Tagged: Real Life Adventures Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 4:00 pm on Sunday, 4 June, 2017 Permalink | Reply
    Tags: , , , , , Motley, , Real Life Adventures, , The Norm,   

    Reading the Comics, May 31, 2017: Feast Week Edition 


    You know we’re getting near the end of the (United States) school year when Comic Strip Master Command orders everyone to clear out their mathematics jokes. I’m assuming that’s what happened here. Or else a lot of cartoonists had word problems on their minds eight weeks ago. Also eight weeks ago plus whenever they originally drew the comics, for those that are deep in reruns. It was busy enough to split this week’s load into two pieces and might have been worth splitting into three, if I thought I had publishing dates free for all that.

    Larry Wright’s Motley Classics for the 28th of May, a rerun from 1989, is a joke about using algebra. Occasionally mathematicians try to use the the ability of people to catch things in midair as evidence of the sorts of differential equations solution that we all can do, if imperfectly, in our heads. But I’m not aware of evidence that anyone does anything that sophisticated. I would be stunned if we didn’t really work by a process of making a guess of where the thing should be and refining it as time allows, with experience helping us make better guesses. There’s good stuff to learn in modeling how to catch stuff, though.

    Michael Jantze’s The Norm Classics rerun for the 28th opines about why in algebra you had to not just have an answer but explain why that was the answer. I suppose mathematicians get trained to stop thinking about individual problems and instead look to classes of problems. Is it possible to work out a scheme that works for many cases instead of one? If it isn’t, can we at least say something interesting about why it’s not? And perhaps that’s part of what makes algebra classes hard. To think about a collection of things is usually harder than to think about one, and maybe instructors aren’t always clear about how to turn the specific into the general.

    Also I want to say some very good words about Jantze’s graphical design. The mock textbook cover for the title panel on the left is so spot-on for a particular era in mathematics textbooks it’s uncanny. The all-caps Helvetica, the use of two slightly different tans, the minimalist cover art … I know shelves stuffed full in the university mathematics library where every book looks like that. Plus, “[Mathematics Thing] And Their Applications” is one of the roughly four standard approved mathematics book titles. He paid good attention to his references.

    Gary Wise and Lance Aldrich’s Real Life Adventures for the 28th deploys a big old whiteboard full of equations for the “secret” of the universe. This makes a neat change from finding the “meaning” of the universe, or of life. The equations themselves look mostly like gibberish to me, but Wise and Aldrich make good uses of their symbols. The symbol \vec{B} , a vector-valued quantity named B, turns up a lot. This symbol we often use to represent magnetic flux. The B without a little arrow above it would represent the intensity of the magnetic field. Similarly an \vec{H} turns up. This we often use for magnetic field strength. While I didn’t spot a \vec{E} — electric field — which would be the natural partner to all this, there are plenty of bare E symbols. Those would represent electric potential. And many of the other symbols are what would naturally turn up if you were trying to model how something is tossed around by a magnetic field. Q, for example, is often the electric charge. ω is a common symbol for how fast an electromagnetic wave oscillates. (It’s not the frequency, but it’s related to the frequency.) The uses of symbols is consistent enough, in fact, I wonder if Wise and Aldrich did use a legitimate sprawl of equations and I’m missing the referenced problem.

    John Graziano’s Ripley’s Believe It Or Not for the 28th mentions how many symbols are needed to write out the numbers from 1 to 100. Is this properly mathematics? … Oh, who knows. It’s just neat to know.

    Mark O’Hare’s Citizen Dog rerun for the 29th has the dog Fergus struggle against a word problem. Ordinary setup and everything, but I love the way O’Hare draws Fergus in that outfit and thinking hard.

    The Eric the Circle rerun for the 29th by ACE10203040 is a mistimed Pi Day joke.

    Bill Amend’s FoxTrot Classicfor the 31st, a rerun from the 7th of June, 2006, shows the conflation of “genius” and “good at mathematics” in everyday use. Amend has picked a quixotic but in-character thing for Jason Fox to try doing. Euclid’s Fifth Postulate is one of the classic obsessions of mathematicians throughout history. Euclid admitted the thing — a confusing-reading mess of propositions — as a postulate because … well, there’s interesting geometry you can’t do without it, and there doesn’t seem any way to prove it from the rest of his geometric postulates. So it must be assumed to be true.

    There isn’t a way to prove it from the rest of the geometric postulates, but it took mathematicians over two thousand years of work at that to be convinced of the fact. But I know I went through a time of wanting to try finding a proof myself. It was a mercifully short-lived time that ended in my humbly understanding that as smart as I figured I was, I wasn’t that smart. We can suppose Euclid’s Fifth Postulate to be false and get interesting geometries out of that, particularly the geometries of the surface of the sphere, and the geometry of general relativity. Jason will surely sometime learn.

     
    • goldenoj 9:08 pm on Sunday, 4 June, 2017 Permalink | Reply

      Just found these recently. I really enjoy them and catching up is fun. Thanks!

      Like

      • Joseph Nebus 1:05 am on Wednesday, 7 June, 2017 Permalink | Reply

        Thanks for finding the pieces. I hope you enjoy; they’re probably my most reliable feature around here.

        Like

  • Joseph Nebus 6:00 pm on Sunday, 14 May, 2017 Permalink | Reply
    Tags: , , Ben, , , Real Life Adventures   

    Reading the Comics, May 13, 2017: Quiet Tuesday Through Saturday Edition 


    From the Sunday and Monday comics pages I was expecting another banner week. And then there was just nothing from Tuesday on, at least not among the comic strips I read. Maybe Comic Strip Master Command has ordered jokes saved up for the last weeks before summer vacation.

    Tony Cochrane’s Agnes for the 7th is a mathematics anxiety strip. It’s well-expressed, since Cochrane writes this sort of hyperbole well. It also shows a common attitude that words and stories are these warm, friendly things, while mathematics and numbers are cold and austere. Perhaps Agnes is right to say some of the problem is familiarity. It’s surely impossible to go a day without words, if you interact with people or their legacies; to go without numbers … well, properly impossible. There’s too many things that have to be counted. Or places where arithmetic sneaks in, such as getting enough money to buy a thing. But those don’t seem to be the kinds of mathematics people get anxious about. Figuring out how much change, that’s different.

    I suppose some of it is familiarity. It’s easier to dislike stuff you don’t do often. The unfamiliar is frightening, or at least annoying. And humans are story-oriented. Even nonfiction forms stories well. Mathematics … has stories, as do all human projects. But the mathematics itself? I don’t know. There’s just beautiful ingenuity and imagination in a lot of it. I’d just been thinking of the just beautiful scheme for calculating logarithms from a short table. But it takes time to get to that beauty.

    Gary Wise and Lance Aldrich’s Real Life Adventures for the 7th is a fractions joke. It might also be a joke about women concealing their ages. Or perhaps it’s about mathematicians expressing things in needlessly complicated ways. I think that’s less a mathematician’s trait than a common human trait. If you’re expert in a thing it’s hard to resist the puckish fun of showing that expertise off. Or just sowing confusion where one may.

    Daniel Shelton’s Ben for the 8th is a kid-doing-arithmetic problem. Even I can’t squeeze some deeper subject meaning out of it, but it’s a slow week so I’ll include the strip anyway. Sorry.

    Brian Boychuk and Ron Boychuk’s Chuckle Brothers for the 8th is the return of anthropomorphic-geometry joke after what feels like months without. I haven’t checked how long it’s been without but I’m assuming you’ll let me claim that. Thank you.

     
  • Joseph Nebus 6:00 pm on Sunday, 26 February, 2017 Permalink | Reply
    Tags: , , Flo and Friends, , , , Promises Promises, Real Life Adventures, , ,   

    Reading the Comics, February 23, 2017: The Week At Once Edition 


    For the first time in ages there aren’t enough mathematically-themed comic strips to justify my cutting the week’s roundup in two. No, I have no idea what I’m going to write about for Thursday. Let’s find out together.

    Jenny Campbell’s Flo and Friends for the 19th faintly irritates me. Flo wants to make sure her granddaughter understands that just because it takes people on average 14 minutes to fall asleep doesn’t mean that anyone actually does, by listing all sorts of reasons that a person might need more than fourteen minutes to sleep. It makes me think of a behavior John Allen Paulos notes in Innumeracy, wherein the statistically wise points out that someone has, say, a one-in-a-hundred-million chance of being killed by a terrorist (or whatever) and is answered, “ah, but what if you’re that one?” That is, it’s a response that has the form of wisdom without the substance. I notice Flo doesn’t mention the many reasons someone might fall asleep in less than fourteen minutes.

    But there is something wise in there nevertheless. For most stuff, the average is the most common value. By “the average” I mean the arithmetic mean, because that is what anyone means by “the average” unless they’re being difficult. (Mathematicians acknowledge the existence of an average called the mode, which is the most common value (or values), and that’s most common by definition.) But just because something is the most common result does not mean that it must be common. Toss a coin fairly a hundred times and it’s most likely to come up tails 50 times. But you shouldn’t be surprised if it actually turns up tails 51 or 49 or 45 times. This doesn’t make 50 a poor estimate for the average number of times something will happen. It just means that it’s not a guarantee.

    Gary Wise and Lance Aldrich’s Real Life Adventures for the 19th shows off an unusually dynamic camera angle. It’s in service for a class of problem you get in freshman calculus: find the longest pole that can fit around a corner. Oh, a box-spring mattress up a stairwell is a little different, what with box-spring mattresses being three-dimensional objects. It’s the same kind of problem. I want to say the most astounding furniture-moving event I’ve ever seen was when I moved a fold-out couch down one and a half flights of stairs single-handed. But that overlooks the caged mouse we had one winter, who moved a Chinese finger-trap full of crinkle paper up the tight curved plastic to his nest by sheer determination. The trap was far longer than could possibly be curved around the tube. We have no idea how he managed it.

    J R Faulkner’s Promises, Promises for the 20th jokes that one could use Roman numerals to obscure calculations. So you could. Roman numerals are terrible things for doing arithmetic, at least past addition and subtraction. This is why accountants and mathematicians abandoned them pretty soon after learning there were alternatives.

    Mark Anderson’s Andertoons for the 21st is the Mark Anderson’s Andertoons for the week. Probably anything would do for the blackboard problem, but something geometry reads very well.

    Jef Mallett’s Frazz for the 21st makes some comedy out of the sort of arithmetic error we all make. It’s so easy to pair up, like, 7 and 3 make 10 and 8 and 2 make 10. It takes a moment, or experience, to realize 78 and 32 will not make 100. Forgive casual mistakes.

    Bud Fisher’s Mutt and Jeff rerun for the 22nd is a similar-in-tone joke built on arithmetic errors. It’s got the form of vaudeville-style sketch compressed way down, which is probably why the third panel could be made into a satisfying final panel too.

    'How did you do on the math test?' 'Terrible.' 'Will your mom be mad?' 'Maybe. But at least she'll know I didn't cheat!'

    Bud Blake’s Tiger for the 23rd of February, 2017. I want to blame the colorists for making Hugo’s baby tooth look so weird in the second and third panels, but the coloring is such a faint thing at that point I can’t. I’m sorry to bring it to your attention if you didn’t notice and weren’t bothered by it before.

    Bud Blake’s Tiger rerun for the 23rd just name-drops mathematics; it could be any subject. But I need some kind of picture around here, don’t I?

    Mike Baldwin’s Cornered for the 23rd is the anthropomorphic numerals joke for the week.

     
  • Joseph Nebus 6:00 pm on Sunday, 19 February, 2017 Permalink | Reply
    Tags: , fandom, , , , Real Life Adventures, , , Wandering Melon   

    Reading the Comics, February 15, 2017: SMBC Cuts In Line Edition 


    It’s another busy enough week for mathematically-themed comic strips that I’m dividing the harvest in two. There’s a natural cutting point since there weren’t any comics I could call relevant for the 15th. But I’m moving a Saturday Morning Breakfast Cereal of course from the 16th into this pile. That’s because there’s another Saturday Morning Breakfast Cereal of course from after the 16th that I might include. I’m still deciding if it’s close enough to on topic. We’ll see.

    John Graziano’s Ripley’s Believe It Or Not for the 12th mentions the “Futurama Theorem”. The trivia is true, in that writer Ken Keeler did create a theorem for a body-swap plot he had going. The premise was that any two bodies could swap minds at most one time. So, after a couple people had swapped bodies, was there any way to get everyone back to their correct original body? There is, if you bring two more people in to the body-swapping party. It’s clever.

    From reading comment threads about the episode I conclude people are really awestruck by the idea of creating a theorem for a TV show episode. The thing is that “a theorem” isn’t necessarily a mind-boggling piece of work. It’s just the name mathematicians give when we have a clearly-defined logical problem and its solution. A theorem and its proof can be a mind-wrenching bit of work, like Fermat’s Last Theorem or the Four-Color Map Theorem are. Or it can be on the verge of obvious. Keeler’s proof isn’t on the obvious side of things. But it is the reasoning one would have to do to solve the body-swap problem the episode posited without cheating. Logic and good story-telling are, as often, good partners.

    Teresa Burritt’s Frog Applause is a Dadaist nonsense strip. But for the 13th it hit across some legitimate words, about a 14 percent false-positive rate. This is something run across in hypothesis testing. The hypothesis is something like “is whatever we’re measuring so much above (or so far below) the average that it’s not plausibly just luck?” A false positive is what it sounds like: our analysis said yes, this can’t just be luck, and it turns out that it was. This turns up most notoriously in medical screenings, when we want to know if there’s reason to suspect a health risk, and in forensic analysis, when we want to know if a particular person can be shown to have been a particular place at a particular time. A 14 percent false positive rate doesn’t sound very good — except.

    Suppose we are looking for a rare condition. Say, something one person out of 500 will have. A test that’s 99 percent accurate will turn up positives for the one person who has got it and for five of the people who haven’t. It’s not that the test is bad; it’s just there are so many negatives to work through. If you can screen out a good number of the negatives, though, the people who haven’t got the condition, then the good test will turn up fewer false positives. So suppose you have a cheap or easy or quick test that doesn’t miss any true positives but does have a 14 percent false positive rate. That would screen out 430 of the people who haven’t got whatever we’re testing for, leaving only 71 people who need the 99-percent-accurate test. This can make for a more effective use of resources.

    Gary Wise and Lance Aldrich’s Real Life Adventures for the 13th is an algebra-in-real-life joke and I can’t make something deeper out of that.

    Mike Shiell’s The Wandering Melon for the 13th is a spot of wordplay built around statisticians. Good for taping to the mathematics teacher’s walls.

    Eric the Circle for the 14th, this one by “zapaway”, is another bit of wordplay. Tans and tangents.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 16th identifies, aptly, a difference between scientists and science fans. Weinersmith is right that loving trivia is a hallmark of a fan. Expertise — in any field, not just science — is more about recognizing patterns of problems and concepts, ways to bring approaches from one field into another, this sort of thing. And the digits of π are great examples of trivia. There’s no need for anyone to know the 1,681st digit of π. There’s few calculations you could ever do when you needed more than three dozen digits. But if memorizing digits seems like fun then π is a great set to learn. e is the only other number at all compelling.

    The thing is, it’s very hard to become an expert in something without first being a fan of it. It’s possible, but if a field doesn’t delight you why would you put that much work into it? So even though the scientist might have long since gotten past caring how many digits of π, it’s awfully hard to get something memorized in the flush of fandom out of your head.

    I know you’re curious. I can only remember π out to 3.14158926535787962. I might have gotten farther if I’d tried, but I actually got a digit wrong, inserting a ‘3’ before that last ’62’, and the effort to get that mistake out of my head obliterated any desire to waste more time memorizing digits. For e I can only give you 2.718281828. But there’s almost no hope I’d know that far if it weren’t for how e happens to repeat that 1828 stanza right away.

     
  • Joseph Nebus 12:19 am on Sunday, 22 July, 2012 Permalink | Reply
    Tags: Arabic numerals, , , Black Widowers, , , , , Girolamo Cardano, , , honeymoon, , , Inspector Danger's Crime Quiz, , , , , Kliban, , , Mac King, , Moriarty, mystery, Niccolo Targalia, Real Life Adventures, , , Union Club, Werner Wejp-Olsen,   

    Reading the Comics, July 14, 2012 


    I hope everyone’s been well. I was on honeymoon the last several weeks and I’ve finally got back to my home continent and new home so I’ll try to catch up on the mathematics-themed comics first and then plunge into new mathematics content. I’m splitting that up into at least two pieces since the comics assembled into a pretty big pile while I was out. And first, I want to offer the link to the July 2 Willy and Ethel, by Joe Martin, since even though I offered it last time I didn’t have a reasonably permanent URL for it.

    (More …)

     
    • Chiaroscuro 1:15 am on Sunday, 22 July, 2012 Permalink | Reply

      So what’s going to happen to those two boxes of leftover cobras?

      ..on less mongoosey take, even Martin Gardner wouldn’t give a life-or-death logic puzzle to a monkey. That’s kind of messed up.

      Like

      • Joseph Nebus 5:04 am on Sunday, 22 July, 2012 Permalink | Reply

        Yeah, the life-or-death thing is a little weird, but it’s only a little bit out of bounds considering how the guy in Magic In A Minute treats his monkey pal. (Also, logic puzzles are not, properly speaking, magic tricks, at least not without much more setup.)

        Like

    • Donna 3:03 am on Sunday, 22 July, 2012 Permalink | Reply

      Awwww! Congratulations!! Happy Happy Joy Joy!!! I love happy weddings, happy couples, happy lives. Enjoy!

      Like

      • Joseph Nebus 5:01 am on Sunday, 22 July, 2012 Permalink | Reply

        Thank you! The wedding came through in quite good order, and the honeymoon was grand, despite a lot of raining.

        Like

  • Joseph Nebus 4:00 pm on Monday, 2 July, 2012 Permalink | Reply
    Tags: , , , , , Dave Whamond, , , Herman, , , In The Sticks, Jim Unger, , , , Lincoln Pierce, , Nathan Cooper, , , , percentage, , Real Life Adventures, , , , space shuttle, Steve Sicula, wedding,   

    Reading the Comics, July 1, 2012 


    This will be a hastily-written installment since I married just this weekend and have other things occupying me. But there’s still comics mentioning math subjects so let me summarize them for you. The first since my last collection of these, on the 13th of June, came on the 15th, with Dave Whamond’s Reality Check, which goes into one of the minor linguistic quirks that bothers me: the claim that one can’t give “110 percent,” since 100 percent is all there is. I don’t object to phrases like “110 percent”, though, since it seems to me the baseline, the 100 percent, must be to some standard reference performance. For example, the Space Shuttle Main Engines routinely operated at around 104 percent, not because they were exceeding their theoretical limits, but because the original design thrust was found to be not quite enough, and the engines were redesigned to deliver more thrust, and it would have been far too confusing to rewrite all the documentation so that the new design thrust was the new 100 percent. Instead 100 percent was the design capacity of an engine which never flew but which existed in paper form. So I’m forgiving of “110 percent” constructions, is the important thing to me.

    (More …)

     
    • bug 3:41 am on Tuesday, 3 July, 2012 Permalink | Reply

      Oh man, I should read this more !

      While it would be simple enough to justify negative numbers through nuclear physics (i.e. every particle having an antiparticle), it’s also not that hard to consider them as deficits (“Tim lacks 3 apples”) rather than “anti-assets”. That way, they don’t actually represent anything physical, but instead a difference (ha) from one’s expectation of a physical state. This also makes a lot more sense considering their use in accounting.

      Also, I’ve never heard that engineers dislike complex numbers. They’re practically essential…

      Like

      • Joseph Nebus 10:09 pm on Thursday, 5 July, 2012 Permalink | Reply

        Treating negative numbers as positive numbers in the other direction was historically the intermediate step between just working with negative numbers. Accountants seem to have been there first, with geometers following close behind. Descartes’ original construction of the coordinate system divided the plane into the four quadrants we still have, with positive numbers in each of them, representing “right and up” in the first quadrant, “left and up” in the second, “left and down” in the third, and “right and down” in the fourth. But this ends up being a nuisance and making do with a negative sign rather than a separate tally gets to be easier fast.

        I can’t speak about the truth of electrical engineers disliking complex numbers, but it is certainly a part of mathematics folklore that if any students are going to have trouble with complex numbers, or reject them altogether, it’s more likely to be the electrical engineers. I note also the lore of the Salem Hypothesis, about the apparent predilection of engineers, particularly electrical engineers, to nutty viewpoints. (Petr Beckmann is probably the poster child for this, as he spent considerable time telling everyone Relativity was a Fraud, and he was indeed an electrical engineer.)

        Like

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: