## Reading the Comics, January 4, 2020: Representations Edition

The start of the year brings me comic strips I can discuss in some detail. There are also some that just mention a mathematical topic, and don’t need more than a mention that the strip exists. I’ll get to those later.

Jonathan Lemon’s Rabbits Against Magic for the 2nd is another comic strip built on a very simple model of animal reproduction. We saw one late last year with a rat or mouse making similar calculations. Any calculation like this builds on some outright untrue premises, particularly in supposing that every rabbit that’s born survives, and that the animals breed as much as could do. It also builds on some reasonable simplifications. Things like an average litter size, or an average gestation period, or time it takes infants to start breeding. These sorts of exponential-growth calculations depend a lot on exactly what assumptions you make. I tried reproducing Lemon’s calculation. I didn’t hit 95 billion offspring. But I got near enough to say that Lemon’s right to footnote this as ‘true’. I wouldn’t call them “baby bunnies”, though; after all, some of these offspring are going to be nearly seven years old by the end of this span.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 3rd justifies why “mathematicians are no longer allowed to [sic] sporting events” with mathematicians being difficult. Each of the signs is mean to convey the message “We’re #1”. The notations are just needlessly inaccessible, in that way nerds will do things.

$0.\bar{9}$ first. The bar over over a decimal like this means to repeat what is underneath the bar without limit. So this is the number represented by 0.99999… and this is another way to write the number 1. This sometimes makes people uncomfortable; the proof is to think what the difference is between 1 and the number represented by 0.999999 … . The difference is smaller than any positive number. It’s certainly not negative. So the difference is zero. So the two numbers have to be the same number.

$0^0$ is the controversial one here. The trouble is that there are two standard rules that clash here. One is the rule that any real number raised to the zeroth power is 1. The other is the rule that zero raised to any positive real number is 0. We don’t ask about zero raised to a negative number. These seem to clash. That we only know zero raised to positive real numbers is 0 seems to break the tie, and justify concluding the number-to-the-zero-power rule should win out. This is probably what Weinersmith, or Weinersmith’s mathematician, was thinking. If you forced me to say what I think $0^0$ should be, and didn’t let me refuse to commit to a value, I’d probably pick “1” too. But.

The expression $x^x$ exists for real-valued numbers x, and that’s fine. We can look at $\lim_{x \rightarrow 0 } x^x$ and that number’s 1. But what if x is a complex-valued number? If that’s the case, then this limit isn’t defined. And mathematicians need to work with complex-valued numbers a lot. It would be daft to say “real-valued $0^0$ is 1, but complex-valued $0^0$ isn’t anything”. So we avoid the obvious daftness and normally defer to saying $0^0$ is undefined.

The last expression is $e^{\frac{\pi}{2}} \imath^{\imath}$. This $\imath$ is that famous base of imaginary numbers, one of those numbers for which $\imath^2 = -1$. Complex-valued numbers can be multiplied and divided and raised to powers just like real-valued numbers can. And, remarkably — it surprised me — the number $\imath^{\imath}$ is equal to $e^{-\frac{\pi}{2}}$. That’s the reciprocal of $e^{\frac{\pi}{2}}$.

There are a couple of ways to show this. A straightforward method uses the famous Euler formula, that $e^{\imath x} = \cos(x) + \imath\sin(x)$. This implies that $e^{\imath \frac{\pi}{2}} = \imath$. So $\imath^{\imath}$ has to equal $(e^{\imath \frac{\pi}{2}})^{\imath}$. That’s equal to $e^{\imath^2 \frac{\pi}{2}})$, or $e^{- \frac{\pi}{2}})$. If you find it weird that an imaginary number raised to an imaginary number gives you a real number — it’s a touch less than 0.208 — then, well, you see how weird even the simple things can be.

Gary Larson’s The Far Side for the 4th references Abraham Lincoln’s famous use of “four score and seven” to represent 87. There have been many ways to give names to numbers. As we’ve gotten comfortable with decimalization, though, most of them have faded away. I think only dozens and half-dozens remain in common use; if it weren’t for Lincoln’s style surely nobody today would remember “score” as a way to represent twenty. It probably avoids ambiguities that would otherwise plague words like “hundred”, but it does limit one’s prose style. The talk about carrying the one and taking away three is flavor. There’s nothing in turning eighty-seven into four-score-and-seven that needs this sort of arithmetic.

I hope later this week to list the comic strips which just mentioned some mathematical topic. That essay, and next week’s review of whatever this week is mathematical, should appear at this link. Thanks for reading.

## Reading the Comics, September 14, 2019: Friday the 13th Edition

The past week included another Friday the 13th. Several comic strips found that worth mention. So that gives me a theme by which to name this look over the comic strips.

Charles Schulz’s Peanuts rerun for the 12th presents a pretty wordy algebra problem. And Peppermint Patty, in the grips of a math anxiety, freezing up and shutting down. One feels for her. Great long strings of words frighten anyone. The problem seems a bit complicated for kids Peppermint Patty’s and Franklin’s age. But the problem isn’t helping. One might notice, say, that a parent’s age will be some nice multiple of a child’s in a year or two. That in ten years a man’s age will be 14 greater than the combined age of their ages then? What imagination does that inspire?

Grant Peppermint Patty her fears. The situation isn’t hopeless. It helps to write out just what know, and what we would like to know. At least what we would like to know if we’ve granted the problem worth solving. What we would like is to know the man’s age. That’s some number; let’s call it M. What we know are things about how M relates to his daughter’s and his son’s age, and how those relate to one another. Since we know several things about the daughter’s age and the son’s age it’s worth giving those names too. Let’s say D for the daughter’s age and S for the son’s.

So. We know the son is three years older than the daughter. This we can write as $S = D + 3$. We know that in one year, the man will be six times as old as the daughter is now. In one year the man will be M + 1 years old. The daughter’s age now is D; six times that is 6D. So we know that $M + 1 = 6D$. In ten years the man’s age will be M + 10; the daughter’s age, D + 10; the son’s age, S + 10. In ten years, M + 10 will be 14 plus D + 10 plus S + 10. That is, $M + 10 = 14 + D + 10 + S + 10$. Or if you prefer, $M + 10 = D + S + 34$. Or even, $M = D + S + 24$.

So this is a system of three equation, all linear, in three variables. This is hopeful. We can hope there will be a solution. And there is. There are different ways to find an answer. Since I’m grading this, you can use the one that feels most comfortable to you. The problem still seems a bit advanced for Peppermint Patty and Franklin.

Julie Larson’s The Dinette Set rerun for the 13th has a bit of talk about a mathematical discovery. The comic is accurate enough for its publication. In 2008 a number known as M43112609 was proven to be prime. The number, 243,112,609 – 1, is some 12,978,189 digits long. It’s still the fifth-largest known prime number (as I write this).

Prime numbers of the form 2N – 1 for some whole number N are known as Mersenne primes. These are named for Marin Mersenne, a 16th century French friar and mathematician. They’re a neat set of numbers. Each Mersenne prime matches some perfect number. Nobody knows whether there are finite or infinitely many Mersenne primes. Every even perfect number has a form that matches to some Mersenne prime. It’s unknown whether there are any odd perfect numbers. As often happens with number theory, the questions are easy to ask but hard to answer. But all the largest known prime numbers are Mersenne primes; they’re of a structure we can test pretty well. At least that electronic computers can test well; the last time the largest known prime was found by mere mechanical computer was 1951. The last time a non-Mersenne was the largest known prime was from 1989 to 1992, and before that, 1951.

Mark Parisi’s Off The Mark for the 13th starts off the jokes about 13 for this edition. It’s also the anthropomorphic-numerals joke for the week.

Doug Savage’s Savage Chickens for the 13th is a joke about the connotations of numbers, with (in the western tradition) 7 lucky and 13 unlucky. And many numbers just lack any particular connotation.

T Shepherd’s Snow Sez for the 13th finishes off the unlucky-13 jokes. It observes that whatever a symbol might connote generally, your individual circumstances are more important. There are people for whom 13 is a good omen, or for whom Mondays are magnificent days, or for whom black cats are lucky.

These are all the comics I can write paragraphs about. There were more comics mentioning mathematics last week. Here were some of them:

Brian Walker, Greg Walker, and Chance Browne’s Hi and Lois for the 14th supposes that a “math nerd” can improve Thirsty’s golf game.

Bill Amend’s FoxTrot Classics for the 14th, rerunning a strip from 1997, is a word problem joke. I needed to re-read the panels to see what Paige’s complaint was about.

Greg Evans’s Luann Againn for the 14th, repeating a strip from 1991, is about prioritizing mathematics homework. I can’t disagree with putting off the harder problems. It’s good to have experience, and doing similar but easier problems can help one crack the harder ones.

Jonathan Lemon’s Rabbits Against Magic for the 14th is the Rubik’s Cube joke for the week.

And that’s my comic strips for the week. I plan to have the next Reading the Comics post here on Sunday. The A to Z series resumes tomorrow, all going well. I am seeking topics for the letters I through N, at this post. Thank you for reading, and for offering your thoughts.

## Reading the Comics, July 20, 2019: What Are The Chances Edition

The temperature’s cooled. So let me get to the comics that, Saturday, I thought were substantial enough to get specific discussion. It’s possible I was overestimating how much there was to say about some of these. These are the risks I take.

Paige Braddock’s Jane’s World for the 15th sees Jane’s niece talk about enjoying mathematics. I’m glad to see. You sometimes see comic strip characters who are preposterously good at mathematics. Here I mean Jason and Marcus over in Bill Amend’s FoxTrot. But even they don’t often talk about why mathematics is appealing. There is no one answer for all people. I suspect even for a single person the biggest appeal changes over time. That mathematics seems to offer certainty, though, appeals to many. Deductive logic promises truths that can be known independent of any human failings. (The catch is actually doing a full proof, because that takes way too many boring steps. Mathematicians more often do enough of a prove to convince anyone that the full proof could be produced if needed.)

Alexa also enjoys math for there always being a right answer. Given her age there probably always is. There are mathematical questions for which there is no known right answer. Some of these are questions for which we just don’t know the answer, like, “is there an odd perfect number?” Some of these are more like value judgements, though. Is Euclidean geometry or non-Euclidean geometry more correct? The answer depends on what you want to do. There’s no more a right answer to that question than there is a right answer to “what shall I eat for dinner”.

Jane is disturbed by the idea of there being a right answer that she doesn’t know. She would not be happy to learn about “existence proofs”. This is a kind of proof in which the goal is not to find an answer. It’s just to show that there is an answer. This might seem pointless. But there are problems for which there can’t be an answer. If an answer’s been hard to find, it’s worth checking whether there are answers to find.

Art Sansom and Chip Sansom’s The Born Loser for the 16th builds on comparing the probability of winning the lottery to that of being hit by lightning. This comparison’s turned up a couple of times, including in Mister Boffo and The Wandering Melon, when I learned that Peter McCathie had both won the lottery and been hit by lightning.

Pab Sungenis’s New Adventures of Queen Victoria for the 17th is maybe too marginal for full discussion. It’s just reeling off a physics-major joke. The comedy is from it being a pun: Planck’s Constant is a number important in many quantum mechanics problems. It’s named for Max Planck, one of the pioneers of the field. The constant is represented in symbols as either $h$ or as $\hbar$. The constant $\hbar$ is equal to $\frac{h}{2 \pi}$ and might be used even more often. It turns out $\frac{h}{2 \pi}$ appears all over the place in quantum mechanics, so it’s convenient to write it with fewer symbols. $\hbar$ is maybe properly called the reduced Planck’s constant, although in my physics classes I never encountered anyone calling it “reduced”. We just accepted there were these two Planck’s Constants and trusted context to make clear which one we wanted. It was $\hbar$. Planck’s Constant made some news among mensuration fans recently. The International Bureau of Weights and Measures chose to fix the value of this constant. This, through various physics truths, thus fixes the mass of the kilogram in terms of physical constants. This is regarded as better than the old method, where we just had a lump of metal that we used as reference.

Jonathan Lemon’s Rabbits Against Magic for the 17th is another probability joke. If a dropped piece of toast is equally likely to land butter-side-up or butter-side-down, then it’s quite unlikely to have it turn up the same way twenty times in a row. There’s about one chance in 524,288 of doing it in a string of twenty toast-flips. (That is, of twenty butter-side-up or butter-side-down in a row. If all you want is twenty butter-side-up, then there’s one chance in 1,048,576.) It’s understandable that Eight-Ball would take Lettuce to be quite lucky just now.

But there’s problems with the reasoning. First is the supposition that toast is as likely to fall butter-side-up as butter-side-down. I have a dim recollection of a mid-2000s pop physics book explaining why, given how tall a table usually is, a piece of toast is more likely to make half a turn — to land butter-side-down — before falling. Lettuce isn’t shown anywhere near a table, though. She might be dropping toast from a height that makes butter-side-up more likely. And there’s no reason to suppose that luck in toast-dropping connects to any formal game of chance. Or that her luck would continue to hold: even if she can drop the toast consistently twenty times there’s not much reason to think she could do it twenty-five times, or even twenty-one.

And then there’s this, a trivia that’s flawed but striking. Suppose that all seven billion people in the world have, at some point, tossed a coin at least twenty times. Then there should be seven thousand of them who had the coin turn up tails every single one of the first twenty times they’ve tossed a coin. And, yes, not everyone in the world has touched a coin, much less tossed it twenty times. But there could reasonably be quite a few people who grew up just thinking that every time you toss a coin it comes up tails. That doesn’t mean they’re going to have any luck gambling.

Thanks for waiting for me. The weather looks like I should have my next Reading the Comics post at this link, and on time. I’ll let you know if circumstances change.

## Reading the Comics, June 27, 2019: Closing A Slow Month Edition

Some months stretch my pop-mathematics writing skills, tasking me with finding new insights into the things I thought I understood and new ways to present them. Some months I’ve written about comic strips a lot. This was one of the latter. Here, let me nearly finish writing about the comic strips of June 2019 that had some mathematical content.

Jonathan Lemon’s Rabbits Against Magic for the 23rd is the Venn Diagram meta-joke for the week. Properly speaking, yes, Eight-Ball hasn’t drawn a Venn Diagram here. Representing two sets in a Venn Diagram, by the proper rules, requires two circles with one overlap. Indicating that both sets have the same elements means noting that there are no elements outside the intersection of these circles. One point of a Venn Diagram is showing all the possible logical relations between sets and maybe then marking off the ones that happen to be relevant to the problem. What Eight-Ball is drawing is an Euler Diagram, which has looser requirements. There’s no sense fighting this terminology battle, though. It makes cleaner pictures to draw a Venn Diagram modified to only show the relations that actually exist. If the goal is to communicate information, clarity counts. A joke counts as information.

Eight-Ball’s propositions are … well, a bit muddled. His first set is “people who like to think they are good at math”. His second set is “which of those people like Venn Diagrams”. This implies the second set can’t be anything but a subset of the first. So this we’d represent as one circle inside another, at least if we allow that there exists at least one person who likes to think they’re good at math, but still doesn’t like Venn Diagrams. It’s fine for the purposes of comic hyperbole to claim there is no such thing, of course, and I don’t quarrel with that.

Why not have the second group be “people who like Venn Diagrams”, without the restriction that they already think they’re good at math? Here I think there is a serious logical constraint. My suspicion is that Venn Diagrams are liked by people who don’t think they’re good at math. Also by people who aren’t good at math. Venn Diagrams are a wonderful tool because they present the relationships of sets in a way that uses our spatial intuitions. They wouldn’t make a good Internet joke format if they were liked only by people who think they’re good at math. Which is why Jonathan Lemon had to write the joke that way. It’s plausible comic hyperbole to say everyone who thinks they’re good at math likes Venn Diagrams. But there are too many people who react to explicit mathematics content with a shudder, but who like Venn Diagram jokes, to make “everyone who likes Venn Diagrams thinks they’re good at math” plausible.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 23rd is a lying-with-statistics joke. The median is an average of a data set. It’s “an” average because, in English, we mean several different things by “average”. Translated into mathematics these different things are, really, completely unrelated. The “median” is the midpoint of the ordered list of the data set. So, as the Man In Black says, half the data in the set is below that value, and half is above. This can be a better measure of “average” than the arithmetic mean is. It tells us a slight something about the distribution, about how the data is arranged. Not much, but then, it’s just one number. What do you want? It has an advantage over the arithmetic mean, which is the thing normal people intend when they say “average”. That advantage is that it’s relatively insensitive to outliers. One or two really large, or tiny, data points can throw the mean way off. The classic example we use these days is to look at the average wealth of twenty people in the room. If Bill Gates enters the room, the mean jumps way up. The median? Doesn’t alter much. (Bill Gates is the figure I see used these days, but it could be anyone impossibly wealthy. I imagine there are versions where it’s Jeff Bezos entering the room. I imagine a century ago, the proposition would be to imagine J P Morgan entering the room, except that a century ago he had been dead six years.)

Steve Skelton’s 2 Cows and a Chicken for the 26th shows off a counting chicken as a wonder. Animals do have some sense of mathematics. We know in some detail how well crows and ravens can count, and do simple arithmetic. This is partly because we know good ways to test crow and raven arithmetic skills. And we’ve come to appreciate their intelligence as deep and surprising. Chickens, to my knowledge, have gotten less study. But I would expect they’ve got skills. If nothing else, I would expect chickens to have a good understanding of the transitive property. This is the rule that if ‘a’ is greater than ‘b’, and ‘b’ is greater than ‘c’, then it follows that ‘a’ is greater than ‘c’. Chickens have a pecking order, and animals with that kind of hierarchy tend to know transitivity. I don’t know that the reasons for that link have been proven, but, c’mon. And animals doing arithmetic, like the cook says, have been good sideshow attractions or performances for a long while. They’ve also been good starts for scientific study, as people try to work out questions like how intelligence formed, and what other ways it might have formed.

Greg Cravens’s The Buckets for the 27th is a joke about the representation of numbers. Cravens has a good observation here about learning the differences between representations, and of not being able to express just what representation you want. I love Eddie’s horrified face as his mother (Sarah) tries to spell out the word. There’s probably a good exercise to be done in thinking of as many ways to represent fifteen as possible.

Etymologically, “fifteen” has exactly the origin you would say if you were dragged out of a sound sleep by someone demanding the history of the word RIGHT NOW, THERE’S NO TIME TO EXPLAIN. In Old English it was “fiftyne”, with “fif” meaning “five” and “tyne” meaning “ten more than”. This construction, pretty much five-and-ten, has fallen out of favor in English. Once we get past nineteen we more commonly write out, like, “twenty-one” and “thirty-five” and such. The alternate construction, which would be, like, one-and-twenty, or nine-and-sixty, or such, seems to have fallen out of use except as a more poetic way to express the idea. I don’t know why, say, five-and-twenty would have shifted to twenty-five while the equivalent five-and-ten didn’t shift to … teenfive(?). I would make an uninformed guess that words used more commonly tend to be more stable, and we tend to need smaller numbers more than bigger ones.

I’ll have some more comic strips for you later in the week. Before then should be a statistics review, as I figure out whether anyone is reading this blog after a month when I wrote basically nothing. The next Reading the Comics post should be at this link probably on Thursday. Thank you for reading any of this.

## Reading the Comics, March 5, 2018: If It’s Even Mathematics Edition

Many of the strips from the first half of last week are ones that just barely touch on mathematical content. I’m not sure how relevant they all are. I hope you like encountering them anyway.

Bill Griffith’s Zippy the Pinhead for the 4th of March offers “an infinite number of mathematicians walk into a bar” as a joke’s setup. Mathematics popularizers have a small set of jokes about infinite numbers of mathematicians, often arriving at hotels. They’re used to talk about how we now understand infinitely large sets. There’s often counter-intuitive or just plain weird results that follow. And presenting it as a joke works surprisingly well in introducing the ideas. There’s a kind of joke that is essentially a tall tale, spinning out an initial premise to as far and as absurd a consequence as you can get. In structure, that’s not much different to a proof, a discussion of the consequences of an idea. It’s a shame that it’s hard to make jokes or anecdotes about more fields of mathematics. Somehow infinitely large groups of people are funnier than, say, upper-bounded nondecreasing sequences.

Mike Baldwin’s Cornered for the 4th has a bit of fraction-based wordplay. I’m not sure how mathematical this is, but I grinned.

Bill Amend’s FoxTrot for the 4th has Jason try to make a “universal” loot box that consists of zeroes and ones. As he says, accumulate enough and put them in the right order and you have any digital prize imaginable. Implementation is, as joked, the problem. Assembling ones and zeroes at random isn’t likely to turn up anything you might care about in a reasonable time. (It’s the monkeys-at-typewriters problem.) If you know how to assemble ones and zeroes to get what you want, well, what do you need Jason’s boxes for? As with most clever ideas by computer-oriented boys it shouldn’t really be listened to.

Mark Pett’s Lucky Cow rerun for the 4th has Neil make an order-of-magnitude error estimating what animal power can do. We’ve all made them. They’re particularly easy to make when switching the unit measure. Trying to go from meters to kilometers and multiplying the distance by a thousand, say. Which is annoying since often it’s easiest to estimate the order of magnitude of something first. I can’t find easily an estimate of how many calories a hamster eats over the course of the day. That seems like it would give an idea of how much energy a hamster could possibly be expected to provide, and so work out whether the estimate of four million hamsters to power a car is itself plausible. If someone has information, I’d take it.

Jonathan Lemon’s Rabbits Against Magic for the 4th is a Rubik’s Cube joke. Also a random processes joke. If a blender could turn the faces of a cube, and could turn them randomly, and could run the right period of time … well, yeah, it could unscramble a cube. But see the previous talk about Jason Fox and the delivery of ones and zeroes.

Mark Tatulli’s Lio for the 5th is a solid geometry joke. I’ve put more thought into whether and where to put hyphens in the last three words of that sentence than is worth it.

Steve Sicula’s Home and Away rerun for the 6th has the father and son happily doing some mathematics. It’s in the service of better gambling on sports. But at least they know why they would like to do these calculations.

## Reading the Comics, February 6, 2017: Another Pictureless Half-Week Edition

Got another little flood of mathematically-themed comic strips last week and so once again I’ll split them along something that looks kind of middle-ish. Also this is another bunch of GoComics.com-only posts. Since those seem to be accessible to anyone whether or not they’re subscribers indefinitely far into the future I don’t feel like I can put the comics directly up and will trust you all to click on the links that you find interesting. Which is fine; the new GoComics.com design makes it annoyingly hard to download a comic strip. I don’t think that was their intention. But that’s one of the two nagging problems I have with their new design. So you know.

Tony Cochran’s Agnes for the 5th sees a brand-new mathematics. Always dangerous stuff. But mathematicians do invent, or discover, new things in mathematics all the time. Part of the task is naming the things in it. That’s something which takes talent. Some people, such as Leonhard Euler, had the knack a great novelist has for putting names to things. The rest of us muddle along. Often if there’s any real-world inspiration, or resemblance to anything, we’ll rely on that. And we look for terminology that evokes similar ideas in other fields. … And, Agnes would like to know, there is mathematics that’s about approximate answers, being “right around” the desired answer. Unfortunately, that’s hard. (It’s all hard, if you’re going to take it seriously, much like everything else people do.)

Scott Hilburn’s The Argyle Sweater for the 5th is the anthropomorphic numerals joke for this essay.

Carol Lay’s Lay Lines for the 6th depicts the hazards of thinking deeply and hard about the infinitely large and the infinitesimally small. They’re hard. Our intuition seems well-suited to handing a modest bunch of household-sized things. Logic guides us when thinking about the infinitely large or small, but it takes a long time to get truly conversant and comfortable with it all.

Paul Gilligan’s Pooch Cafe for the 6th sees Poncho try to argue there’s thermodynamical reasons for not being kind. Reasoning about why one should be kind (or not) is the business of philosophers and I won’t overstep my expertise. Poncho’s mathematics, that’s something I can write about. He argues “if you give something of yourself, you inherently have less”. That seems to be arguing for a global conservation of self-ness, that the thing can’t be created or lost, merely transferred around. That’s fair enough as a description of what the first law of thermodynamics tells us about energy. The equation he reads off reads, “the change in the internal energy (Δ U) equals the heat added to the system (U) minus the work done by the system (W)”. Conservation laws aren’t unique to thermodynamics. But Poncho may be aware of just how universal and powerful thermodynamics is. I’m open to an argument that it’s the most important field of physics.

Jonathan Lemon’s Rabbits Against Magic for the 6th is another strip Intro to Calculus instructors can use for their presentation on instantaneous versus average velocities. There’s been a bunch of them recently. I wonder if someone at Comic Strip Master Command got a speeding ticket.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th is about numeric bases. They’re fun to learn about. There’s an arbitrariness in the way we represent concepts. I think we can understand better what kinds of problems seem easy and what kinds seem harder if we write them out different ways. But base eleven is only good for jokes.