that pointing and moving in directions in ordinary space do. That’s why back when I talked about what vectors were I didn’t say “they’re like arrows pointing some length in some direction”. Arrows pointing some length in some direction are vectors, yes, but there are many more things that are vectors. Thinking of moving in particular directions gives us good intuition for how to work with vectors, and for stuff that turns out to be vectors. But they’re not everything.

If we need to highlight that something is a vector we put a little arrow over its name. \vec{x} . \vec{e} . That sort of thing. (Or if we’re typing, we might put the letter in boldface: x. This was good back before computers let us put in mathematics without giving the typesetters hazard pay.) We don’t always do that. By the time we do a lot of stuff with vectors we don’t always need the reminder. But we will include it if we need a warning. Like if we want to have both \vec{r} telling us where something is and to use a plain old r to tell us how big the vector \vec{r} is. That turns up a lot in physics problems.

Every vector has some length. Even vectors that don’t seem to have anything to do with distances do. We can make a perfectly good vector out of “polynomials defined for the domain of numbers between -2 and +2”. Those polynomials are vectors, and they have lengths.

There’s a special class of vectors, ones that we really like in mathematics. They’re the “unit vectors”. Those are vectors with a length of 1. And we are always glad to see them. They’re usually good choices for a basis. Basis vectors are useful things. They give us, in a way, a representative slate of cases to solve. Then we can use that representative slate to give us whatever our specific problem’s solution is. So mathematicians learn to look instinctively to them. We want basis vectors, and we really like them to have a length of 1. Even if we aren’t putting the arrow over our variables we’ll put the caret over the unit vectors.

There are some unit vectors we use all the time. One is just the directions in space. That’s \hat{e}_1 and \hat{e}_2 and for that matter \hat{e}_3 and I bet you have an idea what the next one in the set might be. You might be right. These are basis vectors for normal, Euclidean space, which is why they’re labelled “e”. We have as many of them as we have dimensions of space. We have as many dimensions of space as we need for whatever problem we’re working on. If we need a basis vector and aren’t sure which one, we summon one of the letters used as indices all the time. \hat{e}_i , say, or \hat{e}_j . If we have an n-dimensional space, then we have unit vectors all the way up to \hat{e}_n .

We also use the hat a lot if we’re writing quaternions. You remember quaternions, vaguely. They’re complex-valued numbers for people who’re bored with complex-valued numbers and want some thrills again. We build them as a quartet of numbers, each added together. Three of them are multiplied by the mysterious numbers ‘i’, ‘j’, and ‘k’. Each ‘i’, ‘j’, or ‘k’ multiplied by itself is equal to -1. But ‘i’ doesn’t equal ‘j’. Nor does ‘j’ equal ‘k’. Nor does ‘k’ equal ‘i’. And ‘i’ times ‘j’ is ‘k’, while ‘j’ times ‘i’ is minus ‘k’. That sort of thing. Easy to look up. You don’t need to know all the rules just now.

But we often end up writing a quaternion as a number like 4 + 2\hat{i} - 3\hat{j} + 1 \hat{k} . OK, that’s just the one number. But we will write numbers like a + b\hat{i} + c\hat{j} + d\hat{k} . Here a, b, c, and d are all real numbers. This is kind of sloppy; the pieces of a quaternion aren’t in fact vectors added together. But it is hard not to look at a quaternion and see something pointing in some direction, like the first vectors we ever learn about. And there are some problems in pointing-in-a-direction vectors that quaternions handle so well. (Mostly how to rotate one direction around another axis.) So a bit of vector notation seeps in where it isn’t appropriate.

I suppose there’s some value in pointing out that the ‘i’ and ‘j’ and ‘k’ in a quaternion are fixed and set numbers. They’re unlike an ‘a’ or an ‘x’ we might see in the expression. I’m not sure anyone was thinking they were, though. Notation is a tricky thing. It’s as hard to get sensible and consistent and clear as it is to make words and grammar sensible. But the hat is a simple one. It’s good to have something like that to rely on.

Reading the Comics, June 25, 2016: What The Heck, Why Not Edition


I had figured to do Reading the Comics posts weekly, and then last week went and gave me too big a flood of things to do. I have no idea what the rest of this week is going to look like. But given that I had four strips dated before last Sunday I’m going to err on the side of posting too much about comic strips.

Scott Metzger’s The Bent Pinky for the 24th uses mathematics as something that dogs can be adorable about not understanding. Thus all the heads tilted, as if it were me in a photograph. The graph here is from economics, which has long had a challenging relationship with mathematics. This particular graph is qualitative; it doesn’t exactly match anything in the real world. But it helps one visualize how we might expect changes in the price of something to affect its sales. A graph doesn’t need to be precise to be instructional.

Dave Whamond’s Reality Check for the 24th is this essay’s anthropomorphic-numerals joke. And it’s a reminder that something can be quite true without being reassuring. It plays on the difference between “real” numbers and things that really exist. It’s hard to think of a way that a number such as two could “really” exist that doesn’t also allow the square root of -1 to “really” exist.

And to be a bit curmudgeonly, it’s a bit sloppy to speak of “the square root of negative one”, even though everyone does. It’s all right to expand the idea of square roots to cover stuff it didn’t before. But there’s at least two numbers that would, squared, equal -1. We usually call them i and -i. Square roots naturally have this problem,. Both +2 and -2 squared give us 4. We pick out “the” square root by selecting the positive one of the two. But neither i nor -i is “positive”. (Don’t let the – sign fool you. It doesn’t count.) You can’t say either i or -i is greater than zero. It’s not possible to define a “greater than” or “less than” for complex-valued numbers. And that’s even before we get into quaternions, in which we summon two more “square roots” of -1 into existence. Octonions can be even stranger. I don’t blame 1 for being worried.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 24th is a pleasant bit of pop-mathematics debunking. I’ve explained in the past how I’m a doubter of the golden ratio. The Fibonacci Sequence has a bit more legitimate interest to it. That’s sequences of numbers in which the next term is the sum of the previous two terms. The famous one of that is 1, 1, 2, 3, 5, 8, 13, 21, et cetera. It may not surprise you to know that the Fibonacci Sequence has a link to the golden ratio. As it goes on, the ratio between one term and the next one gets close to the golden ratio.

The Harmonic Series is much more deeply weird. A series is the number we get from adding together everything in a sequence. The Harmonic Series grows out of the first sequence you’d imagine ever adding up. It’s 1 plus 1/2 plus 1/3 plus 1/4 plus 1/5 plus 1/6 plus … et cetera. The first time you hear of this you get the surprise: this sum doesn’t ever stop piling up. We say it ‘diverges’. It won’t on your computer; the floating-point arithmetic it does won’t let you add enormous numbers like ‘1’ to tiny numbers like ‘1/531,325,263,953,066,893,142,231,356,120’ and get the right answer. But if you actually added this all up, it would.

The proof gets a little messy. But it amounts to this: 1/2 plus 1/3 plus 1/4? That’s more than 1. 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 + 1/11 + 1/12? That’s also more than 1. 1/13 + 1/14 + 1/15 + et cetera up through + 1/32 + 1/33 + 1/34 is also more than 1. You need to pile up more and more terms each time, but a finite string of these numbers will add up to more than 1. So the whole series has to be more than 1 + 1 + 1 + 1 + 1 … and so more than any finite number.

That’s all amazing enough. And then the series goes on to defy all kinds of intuition. Obviously dropping a couple of terms from the series won’t change whether it converges or diverges. Multiplying alternating terms by -1, so you have (say) 1 – 1/2 + 1/3 – 1/4 + 1/5 et cetera produces something that looks like it converges. It equals the natural logarithm of 2. But if you take those terms and rearrange them, you can produce any real number, positive or negative, that you want.

And, as Weinersmith describes here, if you just skip the correct set of terms, you can make the sum converge. The ones with 9 in the denominator will be, then, 1/9, 1/19, 1/29, 1/90, 1/91, 1/92, 1/290, 1/999, those sorts of things. Amazing? Yes. Absurd? I suppose so. This is why mathematicians learn to be very careful when they do anything, even addition, infinitely many times.

John Deering’s Strange Brew for the 25th is a fear-of-mathematics joke. The sign the warrior’s carrying is legitimate algebra, at least so far as it goes. The right-hand side of the equation gets cut off. In time, it would get to the conclusion that x equals –19/2, or -9.5.

A Leap Day 2016 Mathematics A To Z: Quaternion


I’ve got another request from Gaurish today. And it’s a word I had been thinking to do anyway. When one looks for mathematical terms starting with ‘q’ this is one that stands out. I’m a little surprised I didn’t do it for last summer’s A To Z. But here it is at last:

Quaternion.

I remember the seizing of my imagination the summer I learned imaginary numbers. If we could define a number i, so that i-squared equalled negative 1, and work out arithmetic which made sense out of that, why not do it again? Complex-valued numbers are great. Why not something more? Maybe we could also have some other non-real number. I reached deep into my imagination and picked j as its name. It could be something else. Maybe the logarithm of -1. Maybe the square root of i. Maybe something else. And maybe we could build arithmetic with a whole second other non-real number.

My hopes of this brilliant idea petered out over the summer. It’s easy to imagine a super-complex number, something that’s “1 + 2i + 3j”. And it’s easy to work out adding two super-complex numbers like this together. But multiplying them together? What should i times j be? I couldn’t solve the problem. Also I learned that we didn’t need another number to be the logarithm of -1. It would be π times i. (Or some other numbers. There’s some surprising stuff in logarithms of negative or of complex-valued numbers.) We also don’t need something special to be the square root of i, either. \frac{1}{2}\sqrt{2} + \frac{1}{2}\sqrt{2}\imath will do. (So will another number.) So I shelved the project.

Even if I hadn’t given up, I wouldn’t have invented something. Not along those lines. Finer minds had done the same work and had found a way to do it. The most famous of these is the quaternions. It has a famous discovery. Sir William Rowan Hamilton — the namesake of “Hamiltonian mechanics”, so you already know what a fantastic mind he was — had a flash of insight that’s come down in the folklore and romance of mathematical history. He had the idea on the 16th of October, 1843, while walking with his wife along the Royal Canal, in Dublin, Ireland. While walking across the bridge he saw what was missing. It seems he lacked pencil and paper. He carved it into the bridge:

i^2 = j^2 = k^2 = ijk = -1

The bridge now has a plaque commemorating the moment. You can’t make a sensible system with two non-real numbers. But three? Three works.

And they are a mysterious three! i, j, and k are somehow not the same number. But each of them, multiplied by themselves, gives us -1. And the product of the three is -1. They are even more mysterious. To work sensibly, i times j can’t be the same thing as j times i. Instead, i times j equals minus j times i. And j times k equals minus k times j. And k times i equals minus i times k. We must give up commutivity, the idea that the order in which we multiply things doesn’t matter.

But if we’re willing to accept that the order matters, then quaternions are well-behaved things. We can add and subtract them just as we would think to do if we didn’t know they were strange constructs. If we keep the funny rules about the products of i and j and k straight, then we can multiply them as easily as we multiply polynomials together. We can even divide them. We can do all the things we do with real numbers, only with these odd sets of four real numbers.

The way they look, that pattern of 1 + 2i + 3j + 4k, makes them look a lot like vectors. And we can use them like vectors pointing to stuff in three-dimensional space. It’s not quite a comfortable fit, though. That plain old real number at the start of things seems like it ought to signify something, but it doesn’t. In practice, it doesn’t give us anything that regular old vectors don’t. And vectors allow us to ponder not just three- or maybe four-dimensional spaces, but as many as we need. You might wonder why we need more than four dimensions, even allowing for time. It’s because if we want to track a lot of interacting things, it’s surprisingly useful to put them all into one big vector in a very high-dimension space. It’s hard to draw, but the mathematics is nice. Hamiltonian mechanics, particularly, almost beg for it.

That’s not to call them useless, or even a niche interest. They do some things fantastically well. One of them is rotations. We can represent rotating a point around an arbitrary axis by an arbitrary angle as the multiplication of quaternions. There are many ways to calculate rotations. But if we need to do three-dimensional rotations this is a great one because it’s easy to understand and easier to program. And as you’d imagine, being able to calculate what rotations do is useful in all sorts of applications.

They’ve got good uses in number theory too, as they correspond well to the different ways to solve problems, often polynomials. They’re also popular in group theory. They might be the simplest rings that work like arithmetic but that don’t commute. So they can serve as ways to learn properties of more exotic ring structures.

Knowing of these marvelous exotic creatures of the deep mathematics your imagination might be fired. Can we do this again? Can we make something with, say, four unreal numbers? No, no we can’t. Four won’t work. Nor will five. If we keep going, though, we do hit upon success with seven unreal numbers.

This is a set called the octonions. Hamilton had barely worked out the scheme for quaternions when John T Graves, a friend of his at least up through the 16th of December, 1843, wrote of this new scheme. (Graves didn’t publish before Arthur Cayley did. Cayley’s one of those unspeakably prolific 19th century mathematicians. He has at least 967 papers to his credit. And he was a lawyer doing mathematics on the side for about 250 of those papers. This depresses every mathematician who ponders it these days.)

But where quaternions are peculiar, octonions are really peculiar. Let me call a couple quaternions p, q, and r. p times q might not be the same thing as q times r. But p times the product of q and r will be the same thing as the product of p and q itself times r. This we call associativity. Octonions don’t have that. Let me call a couple quaternions s, t, and u. s times the product of t times u may be either positive or negative the product of s and t times u. (It depends.)

Octonions have some neat mathematical properties. But I don’t know of any general uses for them that are as catchy as understanding rotations. Not rotations in the three-dimensional world, anyway.

Yes, yes, we can go farther still. There’s a construct called “sedenions”, which have fifteen non-real numbers on them. That’s 16 terms in each number. Where octonions are peculiar, sedenions are really peculiar. They work even less like regular old numbers than octonions do. With octonions, at least, when you multiply s by the product of s and t, you get the same number as you would multiplying s by s and then multiplying that by t. Sedenions don’t even offer that shred of normality. Besides being a way to learn about abstract algebra structures I don’t know what they’re used for.

I also don’t know of further exotic terms along this line. It would seem to fit a pattern if there’s some 32-term construct that we can define something like multiplication for. But it would presumably be even less like regular multiplication than sedenion multiplication is. If you want to fiddle about with that please do enjoy yourself. I’d be interested to hear if you turn up anything, but I don’t expect it’ll revolutionize the way I look at numbers. Sorry. But the discovery might be the fun part anyway.

In the Overlap between Logic, Fun, and Information


Since I do need to make up for my former ignorance of John Venn’s diagrams and how to use them, let me join in what looks early on like a massive Internet swarm of mentions of Venn. The Daily Nous, a philosophy-news blog, was my first hint that anything interesting was going on (as my love is a philosopher and is much more in tune with the profession than I am with mathematics), and I appreciate the way they describe Venn’s interesting properties. (Also, for me at least, that page recommends I read Dungeons and Dragons and Derrida, itself pointing to an installment of philosophy-based web comic Existentialist Comics, so you get a sense of how things go over there.)

https://twitter.com/saladinahmed/status/496148485092433920

And then a friend retweeted the above cartoon (available as T-shirt or hoodie), which does indeed parse as a Venn diagram if you take the left circle as representing “things with flat tails playing guitar-like instruments” and the right circle as representing “things with duck bills playing keyboard-like instruments”. Remember — my love is “very picky” about Venn diagram jokes — the intersection in a Venn diagram is not a blend of the things in the two contributing circles, but is rather, properly, something which belongs to both the groups of things.

https://twitter.com/mathshistory/status/496224786109198337

The 4th of is also William Rowan Hamilton’s birthday. He’s known for the discovery of quaternions, which are kind of to complex-valued numbers what complex-valued numbers are to the reals, but they’re harder to make a fun Google Doodle about. Quaternions are a pretty good way of representing rotations in a three-dimensional space, but that just looks like rotating stuff on the computer screen.

Daily Nous

John Venn, an English philosopher who spent much of his career at Cambridge, died in 1923, but if he were alive today he would totally be dead, as it is his 180th birthday. Venn was named after the Venn diagram, owing to the fact that as a child he was terrible at math but good at drawing circles, and so was not held back in 5th grade. In celebration of this philosopher’s birthday Google has put up a fun, interactive doodle — just for today. Check it out.

Note: all comments on this post must be in Venn Diagram form.

View original post

Reading the Comics, July 1, 2012


This will be a hastily-written installment since I married just this weekend and have other things occupying me. But there’s still comics mentioning math subjects so let me summarize them for you. The first since my last collection of these, on the 13th of June, came on the 15th, with Dave Whamond’s Reality Check, which goes into one of the minor linguistic quirks that bothers me: the claim that one can’t give “110 percent,” since 100 percent is all there is. I don’t object to phrases like “110 percent”, though, since it seems to me the baseline, the 100 percent, must be to some standard reference performance. For example, the Space Shuttle Main Engines routinely operated at around 104 percent, not because they were exceeding their theoretical limits, but because the original design thrust was found to be not quite enough, and the engines were redesigned to deliver more thrust, and it would have been far too confusing to rewrite all the documentation so that the new design thrust was the new 100 percent. Instead 100 percent was the design capacity of an engine which never flew but which existed in paper form. So I’m forgiving of “110 percent” constructions, is the important thing to me.

Continue reading “Reading the Comics, July 1, 2012”

Reading The Comics, May 20, 2012


Since I suspect that the comics roundup posts are the most popular ones I post, I’m very glad to see there was a bumper crop of strips among the ones I read regularly (from King Features Syndicate and from gocomics.com) this past week. Some of those were from cancelled strips in perpetual reruns, but that’s fine, I think: there aren’t any particular limits on how big an electronic comics page one can have, after all, and while it’s possible to read a short-lived strip long enough that you see all its entries, it takes a couple go-rounds to actually have them all memorized.

The first entry, and one from one of these cancelled strips, comes from Mark O’Hare’s Citizen Dog, a charmer of a comic set in a world-plus-talking-animals strip. In this case Fergus has taken the place of Maggie, a girl who’s not quite ready to come back from summer vacation. It’s also the sort of series of questions that it feels like come at the start of any class where a homework assignment’s due.

Continue reading “Reading The Comics, May 20, 2012”

How Many Numbers Have We Named?


I want to talk about some numbers which have names, and to argue that surprisingly few of numbers do. To make that argument it would be useful to say what numbers I think have names, and which ones haven’t; perhaps if I say enough I will find out.

For example, “one” is certainly a name of a number. So are “two” and “three” and so on, and going up to “twenty”, and going down to “zero”. But is “twenty-one” the name of a number, or just a label for the number described by the formula “take the number called twenty and add to it the number called one”?

It feels to me more like a label. I note for support the former London-dialect preference for writing such numbers as one-and-twenty, two-and-twenty, and so on, a construction still remembered in Charles Dickens, in nursery rhymes about blackbirds baked in pies, in poetry about the ways of constructing tribal lays correctly. It tells you how to calculate the number based on a few named numbers and some operations.

None of these are negative numbers. I can’t think of a properly named negative number, just ones we specify by prepending “minus” or “negative” to the label given a positive number. But negative numbers are fairly new things, a concept we have found comfortable for only a few centuries. Perhaps we will find something that simply must be named.

That tips my attitude (for today) about these names, that I admit “thirty” and “forty” and so up to a “hundred” as names. After that we return to what feel like formulas: a hundred and one, a hundred and ten, two hundred and fifty. We name a number, to say how many hundreds there are, and then whatever is left over. In ruling “thirty” in as a name and “three hundred” out I am being inconsistent; fortunately, I am speaking of peculiarities of the English language, so no one will notice. My dictionary notes the “-ty” suffix, going back to old English, means “groups of ten”. This makes “thirty” just “three tens”, stuffed down a little, yet somehow I think of “thirty” as different from “three hundred”, possibly because the latter does not appear in my dictionary. Somehow the impression formed in my mind before I thought to look.
Continue reading “How Many Numbers Have We Named?”

%d bloggers like this: