My All 2020 Mathematics A to Z: Zero Divisor

Jacob Siehler had several suggestions for this last of the A-to-Z essays for 2020. Zorn’s Lemma was an obvious choice. It’s got an important place in set theory, it’s got some neat and weird implications. It’s got a great name. The zero divisor is one of those technical things mathematics majors have deal with. It never gets any pop-mathematics attention. I picked the less-travelled road and found a delightful scenic spot. Art by Thomas K Dye, creator of the web comics Projection Edge, Newshounds, Infinity Refugees, and Something Happens. He’s on Twitter as @projectionedge. You can get to read Projection Edge six months early by subscribing to his Patreon.

Zero Divisor.

3 times 4 is 12. That’s a clear, unambiguous, and easily-agreed-upon arithmetic statement. The thing to wonder is what kind of mathematics it takes to mess that up. The answer is algebra. Not the high school kind, with x’s and quadratic formulas and all. The college kind, with group theory and rings.

A ring is a mathematical construct that lets you do a bit of arithmetic. Something that looks like arithmetic, anyway. It has a set of elements.  (An element is just a thing in a set.  We say “element” because it feels weird to call it “thing” all the time.) The ring has an addition operation. The ring has a multiplication operation. Addition has an identity element, something you can add to any element without changing the original element. We can call that ‘0’. The integers, or to use the lingo $Z$, are a ring (among other things).

Among the rings you learn, after the integers, is the integers modulo … something. This can be modulo any counting number. The integers modulo 10, for example, we write as $Z_{10}$ for short. There are different ways to think of what this means. The one convenient for this essay is that it’s the integers 0, 1, 2, up through 9. And that the result of any calculation is “how much more than a whole multiple of 10 this calculation would otherwise be”. So then 3 times 4 is now 2. 3 times 5 is 5; 3 times 6 is 8. 3 times 7 is 1, and doesn’t that seem peculiar? That’s part of how modulo arithmetic warns us that groups and rings can be quite strange things.

We can do modulo arithmetic with any of the counting numbers. Look, for example, at $Z_{5}$ instead. In the integers modulo 5, 3 times 4 is … 2. This doesn’t seem to get us anything new. How about $Z_{8}$? In this, 3 times 4 is 4. That’s interesting. It doesn’t make 3 the multiplicative identity for this ring. 3 times 3 is 1, for example. But you’d never see something like that for regular arithmetic.

How about $Z_{12}$? Now we have 3 times 4 equalling 0. And that’s a dramatic break from how regular numbers work. One thing we know about regular numbers is that if a times b is 0, then either a is 0, or b is zero, or they’re both 0. We rely on this so much in high school algebra. It’s what lets us pick out roots of polynomials. Now? Now we can’t count on that.

When this does happen, when one thing times another equals zero, we have “zero divisors”. These are anything in your ring that can multiply by something else to give 0. Is zero, the additive identity, always a zero divisor? … That depends on what the textbook you first learned algebra from said. To avoid ambiguity, you can write a “nonzero zero divisor”. This clarifies your intentions and slows down your copy editing every time you read “nonzero zero”. Or call it a “nontrivial zero divisor” or “proper zero divisor” instead. My preference is to accept 0 as always being a zero divisor. We can disagree on this. What of zero divisors other than zero?

Your ring might or might not have them. It depends on the ring. The ring of integers $Z$, for example, doesn’t have any zero divisors except for 0. The ring of integers modulo 12 $Z_{12}$, though? Anything that isn’t relatively prime to 12 is a zero divisor. So, 2, 3, 6, 8, 9, and 10 are zero divisors here. The ring of integers modulo 13 $Z_{13}$? That doesn’t have any zero divisors, other than zero itself. In fact any ring of integers modulo a prime number, $Z_{p}$, lacks zero divisors besides 0.

Focusing too much on integers modulo something makes zero divisors sound like some curious shadow of prime numbers. There are some similarities. Whether a number is prime depends on your multiplication rule and what set of things it’s in. Being a zero divisor in one ring doesn’t directly relate to whether something’s a zero divisor in any other. Knowing what the zero divisors are tells you something about the structure of the ring.

It’s hard to resist focusing on integers-modulo-something when learning rings. They work very much like regular arithmetic does. Even the strange thing about them, that every result is from a finite set of digits, isn’t too alien. We do something quite like it when we observe that three hours after 10:00 is 1:00. But many sets of elements can create rings. Square matrixes are the obvious extension. Matrixes are grids of elements, each of which … well, they’re most often going to be numbers. Maybe integers, or real numbers, or complex numbers. They can be more abstract things, like rotations or whatnot, but they’re hard to typeset. It’s easy to find zero divisors in matrixes of numbers. Imagine, like, a matrix that’s all zeroes except for one element, somewhere. There are a lot of matrices which, multiplied by that, will be a zero matrix, one with nothing but zeroes in it. Another common kind of ring is the polynomials. For these you need some constraint like the polynomial coefficients being integers-modulo-something. You can make that work.

In 1988 Istvan Beck tried to establish a link between graph theory and ring theory. We now have a usable standard definition of one. If $R$ is any ring, then $\Gamma(R)$ is the zero-divisor graph of $R$. (I know some of you think $R$ is the real numbers. No; that’s a bold-faced $\mathbb{R}$ instead. Unless that’s too much bother to typeset.) You make the graph by putting in a vertex for the elements in $R$. You connect two vertices a and b if the product of the corresponding elements is zero. That is, if they’re zero divisors for one other. (In Beck’s original form, this included all the elements. In modern use, we don’t bother including the elements that are not zero divisors.)

Drawing this graph $\Gamma(R)$ makes tools from graph theory available to study rings. We can measure things like the distance between elements, or what paths from one vertex to another exist. What cycles — paths that start and end at the same vertex — exist, and how large they are. Whether the graphs are bipartite. A bipartite graph is one where you can divide the vertices into two sets, and every edge connects one thing in the first set with one thing in the second. What the chromatic number — the minimum number of colors it takes to make sure no two adjacent vertices have the same color — is. What shape does the graph have?

It’s easy to think that zero divisors are just a thing which emerges from a ring. The graph theory connection tells us otherwise. You can make a potential zero divisor graph and ask whether any ring could fit that. And, from that, what we can know about a ring from its zero divisors. Mathematicians are drawn as if by an occult hand to things that let you answer questions about a thing from its “shape”.

And this lets me complete a cycle in this year’s A-to-Z, to my delight. There is an important question in topology which group theory could answer. It’s a generalization of the zero-divisors conjecture, a hypothesis about what fits in a ring based on certain types of groups. This hypothesis — actually, these hypotheses. There are a bunch of similar questions about invariants called the L2-Betti numbers can be. These we call the Atiyah Conjecture. This because of work Michael Atiyah did in the cohomology of manifolds starting in the 1970s. It’s work, I admit, I don’t understand well enough to summarize, and hope you’ll forgive me for that. I’m still amazed that one can get to cutting-edge mathematics research this. It seems, at its introduction, to be only a subversion of how we find x for which $(x - 2)(x + 1) = 0$.

And this, I am amazed to say, completes the All 2020 A-to-Z project. All of this year’s essays should be gathered at this link. In the next couple days I plan t check that they actually are. All the essays from every A-to-Z series, going back to 2015, should be at this link. I plan to soon have an essay about what I learned in doing the A-to-Z this year. And then we can look to 2021 and hope that works out all right. Thank you for reading.

The Summer 2017 Mathematics A To Z: Prime Number

Gaurish, host of, For the love of Mathematics, gives me another topic for today’s A To Z entry. I think the subject got away from me. But I also like where it got.

Gaussian Primes.

I keep touching on group theory here. It’s a field that’s about what kinds of things can work like arithmetic does. A group is a set of things that you can add together. At least, you can do something that works like adding regular numbers together does. A ring is a set of things that you can add and multiply together.

There are many interesting rings. Here’s one. It’s called the Gaussian Integers. They’re made of numbers we can write as $a + b\imath$, where ‘a’ and ‘b’ are some integers. $\imath$ is what you figure, that number that multiplied by itself is -1. These aren’t the complex-valued numbers, you notice, because ‘a’ and ‘b’ are always integers. But you add them together the way you add complex-valued numbers together. That is, $a + b\imath$ plus $c + d\imath$ is the number $(a + c) + (b + d)\imath$. And you multiply them the way you multiply complex-valued numbers together. That is, $a + b\imath$ times $c + d\imath$ is the number $(a\cdot c - b\cdot d) + (a\cdot d + b\cdot c)\imath$.

We created something that has addition and multiplication. It picks up subtraction for free. It doesn’t have division. We can create rings that do, but this one won’t, any more than regular old integers have division. But we can ask what other normal-arithmetic-like stuff these Gaussian integers do have. For instance, can we factor numbers?

This isn’t an obvious one. No, we can’t expect to be able to divide one Gaussian integer by another. But we can’t expect to divide a regular old integer by another, not and get an integer out of it. That doesn’t mean we can’t factor them. It means we divide the regular old integers into a couple classes. There’s prime numbers. There’s composites. There’s the unit, the number 1. There’s zero. We know prime numbers; they’re 2, 3, 5, 7, and so on. Composite numbers are the ones you get by multiplying prime numbers together: 4, 6, 8, 9, 10, and so on. 1 and 0 are off on their own. Leave them there. We can’t divide any old integer by any old integer. But we can say an integer is equal to this string of prime numbers multiplied together. This gives us a handle by which we can prove a lot of interesting results.

We can do the same with Gaussian integers. We can divide them up into Gaussian primes, Gaussian composites, units, and zero. The words mean what they mean for regular old integers. A Gaussian composite can be factored into the multiples of Gaussian primes. Gaussian primes can’t be factored any further.

If we know what the prime numbers are for regular old integers we can tell whether something’s a Gaussian prime. Admittedly, knowing all the prime numbers is a challenge. But a Gaussian integer $a + b\imath$ will be prime whenever a couple simple-to-test conditions are true. First is if ‘a’ and ‘b’ are both not zero, but $a^2 + b^2$ is a prime number. So, for example, $5 + 4\imath$ is a Gaussian prime.

You might ask, hey, would $-5 - 4\imath$ also be a Gaussian prime? That’s also got components that are integers, and the squares of them add up to a prime number (41). Well-spotted. Gaussian primes appear in quartets. If $a + b\imath$ is a Gaussian prime, so is $-a -b\imath$. And so are $-b + a\imath$ and $b - a\imath$.

There’s another group of Gaussian primes. These are the numbers $a + b\imath$ where either ‘a’ or ‘b’ is zero. Then the other one is, if positive, three more than a whole multiple of four. If it’s negative, then it’s three less than a whole multiple of four. So ‘3’ is a Gaussian prime, as is -3, and as is $3\imath$ and so is $-3\imath$.

This has strange effects. Like, ‘3’ is a prime number in the regular old scheme of things. It’s also a Gaussian prime. But familiar other prime numbers like ‘2’ and ‘5’? Not anymore. Two is equal to $(1 + \imath) \cdot (1 - \imath)$; both of those terms are Gaussian primes. Five is equal to $(2 + \imath) \cdot (2 - \imath)$. There are similar shocking results for 13. But, roughly, the world of composites and prime numbers translates into Gaussian composites and Gaussian primes. In this slightly exotic structure we have everything familiar about factoring numbers.

You might have some nagging thoughts. Like, sure, two is equal to $(1 + \imath) \cdot (1 - \imath)$. But isn’t it also equal to $(1 + \imath) \cdot (1 - \imath) \cdot \imath \cdot (-\imath)$? One of the important things about prime numbers is that every composite number is the product of a unique string of prime numbers. Do we have to give that up for Gaussian integers?

Good nag. But no; the doubt is coming about because you’ve forgotten the difference between “the positive integers” and “all the integers”. If we stick to positive whole numbers then, yeah, (say) ten is equal to two times five and no other combination of prime numbers. But suppose we have all the integers, positive and negative. Then ten is equal to either two times five or it’s equal to negative two times negative five. Or, better, it’s equal to negative one times two times negative one times five. Or suffix times any even number of negative ones.

Remember that bit about separating ‘one’ out from the world of primes and composites? That’s because the number one screws up these unique factorizations. You can always toss in extra factors of one, to taste, without changing the product of something. If we have positive and negative integers to use, then negative one does almost the same trick. We can toss in any even number of extra negative ones without changing the product. This is why we separate “units” out of the numbers. They’re not part of the prime factorization of any numbers.

For the Gaussian integers there are four units. 1 and -1, $\imath$ and $-\imath$. They are neither primes nor composites, and we don’t worry about how they would otherwise multiply the number of factorizations we get.

But let me close with a neat, easy-to-understand puzzle. It’s called the moat-crossing problem. In the regular old integers it’s this: imagine that the prime numbers are islands in a dangerous sea. You start on the number ‘2’. Imagine you have a board that can be set down and safely crossed, then picked up to be put down again. Could you get from the start and go off to safety, which is infinitely far away? If your board is some, fixed, finite length?

No, you can’t. The problem amounts to how big the gap between one prime number and the next largest prime number can be. It turns out there’s no limit to that. That is, you give me a number, as small or as large as you like. I can find some prime number that’s more than your number less than its successor. There are infinitely large gaps between prime numbers.

Gaussian primes, though? Since a Gaussian prime might have nearest neighbors in any direction? Nobody knows. We know there are arbitrarily large gaps. Pick a moat size; we can (eventually) find a Gaussian prime that’s at least that far away from its nearest neighbors. But this does not say whether it’s impossible to get from the smallest Gaussian primes — $1 + \imath$ and its companions $-1 + \imath$ and on — infinitely far away. We know there’s a moat of width 6 separating the origin of things from infinity. We don’t know that there’s bigger ones.

You’re not going to solve this problem. Unless I have more brilliant readers than I know about; if I have ones who can solve this problem then I might be too intimidated to write anything more. But there is surely a pleasant pastime, maybe a charming game, to be made from this. Try finding the biggest possible moats around some set of Gaussian prime island.

Ellen Gethner, Stan Wagon, and Brian Wick’s A Stroll Through the Gaussian Primes describes this moat problem. It also sports some fine pictures of where the Gaussian primes are and what kinds of moats you can find. If you don’t follow the reasoning, you can still enjoy the illustrations.

The End 2016 Mathematics A To Z: Quotient Groups

I’ve got another request today, from the ever-interested and group-theory-minded gaurish. It’s another inspirational one.

Quotient Groups.

We all know about even and odd numbers. We don’t have to think about them. That’s why it’s worth discussing them some.

We do know what they are, though. The integers — whole numbers, positive and negative — we can split into two sets. One of them is the even numbers, two and four and eight and twelve. Zero, negative two, negative six, negative 2,038. The other is the odd numbers, one and three and nine. Negative five, negative nine, negative one.

What do we know about numbers, if all we look at is whether numbers are even or odd? Well, we know every integer is either an odd or an even number. It’s not both; it’s not neither.

We know that if we start with an even number, its negative is also an even number. If we start with an odd number, its negative is also an odd number.

We know that if we start with a number, even or odd, and add to it its negative then we get an even number. A specific number, too: zero. And that zero is interesting because any number plus zero is that same original number.

We know we can add odds or evens together. An even number plus an even number will be an even number. An odd number plus an odd number is an even number. An odd number plus an even number is an odd number. And subtraction is the same as addition, by these lights. One number minus an other number is just one number plus negative the other number. So even minus even is even. Odd minus odd is even. Odd minus even is odd.

We can pluck out some of the even and odd numbers as representative of these sets. We don’t want to deal with big numbers, nor do we want to deal with negative numbers if we don’t have to. So take ‘0’ as representative of the even numbers. ‘1’ as representative of the odd numbers. 0 + 0 is 0. 0 + 1 is 1. 1 + 0 is 1. The addition is the same thing we would do with the original set of integers. 1 + 1 would be 2, which is one of the even numbers, which we represent with 0. So 1 + 1 is 0. If we’ve picked out just these two numbers each is the minus of itself: 0 – 0 is 0 + 0. 1 – 1 is 1 + 1. All that gives us 0, like we should expect.

Two paragraphs back I said something that’s obvious, but deserves attention anyway. An even plus an even is an even number. You can’t get an odd number out of it. An odd plus an odd is an even number. You can’t get an odd number out of it. There’s something fundamentally different between the even and the odd numbers.

And now, kindly reader, you’ve learned quotient groups.

OK, I’ll do some backfilling. It starts with groups. A group is the most skeletal cartoon of arithmetic. It’s a set of things and some operation that works like addition. The thing-like-addition has to work on pairs of things in your set, and it has to give something else in the set. There has to be a zero, something you can add to anything without changing it. We call that the identity, or the additive identity, because it doesn’t change something else’s identity. It makes sense if you don’t stare at it too hard. Everything has an additive inverse. That is everything has a “minus”, that you can add to it to get zero.

With odd and even numbers the set of things is the integers. The thing-like-addition is, well, addition. I said groups were based on how normal arithmetic works, right?

And then you need a subgroup. A subgroup is … well, it’s a subset of the original group that’s itself a group. It has to use the same addition the original group does. The even numbers are such a subgroup of the integers. Formally they make something called a “normal subgroup”, which is a little too much for me to explain right now. If your addition works like it does for normal numbers, that is, “a + b” is the same thing as “b + a”, then all your subgroups are normal groups. Yes, it can happen that they’re not. If the addition is something like rotations in three-dimensional space, or swapping the order of things, then the order you “add” things in matters.

We make a quotient group by … OK, this isn’t going to sound like anything. It’s a group, though, like the name says. It uses the same addition that the original group does. Its set, though, that’s itself made up of sets. One of the sets is the normal subgroup. That’s the easy part.

Then there’s something called cosets. You make a coset by picking something from the original group and adding it to everything in the subgroup. If the thing you pick was from the original subgroup that’s just going to be the subgroup again. If you pick something outside the original subgroup then you’ll get some other set.

Starting from the subgroup of even numbers there’s not a lot to do. You can get the even numbers and you get the odd numbers. Doesn’t seem like much. We can do otherwise though. Suppose we start from the subgroup of numbers divisible by 4, though. That’s 0, 4, 8, 12, -4, -8, -12, and so on. Now there’s three cosets we can make from that. We can start with the original set of numbers. Or we have 1 plus that set: 1, 5, 9, 13, -3, -7, -11, and so on. Or we have 2 plus that set: 2, 6, 10, 14, -2, -6, -10, and so on. Or we have 3 plus that set: 3, 7, 11, 15, -1, -5, -9, and so on. None of these others are subgroups, which is why we don’t call them subgroups. We call them cosets.

These collections of cosets, though, they’re the pieces of a new group. The quotient group. One of them, the normal subgroup you started with, is the identity, the thing that’s as good as zero. And you can “add” the cosets together, in just the same way you can add “odd plus odd” or “odd plus even” or “even plus even”.

For example. Let me start with the numbers divisible by 4. I will have so much a better time if I give this a name. I’ll pick ‘Q’. This is because, you know, quarters, quartet, quadrilateral, this all sounds like four-y stuff. The integers — the integers have a couple of names. ‘I’, ‘J’, and ‘Z’ are the most common ones. We get ‘Z’ from German; a lot of important group theory was done by German-speaking mathematicians. I’m used to it so I’ll stick with that. The quotient group ‘Z / Q’, read “Z modulo Q”, has (it happens) four cosets. One of them is Q. One of them is “1 + Q”, that set 1, 5, 9, and so on. Another of them is “2 + Q”, that set 2, 6, 10, and so on. And the last is “3 + Q”, that set 3, 7, 11, and so on.

And you can add them together. 1 + Q plus 1 + Q turns out to be 2 + Q. Try it out, you’ll see. 1 + Q plus 2 + Q turns out to be 3 + Q. 2 + Q plus 2 + Q is Q again.

The quotient group uses the same addition as the original group. But it doesn’t add together elements of the original group, or even of the normal subgroup. It adds together sets made from the normal subgroup. We’ll denote them using some form that looks like “a + N”, or maybe “a N”, if ‘N’ was the normal subgroup and ‘a’ something that wasn’t in it. (Sometimes it’s more convenient writing the group operation like it was multiplication, because we do that by not writing anything at all, which saves us from writing stuff.)

If we’re comfortable with the idea that “odd plus odd is even” and “even plus odd is odd” then we should be comfortable with adding together quotient groups. We’re not, not without practice, but that’s all right. In the Introduction To Not That Kind Of Algebra course mathematics majors take they get a lot of practice, just in time to be thrown into rings.

Quotient groups land on the mathematics major as a baffling thing. They don’t actually turn up things from the original group. And they lead into important theorems. But to an undergraduate they all look like text huddling up to ladders of quotient groups. We’re told these are important theorems and they are. They also go along with beautiful diagrams of how these quotient groups relate to each other. But they’re hard going. It’s tough finding good examples and almost impossible to explain what a question is. It comes as a relief to be thrown into rings. By the time we come back around to quotient groups we’ve usually had enough time to get used to the idea that they don’t seem so hard.

Really, looking at odds and evens, they shouldn’t be so hard.

The End 2016 Mathematics A To Z: Kernel

I told you that Image thing would reappear. Meanwhile I learned something about myself in writing this.

Kernel.

I want to talk about functions again. I’ve been keeping like a proper mathematician to a nice general idea of what a function is. The sort where a function’s this rule matching stuff in a set called the domain with stuff in a set called the range. And I’ve tried not to commit myself to saying anything about what that domain and range are. They could be numbers. They could be other functions. They could be the set of DVDs you own but haven’t watched in more than two years. They could be collections socks. Haven’t said.

But we know what functions anyone cares about. They’re stuff that have domains and ranges that are numbers. Preferably real numbers. Complex-valued numbers if we must. If we look at more exotic sets they’re ones that stick close to being numbers: vectors made up of an ordered set of numbers. Matrices of numbers. Functions that are themselves about numbers. Maybe we’ll get to something exotic like a rotation, but then what is a rotation but spinning something a certain number of degrees? There are a bunch of unavoidably common domains and ranges.

Fine, then. I’ll stick to functions with ranges that look enough like regular old numbers. By “enough” I mean they have a zero. That is, something that works like zero does. You know, add it to something else and that something else isn’t changed. That’s all I need.

A natural thing to wonder about a function — hold on. “Natural” is the wrong word. Something we learn to wonder about in functions, in pre-algebra class where they’re all polynomials, is where the zeroes are. They’re generally not at zero. Why would we say “zeroes” to mean “zero”? That could let non-mathematicians think they knew what we were on about. By the “zeroes” we mean the things in the domain that get matched to the zero in the range. It might be zero; no reason it couldn’t, until we know what the function’s rule is. Just we can’t count on that.

A polynomial we know has … well, it might have zero zeroes. Might have no zeroes. It might have one, or two, or so on. If it’s an n-th degree polynomial it can have up to n zeroes. And if it’s not a polynomial? Well, then it could have any conceivable number of zeroes and nobody is going to give you a nice little formula to say where they all are. It’s not that we’re being mean. It’s just that there isn’t a nice little formula that works for all possibilities. There aren’t even nice little formulas that work for all polynomials. You have to find zeroes by thinking about the problem. Sorry.

But! Suppose you have a collection of all the zeroes for your function. That’s all the points in the domain that match with zero in the range. Then we have a new name for the thing you have. And that’s the kernel of your function. It’s the biggest subset in the domain with an image that’s just the zero in the range.

So we have a name for the zeroes that isn’t just “the zeroes”. What does this get us?

If we don’t know anything about the kind of function we have, not much. If the function belongs to some common kinds of functions, though, it tells us stuff.

For example. Suppose the function has domain and range that are vectors. And that the function is linear, which is to say, easy to deal with. Let me call the function ‘f’. And let me pick out two things in the domain. I’ll call them ‘x’ and ‘y’ because I’m writing this after Thanksgiving dinner and can’t work up a cleverer name for anything. If f is linear then f(x + y) is the same thing as f(x) + f(y). And now something magic happens. If x and y are both in the kernel, then x + y has to be in the kernel too. Think about it. Meanwhile, if x is in the kernel but y isn’t, then f(x + y) is f(y). Again think about it.

What we can see is that the domain fractures into two directions. One of them, the direction of the kernel, is invisible to the function. You can move however much you like in that direction and f can’t see it. The other direction, perpendicular (“orthogonal”, we say in the trade) to the kernel, is visible. Everything that might change changes in that direction.

This idea threads through vector spaces, and we study a lot of things that turn out to look like vector spaces. It keeps surprising us by letting us solve problems, or find the best-possible approximate solutions. This kernel gives us room to match some fiddly conditions without breaking the real solution. The size of the null space alone can tell us whether some problems are solvable, or whether they’ll have infinitely large sets of solutions.

In this vector-space construct the kernel often takes on another name, the “null space”. This means the same thing. But it reminds us that superhero comics writers miss out on many excellent pieces of terminology by not taking advanced courses in mathematics.

Kernels also appear in group theory, whenever we get into rings. We’re always working with rings. They’re nearly as unavoidable as vector spaces.

You know how you can divide the whole numbers into odd and even? And you can do some neat tricks with that for some problems? You can do that with every ring, using the kernel as a dividing point. This gives us information about how the ring is shaped, and what other structures might look like the ring. This often lets us turn proofs that might be hard into a collection of proofs on individual cases that are, at least, doable. Tricks about odd and even numbers become, in trained hands, subtle proofs of surprising results.

We see vector spaces and rings all over the place in mathematics. Some of that’s selection bias. Vector spaces capture a lot of what’s important about geometry. Rings capture a lot of what’s important about arithmetic. We have understandings of geometry and arithmetic that transcend even our species. Raccoons understand space. Crows understand number. When we look to do mathematics we look for patterns we understand, and these are major patterns we understand. And there are kernels that matter to each of them.

Some mathematical ideas inspire metaphors to me. Kernels are one. Kernels feel to me like the process of holding a polarized lens up to a crystal. This lets one see how the crystal is put together. I realize writing this down that my metaphor is unclear: is the kernel the lens or the structure seen in the crystal? I suppose the function has to be the lens, with the kernel the crystallization planes made clear under it. It’s curious I had enjoyed this feeling about kernels and functions for so long without making it precise. Feelings about mathematical structures can be like that.

A Leap Day 2016 Mathematics A To Z: Isomorphism

Gillian B made the request that’s today’s A To Z word. I’d said it would be challenging. Many have been, so far. But I set up some of the work with “homomorphism” last time. As with “homomorphism” it’s a word that appears in several fields and about different kinds of mathematical structure. As with homomorphism, I’ll try describing what it is for groups. They seem least challenging to the imagination.

Isomorphism.

An isomorphism is a kind of homomorphism. And a homomorphism is a kind of thing we do with groups. A group is a mathematical construct made up of two things. One is a set of things. The other is an operation, like addition, where we take two of the things and get one of the things in the set. I think that’s as far as we need to go in this chain of defining things.

A homomorphism is a mapping, or if you like the word better, a function. The homomorphism matches everything in a group to the things in a group. It might be the same group; it might be a different group. What makes it a homomorphism is that it preserves addition.

I gave an example last time, with groups I called G and H. G had as its set the whole numbers 0 through 3 and as operation addition modulo 4. H had as its set the whole numbers 0 through 7 and as operation addition modulo 8. And I defined a homomorphism φ which took a number in G and matched it the number in H which was twice that. Then for any a and b which were in G’s set, φ(a + b) was equal to φ(a) + φ(b).

We can have all kinds of homomorphisms. For example, imagine my new φ1. It takes whatever you start with in G and maps it to the 0 inside H. φ1(1) = 0, φ1(2) = 0, φ1(3) = 0, φ1(0) = 0. It’s a legitimate homomorphism. Seems like it’s wasting a lot of what’s in H, though.

An isomorphism doesn’t waste anything that’s in H. It’s a homomorphism in which everything in G’s set matches to exactly one thing in H’s, and vice-versa. That is, it’s both a homomorphism and a bijection, to use one of the terms from the Summer 2015 A To Z. The key to remembering this is the “iso” prefix. It comes from the Greek “isos”, meaning “equal”. You can often understand an isomorphism from group G to group H showing how they’re the same thing. They might be represented differently, but they’re equivalent in the lights you use.

I can’t make an isomorphism between the G and the H I started with. Their sets are different sizes. There’s no matching everything in H’s set to everything in G’s set without some duplication. But we can make other examples.

For instance, let me start with a new group G. It’s got as its set the positive real numbers. And it has as its operation ordinary multiplication, the kind you always do. And I want a new group H. It’s got as its set all the real numbers, positive and negative. It has as its operation ordinary addition, the kind you always do.

For an isomorphism φ, take the number x that’s in G’s set. Match it to the number that’s the logarithm of x, found in H’s set. This is a one-to-one pairing: if the logarithm of x equals the logarithm of y, then x has to equal y. And it covers everything: all the positive real numbers have a logarithm, somewhere in the positive or negative real numbers.

And this is a homomorphism. Take any x and y that are in G’s set. Their “addition”, the group operation, is to multiply them together. So “x + y”, in G, gives us the number xy. (I know, I know. But trust me.) φ(x + y) is equal to log(xy), which equals log(x) + log(y), which is the same number as φ(x) + φ(y). There’s a way to see the postive real numbers being multiplied together as equivalent to all the real numbers being added together.

You might figure that the positive real numbers and all the real numbers aren’t very different-looking things. Perhaps so. Here’s another example I like, drawn from Wikipedia’s entry on Isomorphism. It has as sets things that don’t seem to have anything to do with one another.

Let me have another brand-new group G. It has as its set the whole numbers 0, 1, 2, 3, 4, and 5. Its operation is addition modulo 6. So 2 + 2 is 4, while 2 + 3 is 5, and 2 + 4 is 0, and 2 + 5 is 1, and so on. You get the pattern, I hope.

The brand-new group H, now, that has a more complicated-looking set. Its set is ordered pairs of whole numbers, which I’ll represent as (a, b). Here ‘a’ may be either 0 or 1. ‘b’ may be 0, 1, or 2. To describe its addition rule, let me say we have the elements (a, b) and (c, d). Find their sum first by adding together a and c, modulo 2. So 0 + 0 is 0, 1 + 0 is 1, 0 + 1 is 1, and 1 + 1 is 0. That result is the first number in the pair. The second number we find by adding together b and d, modulo 3. So 1 + 0 is 1, and 1 + 1 is 2, and 1 + 2 is 0, and so on.

So, for example, (0, 1) plus (1, 1) will be (1, 2). But (0, 1) plus (1, 2) will be (1, 0). (1, 2) plus (1, 0) will be (0, 2). (1, 2) plus (1, 2) will be (0, 1). And so on.

The isomorphism matches up things in G to things in H this way:

In G φ(G), in H
0 (0, 0)
1 (1, 1)
2 (0, 2)
3 (1, 0)
4 (0, 1)
5 (1, 2)

I recommend playing with this a while. Pick any pair of numbers x and y that you like from G. And check their matching ordered pairs φ(x) and φ(y) in H. φ(x + y) is the same thing as φ(x) + φ(y) even though the things in G’s set don’t look anything like the things in H’s.

Isomorphisms exist for other structures. The idea extends the way homomorphisms do. A ring, for example, has two operations which we think of as addition and multiplication. An isomorphism matches two rings in ways that preserve the addition and multiplication, and which match everything in the first ring’s set to everything in the second ring’s set, one-to-one. The idea of the isomorphism is that two different things can be paired up so that they look, and work, remarkably like one another.

One of the common uses of isomorphisms is describing the evolution of systems. We often like to look at how some physical system develops from different starting conditions. If you make a little variation in how things start, does this produce a small change in how it develops, or does it produce a big change? How big? And the description of how time changes the system is, often, an isomorphism.

Isomorphisms also appear when we study the structures of groups. They turn up naturally when we look at things called “normal subgroups”. The name alone gives you a good idea what a “subgroup” is. “Normal”, well, that’ll be another essay.

A Leap Day 2016 Mathematics A To Z: Dedekind Domain

When I tossed this season’s A To Z open to requests I figured I’d get some surprising ones. So I did. This one’s particularly challenging. It comes from Gaurish Korpal, author of the Gaurish4Math blog.

Dedekind Domain

A major field of mathematics is Algebra. By this mathematicians don’t mean algebra. They mean studying collections of things on which you can do stuff that looks like arithmetic. There’s good reasons why this field has that confusing name. Nobody knows what they are.

We’ve seen before the creation of things that look a bit like arithmetic. Rings are a collection of things for which we can do something that works like addition and something that works like multiplication. There are a lot of different kinds of rings. When a mathematics popularizer tries to talk about rings, she’ll talk a lot about the whole numbers. We can usually count on the audience to know what they are. If that won’t do for the particular topic, she’ll try the whole numbers modulo something. If she needs another example then she talks about the ways you can rotate or reflect a triangle, or square, or hexagon and get the original shape back. Maybe she calls on the sets of polynomials you can describe. Then she has to give up on words and make do with pictures of beautifully complicated things. And after that she has to give up because the structures get too abstract to describe without losing the audience.

Dedekind Domains are a kind of ring that meets a bunch of extra criteria. There’s no point my listing them all. It would take several hundred words and you would lose motivation to continue before I was done. If you need them anyway Eric W Weisstein’s MathWorld dictionary gives the exact criteria. It also has explanations for all the words in those criteria.

Dedekind Domains, also called Dedekind Rings, are aptly named for Richard Dedekind. He was a 19th century mathematician, the last doctoral student of Gauss, and one of the people who defined what we think of as algebra. He also gave us a rigorous foundation for what irrational numbers are.

Among the problems that fascinated Dedekind was Fermat’s Last Theorem. This can’t surprise you. Every person who would be a mathematician is fascinated by it. We take our innings fiddling with cases and ways to show an + bn can’t equal cn for interesting whole numbers a, b, c, and n. We usually go about this by saying, “Suppose we have the smallest a, b, and c for which this is true and for which n is bigger than 2”. Then we do a lot of scribbling that shows this implies something contradictory, like an even number equals an odd, or that there’s some set of smaller numbers making this true. This proves the original supposition was false. Mathematicians first learn that trick as a way to show the square root of two can’t be a rational number. We stick with it because it’s nice and familiar and looks relevant. Most of us get maybe as far as proving there aren’t any solutions for n = 3 or maybe n = 4 and go on to other work. Dedekind didn’t prove the theorem. But he did find new ways to look at numbers.

One problem with proving Fermat’s Last Theorem is that it’s all about integers. Integers are hard to prove things about. Real numbers are easier. Complex-valued numbers are easier still. This is weird but it’s so. So we have this promising approach: if we could prove something like Fermat’s Last Theorem for complex-valued numbers, we’d get it up for integers. Or at least we’d be a lot of the way there. The one flaw is that Fermat’s Last Theorem isn’t true for complex-valued numbers. It would be ridiculous if it were true.

But we can patch things up. We can construct something called Gaussian Integers. These are complex-valued numbers which we can match up to integers in a compelling way. We could use the tools that work on complex-valued numbers to squeeze out a result about integers.

You know that this didn’t work. If it had, we wouldn’t have had to wait for the 1990s for the proof of Fermat’s Last Theorem. And that proof would have anything to do with this stuff. It hasn’t. One of the problems keeping this kind of proof from working is factoring. Whole numbers are either prime numbers or the product of prime numbers. Or they’re 1, ruled out of the universe of prime numbers for reasons I get to after the next paragraph. Prime numbers are those like 2, 5, 13, 37 and many others. They haven’t got any factors besides themselves and 1. The other whole numbers are the products of prime numbers. 12 is equal to 2 times 2 times 3. 35 is equal to 5 times 7. 165 is equal to 3 times 5 times 11.

If we stick to whole numbers, then, these all have unique prime factorizations. 24 is equal to 2 times 2 times 2 times 3. And there are no other combinations of prime numbers that multiply together to give us 24. We could rearrange the numbers — 2 times 3 times 2 times 2 works. But it will always be a combination of three 2’s and a single 3 that we multiply together to get 24.

(This is a reason we don’t consider 1 a prime number. If we did consider a prime number, then “three 2’s and a single 3” would be a prime factorization of 24, but so would “three 2’s, a single 3, and two 1’s”. Also “three 2’s, a single 3, and fifteen 1’s”. Also “three 2’s, a single 3, and one 1”. We have a lot of theorems that depend on whole numbers having a unique prime factorization. We could add the phrase “except for the count of 1’s in the factorization” to every occurrence of the phrase “prime factorization”. Or we could say that 1 isn’t a prime number. It’s a lot less work to say 1 isn’t a prime number.)

The trouble is that if we work with Gaussian integers we don’t have that unique prime factorization anymore. There are still prime numbers. But it’s possible to get some numbers as a product of different sets of prime numbers. And this point breaks a lot of otherwise promising attempts to prove Fermat’s Last Theorem. And there’s no getting around that, not for Fermat’s Last Theorem.

Dedekind saw a good concept lurking under this, though. The concept is called an ideal. It’s a subset of a ring that itself satisfies the rules for being a ring. And if you take something from the original ring and multiply it by something in the ideal, you get something that’s still in the ideal. You might already have one in mind. Start with the ring of integers. The even numbers are an ideal of that. Add any two even numbers together and you get an even number. Multiply any two even numbers together and you get an even number. Take any integer, even or not, and multiply it by an even number. You get an even number.

(If you were wondering: I mean the ideal would be a “ring without identity”. It’s not required to have something that acts like 1 for the purpose of multiplication. If we insisted on looking at the even numbers and the number 1, then we couldn’t be sure that adding two things from the ideal would stay in the ideal. After all, 2 is in the ideal, and if 1 also is, then 2 + 1 is a peculiar thing to consider an even number.)

It’s not just even numbers that do this. The multiples of 3 make an ideal in the integers too. Add two multiples of 3 together and you get a multiple of 3. Multiply two multiples of 3 together and you get another multiple of 3. Multiply any integer by a multiple of 3 and you get a multiple of 3.

The multiples of 4 also make an ideal, as do the multiples of 5, or the multiples of 82, or of any whole number you like.

Odd numbers don’t make an ideal, though. Add two odd numbers together and you don’t get an odd number. Multiply an integer by an odd number and you might get an odd number, you might not.

And not every ring has an ideal lurking within it. For example, take the integers modulo 3. In this case there are only three numbers: 0, 1, and 2. 1 + 1 is 2, uncontroversially. But 1 + 2 is 0. 2 + 2 is 1. 2 times 1 is 2, but 2 times 2 is 1 again. This is self-consistent. But it hasn’t got an ideal within it. There isn’t a smaller set that has addition work.

The multiples of 4 make an interesting ideal in the integers. They’re not just an ideal of the integers. They’re also an ideal of the even numbers. Well, the even numbers make a ring. They couldn’t be an ideal of the integers if they couldn’t be a ring in their own right. And the multiples of 4 — well, multiply any even number by a multiple of 4. You get a multiple of 4 again. This keeps on going. The multiples of 8 are an ideal for the multiples of 4, the multiples of 2, and the integers. Multiples of 16 and 32 make for even deeper nestings of ideals.

The multiples of 6, now … that’s an ideal of the integers, for all the reasons the multiples of 2 and 3 and 4 were. But it’s also an ideal of the multiples of 2. And of the multiples of 3. We can see the collection of “things that are multiples of 6” as a product of “things that are multiples of 2” and “things that are multiples of 3”. Dedekind saw this before us.

You might want to pause a moment while considering the idea of multiplying whole sets of numbers together. It’s a heady concept. Trying to do proofs with the concept feels at first like being tasked with alphabetizing a cloud. But we’re not planning to prove anything so you can move on if you like with an unalphabetized cloud.

A Dedekind Domain is a ring that has ideals like this. And the ideals come in two categories. Some are “prime ideals”, which act like prime numbers do. The non-prime ideals are the products of prime ideals. And while we might not have unique prime factorizations of numbers, we do have unique prime factorizations of ideals. That is, if an ideal is a product of some set of prime ideals, then it can’t also be the product of some other set of prime ideals. We get back something like unique factors.

This may sound abstract. But you know a Dedekind Domain. The integers are one. That wasn’t a given. Yes, we start algebra by looking for things that work like regular arithmetic do. But that doesn’t promise that regular old numbers will still satisfy us. We can, for instance, study things where the order matters in multiplication. Then multiplying one thing by a second gives us a different answer to multiplying the second thing by the first. Still, regular old integers are Dedekind domains and it’s hard to think of being more familiar than that.

Another example is the set of polynomials. You might want to pause for a moment here. Mathematics majors need a pause to start thinking of polynomials as being something kind of like regular old numbers. But you can certainly add one polynomial to another, and you get a polynomial out of it. You can multiply one polynomial by another, and you get a polynomial out of that. Try it. After that the only surprise would be that there are prime polynomials. But if you try to think of two polynomials that multiply together to give you “x + 1” you realize there have to be.

Other examples start getting more exotic. They’re things like the Gaussian integers I mentioned before. Gaussian integers are themselves an example of a structure called algebraic integers. Algebraic integers are — well, think of all the polynomials you can out of integer coefficients, and with a leading coefficient of 1. So, polynomials that look like “x3 – 4 x2 + 15 x + 6” or the like. All of the roots of those, the values of x which make that expression equal to zero, are algebraic integers. Yes, almost none of them are integers. We know. But the algebraic integers are also a Dedekind Domain.

I’d like to describe some more Dedekind Domains. I am foiled. I can find some more, but explaining them outside the dialect of mathematics is hard. It would take me more words than I am confident readers will give me.

I hope you are satisfied to know a bit of what a Dedekind Domain is. It is a kind of thing which works much like integers do. But a Dedekind Domain can be just different enough that we can’t count on factoring working like we are used to. We don’t lose factoring altogether, though. We are able to keep an attenuated version. It does take quite a few words to explain exactly how to set this up, however.

Ring.

Early on in her undergraduate career a mathematics major will take a class called Algebra. Actually, Introduction to Algebra is more likely, but another Algebra will follow. She will have to explain to her friends and parents that no, it’s not more of that stuff they didn’t understand in high school about expanding binomial terms and finding quadratic equations. The class is the study of constructs that work much like numbers do, but that aren’t necessarily numbers.

The first structure studied is the group. That’s made of two components. One is a set of elements. There might be infinitely many of them — the real numbers, say, or the whole numbers. Or there might be finitely many — the whole numbers from 0 up to 11, or even just the numbers 0 and 1. The other component is an operation that works like addition. What we mean by “works like addition” is that you can take two of the things in the set, “add” them together, and get something else that’s in the set. It has to be associative: something plus the sum of two other things has to equal the sum of the first two things plus the third thing. That is, 1 + (2 + 3) is the same as (1 + 2) + 3.

Also, by the rules of what makes a group, the addition has to commute. First thing plus second thing has to be the same as second thing plus first thing. That is, 1 + 2 has the same value as 2 + 1 does. Furthermore, there has to be something called the additive identity. It works like zero does in ordinary arithmetic. Anything plus the additive identity is that original thing again. And finally, everything in the group has something that’s its additive inverse. The thing plus the additive inverse is the additive identity, our zero.

If you’re lost, that’s all right. A mathematics major spends as much as four weeks in Intro to Algebra feeling lost here. But this is an example. Suppose we have a group made up of the elements 0, 1, 2, and 3. 0 will be the additive identity: 0 plus anything is that original thing. So 1 plus 0 is 1. 1 plus 1 is 2. 1 plus 2 will be 3. 1 plus 3 will be … well, make that 0 again. 2 plus 0 is 2. 2 plus 1 will be 3. 2 plus 2 will be 0. 2 plus 3 will be 1. 3 plus 0 will be 3. 3 plus 1 will be 0. 3 plus 2 will be 1. 3 plus 3 will be 2. Plus will look like a very strange word at this point.

All the elements in this have an additive inverse. Add 3 to 1 and you get 0. Add 2 to 2 and you get 0. Add 1 to 3 and you get 0. And, yes, add 0 to 0 and you get 0. This means you get to do subtraction just as well as you get to do addition.

We’re halfway there. A “ring”, introduced just as the mathematics major has got the hang of groups, is a group with a second operation. Besides being a collection of elements and an addition-like operation, a ring also has a multiplication-like operation. It doesn’t have to do much, as a multiplication. It has to be associative. That is, something times the product of two other things has to be the same as the product of the first two things times the third. You’ve seen that, though. 1 x (2 x 3) is the same as (1 x 2) x 3. And it has to distribute: something times the sum of two other things has to be the same as the sum of the something times the first thing and the something times the second. That is, 2 x (3 + 4) is the same as 2 x 3 plus 2 x 4.

For example, the group we had before, 0 times anything will be 0. 1 times anything will be what we started with: 1 times 0 is 0, 1 times 1 is 1, 1 times 2 is 2, and 1 times 3 is 3. 2 times 0 is 0, 2 times 1 is 2, 2 times 2 will be 0 again, and 2 times 3 will be 2 again. 3 times 0 is 0, 3 times 1 is 3, 3 times 2 is 2, and 3 times 3 is 1. Believe it or not, this all works out. And “times” doesn’t get to look nearly so weird as “plus” does.

And that’s all you need: a collection of things, an operation that looks a bit like addition, and an operation that looks even more vaguely like multiplication.

Now the controversy. How much does something have to look like multiplication? Some people insist that a ring has to have a multiplicative identity, something that works like 1. The ring I described has one, but one could imagine a ring that hasn’t, such as the even numbers and ordinary addition and multiplication. People who want rings to have multiplicative identity sometimes use “rng” to speak — well, write — of rings that haven’t.

Some people want rings to have multiplicative inverses. That is, anything except zero has something you can multiply it by to get 1. The little ring I built there hasn’t got one, because there’s nothing you can multiply 2 by to get 1. Some insist on multiplication commuting, that 2 times 3 equals 3 times 2.

Who’s right? It depends what you want to do. Everybody agrees that a ring has to have elements, and addition, and multiplication, and that the multiplication has to distribute across addition. The rest depends on the author, and the tradition the author works in. Mathematical constructs are things humans find interesting to study. The details of how they’re made will depend on what work we want to do.

If a mathematician wishes to make clear that she expects a ring to have multiplication that commutes and to have a multiplicative identity she can say so. She would write that something is a commutative ring with identity. Or the context may make things clear. If you’re not sure, then you can suppose she uses the definition of “ring” that was in the textbook from her Intro to Algebra class sophomore year.

It may seem strange to think that mathematicians don’t all agree on what a ring is. After all, don’t mathematicians deal in universal, eternal truths? … And they do; things that are proven by rigorous deduction are inarguably true. But the parts of these truths that are interesting are a matter of human judgement. We choose the bunches of ideas that are convenient to work with, and give names to those. That’s much of what makes this glossary an interesting project.