Ashleigh Brilliant’s Pot-Shots for the 16th has some wordplay about multiplication and division. I’m not sure it has any real mathematical content besides arithmetic uniting multiplication and division, though.

Justin Boyd’s Invisible Bread for the 18th> has an exhausted student making the calculation of they’ll do better enough after a good night’s sleep to accept a late penalty. This is always a difficult calculation to make, since you make it when your thinking is clouded by fatigue. But: there is no problem you have which sleep deprivation makes better. Put sleep first. Budget the rest of your day around that. Take it from one who knows and regrets a lot of nights cheated of rest. (This seems to be the first time I’ve mentioned Invisible Bread around here. Given the strip’s subject matter that’s a surprise, but only a small one.)

One of Gary Larson’s The Far Side reruns for the 19th is set in a mathematics department, and features writing a nasty note “in mathematics”. There are many mathematical jokes, some of them written as equations. A mathematician will recognize them pretty well. None have the connotation of, oh, “Kick Me” or something else that would belong as a prank sign like that. Or at least nobody’s told me about them.

Thanks for reading. And, also, please remember that I’m hosting the Playful Math Education Blog Carnival later this month. Please share with me any mathematics stuff you’ve run across that teaches or entertains or more.

So this has been a week full of plans and machinations. But along the way, I made a discovery about Tiger. Curious? Of course you are. Who would not be? Read on and learn what my discovery is.

Hector D. Cantú and Carlos Castellanos’s Baldo for the 26th has Gracie counting by mathematical expressions. This kind of thing can be fun, at least for someone who enjoys doing arithmetic. Several years ago someone gave me a calendar in which every day was designated by an expression. As a mental exercise it wasn’t much, to my tastes. If you know that this is the second of the month, it’s no great work to figure out what should be. But there is the fun in coming up with different ways to express a number. And here let me mention an old piece about how Paul Dirac worked out an expression for every counting number, using exactly four 2’s.

John Graziano’s Ripley’s Believe It or Not for the 26th mentions several fairly believable things. The relevant part is about naming the kind of surface that a Pringles chip represents. That is, the surface a Pringles chip would be if it weren’t all choppy and irregular, and if it continued indefinitely.

The shape is, as Graziano’s Ripley’s claims, a hypberbolic paraboloid. It’s a shape you get to know real well if you’re a mathematics major. They turn up in multivariable calculus and, if you do mathematical physics, in dynamical systems. It’s also a shape mathematics majors get to calling a “saddle shape”, because it looks enough like a saddle if you’re not really into horses.

The shape is one of the “quadratic surfaces”. These are shapes which can be described as the sets of Cartesian coordinates that make a quadratic equation true. Equations in Cartesian coordinates will have independent variables x, y, and z, unless there’s a really good reason. A quadratic equation will be the sum of some constant times x, and some constant times x^{2}, and some constant times y, and some constant times y^{2}, and some constant times z, and some constant times z^{2}. Also some constant times xy, and some constant times yz, and some constant times xz. No xyz, though. And it might have some constant added to the mix at the end of all this.

There are seventeen different kinds of quadratic surfaces. Some of them are familiar, like ellipsoids or cones. Some hardly seem like they could be called “quadratic”, like intersecting planes. Or parallel planes. Some look like mid-century modern office lobby decor, like elliptic cylinders. And some have nice, faintly science-fictional shapes, like hyperboloids or, as in here, hyperbolic paraboloids. I’m not a judge of which ones would be good snack shapes.

Samson’s Dark Side of the Horse for the 26th is a funny-answer-to-a-story-problem joke. I had thought these had all switched over to apples, rather than candy bars. But that would make the punch line less believable.

Bud Blake’s Tiger for the 31st is a rerun, of course. Blake died in 2005 and no one else drew his comic strip. It’s a funny-answer-to-a-story-problem joke. And, more, it’s a repeat of a Tiger strip I’ve already run here. I admit a weird pride when I notice a comic strip doing a repeat. It gives me some hope that I might still be able to remember things. But this is also a special Tiger repeat. It’s the strip which made me notice Bud Blake redrawing comics he had already used. This one is not a third iteration of the strip which reran in April 2015 and June 2016. It’s a straight repeat of the June 2016 strip.

The mystery to me now is why King Features apparently has less than three years’ worth of reruns in the bank for Tiger. The comic ran from 1965 to 2003, and it’s not as though the strip made pop culture references or jokes ripped from the headlines. Even if the strip changed its dimensions over the decades, to accommodate shrinking newspapers, there should be a decade at least of usable strips to rerun.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 31st uses a chart to tease mathematicians, both in the comic and in the readership. The joke is in the format of the graph. The graph is supposed to argue that the Mathematician’s pedantry is increasing with time, and it does do that. But it is customary in this sort of graph for the independent variable to be the horizontal axis and the dependent variable the vertical. So, if the claim is that the pedantry level rises as time goes on, yes, this is a … well, I want to say wrong way to arrange the axes. This is because the chart, as drawn, breaks a convention. But convention is a tool to help people’s comprehension. We are right to ignore convention if doing so makes the chart better serve its purpose. Which, the punch line is, this does.

I didn’t cover quite all of last week’s mathematics comics with Sunday’s essay. There were a handful that all ran on Saturday. And, as has become tradition, I’ll also list a couple that didn’t rate a couple paragraphs.

Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd has a neat variation on story problems. Zoe’s given the assignment to make her own. I don’t remember getting this as homework, in elementary school, but it’s hard to see why I wouldn’t. It’s a great exercise: not just set up an arithmetic problem to solve, but a reason one would want to solve it.

Composing problems is a challenge. It’s a skill, and you might be surprised that when I was in grad school we didn’t get much training in it. We were just taken to be naturally aware of how to identify a skill one wanted to test, and to design a question that would mostly test that skill, and to write it out in a question that challenged students to identify what they were to do and how to do it, and why they might want to do it. But as a grad student I wasn’t being prepared to teach elementary school students, just undergraduates.

Mastroianni and Hart’s B.C. for the 23rd is a joke in the funny-definition category, this for “chaos theory”. Chaos theory formed as a mathematical field in the 60s and 70s, and it got popular alongside the fractal boom in the 80s. The field can be traced back to the 1890s, though, which is astounding. There was no way in the 1890s to do the millions of calculations needed to visualize any good chaos-theory problem. They had to develop results entirely by thinking.

Wiley’s definition is fine enough about certain systems being unpredictable. Wiley calls them “advanced”, although they don’t need to be that advanced. A compound pendulum — a solid rod that swings on the end of another swinging rod — can be chaotic. You can call that “advanced” if you want but then people are going to ask if you’ve had your mind blown by this post-singularity invention, the “screw”.

What makes for chaos is not randomness. Anyone knows the random is unpredictable in detail. That’s no insight. What’s exciting is when something’s unpredictable but deterministic. Here it’s useful to think of continental divides. These are the imaginary curves which mark the difference in where water runs. Pour a cup of water on one side of the line, and if it doesn’t evaporate, it eventually flows to the Pacific Ocean. Pour the cup of water on the other side, it eventually flows to the Atlantic Ocean. These divides are often wriggly things. Water may mostly flow downhill, but it has to go around a lot of hills.

So pour the water on that line. Where does it go? There’s no unpredictability in it. The water on one side of the line goes to one ocean, the water on the other side, to the other ocean. But where is the boundary? And that can be so wriggly, so crumpled up on itself, so twisted, that there’s no meaningfully saying. There’s just this zone where the Pacific Basin and the Atlantic Basin merge into one another. Any drop of water, however tiny, dropped in this zone lands on both sides. And that is chaos.

Neatly for my purposes there’s even a mountain at a great example of this boundary. Triple Divide Peak, in Montana, rests on the divides between the Atlantic and the Pacific basins, and also on the divide between the Atlantic and the Arctic oceans. (If one interprets the Hudson Bay as connecting to the Arctic rather than the Atlantic Ocean, anyway. If one takes Hudson Bay to be on the Atlantic Ocean, then Snow Dome, Alberta/British Columbia, is the triple point.) There’s a spot on this mountain (or the other one) where a spilled cup of water could go to any of three oceans.

John Graziano’s Ripley’s Believe It Or Not for the 23rd mentions one of those beloved bits of mathematics trivia, the birthday problem. That’s finding the probability that no two people in a group of some particular size will share a birthday. Or, equivalently, the probability that at least two people share some birthday. That’s not a specific day, mind you, just that some two people share a birthday. The version that usually draws attention is the relatively low number of people needed to get a 50% chance there’s some birthday pair. I haven’t seen the probability of 70 people having at least one birthday pair before. 99.9 percent seems plausible enough.

The birthday problem usually gets calculated something like this: Grant that one person has a birthday. That’s one day out of either 365 or 366, depending on whether we consider leap days. Consider a second person. There are 364 out of 365 chances that this person’s birthday is not the same as the first person’s. (Or 365 out of 366 chances. Doesn’t make a real difference.) Consider a third person. There are 363 out of 365 chances that this person’s birthday is going to be neither the first nor the second person’s. So the chance that all three have different birthdays is . Consider the fourth person. That person has 362 out of 365 chances to have a birthday none of the first three have claimed. So the chance that all four have different birthdays is . And so on. The chance that at least two people share a birthday is 1 minus the chance that no two people share a birthday.

As always happens there are some things being assumed here. Whether these probability calculations are right depends on those assumptions. The first assumption being made is independence: that no one person’s birthday affects when another person’s is likely to be. Obvious, you say? What if we have twins in the room? What if we’re talking about the birthday problem at a convention of twins and triplets? Or people who enjoyed the minor renown of being their city’s First Babies of the Year? (If you ever don’t like the result of a probability question, ask about the independence of events. Mathematicians like to assume independence, because it makes a lot of work easier. But assuming isn’t the same thing as having it.)

The second assumption is that birthdates are uniformly distributed. That is, that a person picked from a room is no more likely to be born the 13th of February than they are the 24th of September. And that is not quite so. September births are (in the United States) slightly more likely than other months, for example, which suggests certain activities going on around New Year’s. Across all months (again in the United States) birthdates of the 13th are slightly less likely than other days of the month. I imagine this has to be accounted for by people who are able to select a due date by inducing delivery. (Again if you need to attack a probability question you don’t like, ask about the uniformity of whatever random thing is in place. Mathematicians like to assume uniform randomness, because it akes a lot of work easier. But assuming it isn’t the same as proving it.)

Do these differences mess up the birthday problem results? Probably not that much. We are talking about slight variations from uniform distribution. But I’ll be watching Ripley’s to see if it says anything about births being more common in September, or less common on 13ths.

And now the comics I didn’t find worth discussing. They’re all reruns, it happens. Morrie Turner’s Wee Pals rerun for the 20th just mentions mathematics class. That could be any class that has tests coming up, though. Percy Crosby’s Skippy for the 21st is not quite the anthropomorphic numerals jokes for the week. It’s getting around that territory, though, as Skippy claims to have the manifestation of a zero. Bill Rechin’s Crock for the 22nd is a “pick any number” joke. I discussed as much as I could think of about this when it last appeared, in May of 2018. Also I’m surprised that Crock is rerunning strips that quickly now. It has, in principle, decades of strips to draw from.

So I’m going to have a third Reading the Comics essay for last week’s strips. This happens sometimes. Two of the four strips for this essay mention percentages. But one of the others is so important to me that it gets naming rights for the essay. You’ll understand when I’m done. I hope.

Angie Bailey’s Texts From Mittens for the 2nd talks about percentages. That’s a corner of arithmetic that many people find frightening and unwelcoming. I’m tickled that Mittens doesn’t understand how easy it is to work out a percentage of 100. It’s a good, reasonable bit of characterization for a cat.

John Graziano’s Ripley’s Believe It Or Not for the 2nd is about a subject close to my heart. At least a third of it is. The mention of negative Kelvin temperatures set off a … heated … debate on the comments thread at GoComics.com. Quite a few people remember learning in school that the Kelvin temperature scale. It starts with the coldest possible temperature, which is zero. And that’s that. They have taken this to denounce Graziano as writing obvious nonsense. Well.

Something you should know about anything you learned in school: the reality is more complicated than that. This is true for thermodynamics. This is true for mathematics. This is true for anything interesting enough for humans to study. This also applies to stuff you learned as an undergraduate. Also to grad school.

So what are negative temperatures? At least on an absolute temperature scale, where the answer isn’t an obvious and boring “cold”? One clue is in the word “absolute” there. It means a way of measuring temperature that’s in some way independent of how we do the measurement. In ordinary life we measure temperatures with physical phenomena. Fluids that expand or contract as their temperature changes. Metals that expand or contract as their temperatures change. For special cases like blast furnaces, sample slugs of clays that harden or don’t at temperature. Observing the radiation of light off a thing. And these are all fine, useful in their domains. They’re also bound in particular physical experiments, though. Is there a definition of temperature that … you know … we can do mathematically?

Of course, or I wouldn’t be writing this. There are two mathematical-physics components to give us temperature. One is the internal energy of your system. This is the energy of whatever your thing is, less the gravitational or potential energy that reflects where it happens to be sitting. Also minus the kinetic energy that comes of the whole system moving in whatever way you like. That is, the energy you’d see if that thing were in an otherwise empty universe. The second part is — OK, this will confuse people. It’s the entropy. Which is not a word for “stuff gets broken”. Not in this context. The entropy of a system describes how many distinct ways there are for a system to arrange its energy. Low-entropy systems have only a few ways to put things. High-entropy systems have a lot of ways to put things. This does harmonize with the pop-culture idea of entropy. There are many ways for a room to be messy. There are few ways for it to be clean. And it’s so easy to make a room messier and hard to make it tidier. We say entropy tends to increase.

So. A mathematical physicist bases “temperature” on the internal energy and the entropy. Imagine giving a system a tiny bit more energy. How many more ways would the system be able to arrange itself with that extra energy? That gives us the temperature. (To be precise, it gives us the reciprocal of the temperature. We could set this up as how a small change in entropy affects the internal energy, and get temperature right away. But I have an easier time thinking of going from change-in-energy to change-in-entropy than the other way around. And this is my blog so I get to choose how I set things up.)

This definition sounds bizarre. But it works brilliantly. It’s all nice clean mathematics. It matches perfectly nice easy-to-work-out cases, too. Like, you may kind of remember from high school physics how the temperature of a gas is something something average kinetic energy something. Work out the entropy and the internal energy of an ideal gas. Guess what this change-in-entropy/change-in-internal-energy thing gives you? Exactly something something average kinetic energy something. It’s brilliant.

In ordinary stuff, adding a little more internal energy to a system opens up new ways to arrange that energy. It always increases the entropy. So the absolute temperature, from this definition, is always positive. Good stuff. Matches our intuition well.

So in 1956 Dr Norman Ramsey and Dr Martin Klein published some interesting papers in the Physical Review. (Here’s a link to Ramsey’s paper and here’s Klein’s, if you can get someone else to pay for your access.) Their insightful question: what happens if a physical system has a maximum internal energy? If there’s some way of arranging the things in your system so that no more energy can come in? What if you’re close to but not at that maximum?

It depends on details, yes. But consider this setup: there’s one, or only a handful, of ways to arrange the maximum possible internal energy. There’s some more ways to arrange nearly-the-maximum-possible internal energy. There’s even more ways to arrange not-quite-nearly-the-maximum-possible internal energy.

Look at what that implies, though. If you’re near the maximum-possible internal energy, then adding a tiny bit of energy reduces the entropy. There’s fewer ways to arrange that greater bit of energy. Greater internal energy, reduced entropy. This implies the temperature is negative.

So we have to allow the idea of negative temperatures. Or we have to throw out this statistical-mechanics-based definition of temperature. And the definition works so well otherwise. Nobody’s got an idea nearly as good for it. So mathematical physicists shrugged, and noted this as a possibility, but mostly ignored it for decades. If it got mentioned, it was because the instructor was showing off a neat weird thing. This is how I encountered it, as a young physics major full of confidence and not at all good on wedge products. But it was sitting right there, in my textbook, Kittel and Kroemer’s Thermal Physics. Appendix E, four brisk pages before the index. Still, it was an enchanting piece.

And a useful one, possibly the most useful four-page aside I encountered as an undergraduate. My thesis research simulated a fluid-equilibrium problem run at different temperatures. There was a natural way that this fluid would have a maximum possible internal energy. So, a good part — the most fascinating part — of my research was in the world of negative temperatures. It’s a strange one, one where entropy seems to work in reverse. Things build, spontaneously. More heat, more energy, makes them build faster. In simulation, a shell of viscosity-free gas turned into what looked for all the world like a solid shell.

All right, but you can simulate anything on a computer, or in equations, as I did. Would this ever happen in reality? … And yes, in some ways. Internal energy and entropy are ideas that have natural, irresistible fits in information theory. This is the study of … information. I mean, how you send a signal and how you receive a signal. It turns out a lot of laser physics has, in information theory terms, behavior that’s negative-temperature. And, all right, but that’s not what anybody thinks of as temperature.

Well, these ideas happen still. They usually need some kind of special constraint on the things. Atoms held in a magnetic field so that their motions are constrained. Vortices locked into place on a two-dimensional surface (a prerequisite to my little fluids problems). Atoms bound into a lattice that keeps them from being able to fly free. All weird stuff, yes. But all exactly as the statistical-mechanics temperature idea calls on.

And notice. These negative temperatures happen only when the energy is extremely high. This is the grounds for saying that they’re hotter than positive temperatures. And good reason, too. Getting into what heat is, as opposed to temperature, is an even longer discussion. But it seems fair to say something with a huge internal energy has more heat than something with slight internal energy. So Graziano’s Ripley’s claim is right.

(GoComics.com commenters, struggling valiantly, have tried to talk about quantum mechanics stuff and made a hash of it. As a general rule, skip any pop-physics explanation of something being quantum mechanics.)

If you’re interested in more about this, I recommend Stephen J Blundell and Katherine M Blundell’s Concepts in Thermal Physics. Even if you’re not comfortable enough in calculus to follow the derivations, the textbook prose is insightful.

John Hambrock’s The Brilliant Mind of Edison Lee for the 3rd is a probability joke. And it’s built on how impossible putting together a particular huge complicated structure can be. I admit I’m not sure how I’d go about calculating the chance of a heap of Legos producing a giraffe shape. Imagine working out the number of ways Legos might fall together. Imagine working out how many of those could be called giraffe shapes. It seems too great a workload. And figuring it by experiment, shuffling Legos until a giraffe pops out, doesn’t seem much better.

This approaches an argument sometimes raised about the origins of life. Grant there’s no chance that a pile of Legos could be dropped together to make a giraffe shape. How can the much bigger pile of chemical elements have been stirred together to make an actual giraffe? Or, the same problem in another guise. If a monkey could go at a typewriter forever without typing any of Shakespeare’s plays, how did a chain of monkeys get to writing all of them?

And there’s a couple of explanations. At least partial explanations. There is much we don’t understand about the origins of life. But one is that the universe is huge. There’s lots of stars. It looks like most stars have planets. There’s lots of chances for chemicals to mix together and form a biochemistry. Even an impossibly unlikely thing will happen, given enough chances.

And another part is selection. A pile of Legos thrown into a pile can do pretty much anything. Any piece will fit into any other piece in a variety of ways. A pile of chemicals are more constrained in what they can do. Hydrogen, oxygen, and a bit of activation energy can make hydrogen-plus-hydroxide ions, water, or hydrogen peroxide, and that’s it. There can be a lot of ways to arrange things. Proteins are chains of amino acids. These chains can be about as long as you like. (It seems.) (I suppose there must be some limit.) And they curl over and fold up in some of the most complicated mathematical problems anyone can even imagine doing. How hard is it to find a set of chemicals that are a biochemistry? … That’s hard to say. There are about twenty amino acids used for proteins in our life. It seems like there could be a plausible life with eighteen amino acids, or 24, including a couple we don’t use here. It seems plausible, though, that my father could have had two brothers growing up; if there were, would I exist?

Jason Chatfield’s Ginger Meggs for the 3rd is a story-problem joke. Familiar old form to one. The question seems to be a bit mangled in the asking, though. Thirty percent of Jonson’s twelve apples is a nasty fractional number of apples. Surely the question should have given Jonson ten and Fitzclown twelve apples. Then thirty percent of Jonson’s apples would be a nice whole number.

I talk about mathematics themes in comic strips often, and those essays are gathered at this link. You might enjoy more of them. If Texts From Mittens gets on-topic for me again I’ll have an essay about it at this link.. (It’s a new tag, and a new comic, at least at GoComics.com.) Other discussions of Ripley’s Believe It Or Not strips are at this link and probably aren’t all mentions of Rubik’s Cubes. The Brilliant Mind of Edison Lee appears in essays at this link. And other appearances of Ginger Meggsare at this link. And so yeah, that one Star Trek: The Next Generation episode where they say the surface temperature is like negative 300 degrees Celsius, and therefore below absolute zero? I’m willing to write that off as it’s an incredibly high-energy atmosphere that’s fallen into negative (absolute) temperatures. Makes the place more exotic and weird. They need more of that.

I was all set to say how complaining about GoComics.com’s pages not loading had gotten them fixed. But they only worked for Monday alone; today they’re broken again. Right. I haven’t tried sending an error report again; we’ll see if that works. Meanwhile, I’m still not through last week’s comic strips and I had just enough for one day to nearly enough justify an installment for the one day. Should finish off the rest of the week next essay, probably in time for next week.

Mark Leiknes’s Cow and Boy rerun for the 23rd circles around some of Zeno’s Paradoxes. At the heart of some of them is the question of whether a thing can be divided infinitely many times, or whether there must be some smallest amount of a thing. Zeno wonders about space and time, but you can do as well with substance, with matter. Mathematics majors like to say the problem is easy; Zeno just didn’t realize that a sum of infinitely many things could be a finite and nonzero number. This misses the good question of how the sum of infinitely many things, none of which are zero, can be anything but infinitely large? Or, put another way, what’s different in adding and adding that the one is infinitely large and the other not?

Or how about this. Pick your favorite string of digits. 23. 314. 271828. Whatever. Add together the series — except that you omit any terms that have your favorite string there. So, if you picked 23, don’t add , or , or or such. That depleted series does converge. The heck is happening there? (Here’s why it’s true for a single digit being thrown out. Showing it’s true for longer strings of digits takes more work but not really different work.)

J C Duffy’s Lug Nuts for the 23rd is, I think, the first time I have to give a content warning for one of these. It’s a porn-movie advertisement spoof. But it mentions Einstein and Pi and has the tagline “she didn’t go for eggheads … until he showed her a new equation!”. So, you know, it’s using mathematics skill as a signifier of intelligence and riffing on the idea that nerds like sex too.

John Graziano’s Ripley’s Believe It or Not for the 23rd has a trivia that made me initially think “not”. It notes Vince Parker, Senior and Junior, of Alabama were both born on Leap Day, the 29th of February. I’ll accept this without further proof because of the very slight harm that would befall me were I to accept this wrongly. But it also asserted this was a 1-in-2.1-million chance. That sounded wrong. Whether it is depends on what you think the chance is of.

Because what’s the remarkable thing here? That a father and son have the same birthday? Surely the chance of that is 1 in 365. The father could be born any day of the year; the son, also any day. Trusting there’s no influence of the father’s birthday on the son’s, then, 1 in 365 it is. Or, well, 1 in about 365.25, since there are leap days. There’s approximately one leap day every four years, so, surely that, right?

And not quite. In four years there’ll be 1,461 days. Four of them will be the 29th of January and four the 29th of September and four the 29th of August and so on. So if the father was born any day but leap day (a “non-bissextile day”, if you want to use a word that starts a good fight in a Scrabble match), the chance the son’s birth is the same is 4 chances in 1,461. 1 in 365.25. If the father was born on Leap Day, then the chance the son was born the same day is only 1 chance in 1,461. Still way short of 1-in-2.1-million. So, Graziano’s Ripley’s is wrong if that’s the chance we’re looking at.

Ah, but what if we’re looking at a different chance? What if we’re looking for the chance that the father is born the 29th of February and the son is also born the 29th of February? There’s a 1-in-1,461 chance the father’s born on Leap Day. And a 1-in-1,461 chance the son’s born on Leap Day. And if those events are independent, the father’s birth date not influencing the son’s, then the chance of both those together is indeed 1 in 2,134,521. So Graziano’s Ripley’s is right if that’s the chance we’re looking at.

Which is a good reminder: if you want to work out the probability of some event, work out precisely what the event is. Ordinary language is ambiguous. This is usually a good thing. But it’s fatal to discussing probability questions sensibly.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 23rd presents his mathematician discovering a new set of numbers. This will happen. Mathematics has had great success, historically, finding new sets of things that look only a bit like numbers were understood. And showing that if they follow rules that are, as much as possible, like the old numbers, we get useful stuff out of them. The mathematician claims to be a formalist, in the punch line. This is a philosophy that considers mathematical results to be the things you get by starting with some symbols and some rules for manipulating them. What this stuff means, and whether it reflects anything of interest in the real world, isn’t of interest. We can know the results are good because they follow the rules.

This sort of approach can be fruitful. It can force you to accept results that are true but intuition-defying. And it can give results impressive confidence. You can even, at least in principle, automate the creating and the checking of logical proofs. The disadvantages are that it takes forever to get anything done. And it’s hard to shake the idea that we ought to have some idea what any of this stuff means.

The last couple days of last week saw a rush of comics, although most of them were simpler things to describe. Bits of play on words, if you like.

Samson’s Dark Side of the Horse for the 4th of January, 2018, is one that plays on various meanings of “average”. The mean, alluded to in the first panel, is the average most people think of first. Where you have a bunch of values representing instances of something, add up the values, and divide by the number of instances. (Properly that’s the arithmetic mean. There’s some others, such as the geometric mean, but if someone’s going to use one of those they give you clear warning.) The median, in the second, is the midpoint, the number that half of all instances are less than. So you see the joke. If the distribution of intelligence is normal — which is a technical term, although it does mean “not freakish” — then the median and the mean should be equal. If you had infinitely many instances, and they were normally distributed, the two would be equal. With finitely many instances, the mean and the median won’t be exactly in line, for the same reason if you fairly toss a coin two million times it won’t turn up heads exactly one million times.

Dark Side of the Horse for the 5th delivers the Roman numerals joke of the year. And I did have to think about whether ‘D’ is a legitimate Roman numeral. This would be easier to remember before 1900.

Johnny Hart’s Back to BC for the 5th goes to the desire to quantify and count things. And to double-check what other people tell you about this counting. It’s easy, today, to think of the desire to quantify things as natural to humans. I’m not confident that it is. The history of statistics shows this gradual increase in the number and variety of things getting tracked. This strip originally ran the 11th of July, 1960.

Bill Watterson’s Calvin and Hobbes for the 5th talks about averages again. And what a population average means for individuals. It doesn’t mean much. The glory of statistics is that groups are predictable in a way that individuals are not.

John Graziano’s Ripley’s Believe It Or Not for the 5th features a little arithmetic coincidence, that multiplying 21,978 by four reverses its digits. It made me think of Ray Kassinger’s question the other day about parasitic numbers. But this isn’t a parasitic number. A parasitic number is one with a value, multiplied by a particular number, that’s the same as you get by moving its last digit to the front. Flipping the order of digits seems like it should be something and I don’t know what.

Mark O’Hare’s Citizen Dog rerun for the 6th is part of a sequence in which Fergus takes a (human) child’s place in school. Mathematics gets used as a subject that’s just a big pile of unfamiliar terms if you just jump right in. Most subjects are like this if you take them seriously, of course. But mathematics has got an economy of technical terms to stuff into people’s heads, and that have to be understood to make any progress. In grad school my functional analysis professor took great mercy on us, and started each class with re-writing the definitions of all the technical terms introduced the previous class. Also of terms that might be a bit older, but that are important to get right, which is why I got through it confident I knew what a Sobolev Space was. (It’s a collection of functions that have enough derivatives to do your differential equations problem.) Numerator and denominator, we’re experts on by now.

The last full week of 2017 was also a slow one for mathematically-themed comic strips. You can tell by how many bits of marginally relevant stuff I include. In this case, it also includes a couple that just mention the current or the upcoming year. So you’ve been warned.

John Graziano’s Ripley’s Believe It Or Not for the 24th mentions the bit of recreational group theory that normal people know, the Rubik’s Cube. The group theory comes in from rotations: you can take rows or columns on the cube and turn them, a quarter or a half or a three-quarters turn. Which rows you turn, and which ways you turn them, form a group. So it’s a toy that inspires deep questions. Who wouldn’t like to know in how few moves a cube could be solved? We know there are at least some puzzles that take 18 moves to solve. (You can calculate the number of different cube arrangements there are, and how many arrangements you could make by shuffling a cube around with 17 moves. There’s more possible arrangements than there are ones you can get to in 17 moves; therefore, there must be at least one arrangement that takes 18 moves to solve.) A 2010 computer-assisted proof by Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge showed that at most 20 face turns are needed for every possible cube to be solved. I don’t know if there’s been any success figuring out whether 19 or even 18 is necessarily enough.

Bill Griffith’s Zippy the Pinhead for the 26th just mentions algebra as a thing that Griffith can’t really remember, even in one of his frequent nostalgic fugues. I don’t know that Zippy’s line about the fifth dimension is meant to refer to geometry. It might refer to the band, but that would be a bit odd. Yes, I know, Zippy the Pinhead always speaks oddly, but in these nostalgic fugue strips he usually provides some narrative counterpoint.

Larry Wright’s Motley Classics for the 26th originally ran in 1986. I mention this because it makes the odd dialogue of getting “a new math program” a touch less odd. I confess I’m not sure what the kid even got. An educational game? Something for numerical computing? The coal-fired, gear-driven version of Mathematica that existed in the 1980s? It’s a mystery, it is.

Ryan Pagelow’s Buni for the 27th is really a calendar joke. It seems to qualify as an anthropomorphic numerals joke, though. It’s not a rare sentiment either.

Jef Mallett’s Frazz for the 29th is similarly a calendar joke. It does play on 2017 being a prime number, a fact that doesn’t really mean much besides reassuring us that it’s not a leap year. I’m not sure just what’s meant by saying it won’t repeat for another 2017 years, at least that wouldn’t be just as true for (say) 2015 or 2019. But as Frazz points out, we do cling to anything that floats in times like these.

You know we’re getting near the end of the (United States) school year when Comic Strip Master Command orders everyone to clear out their mathematics jokes. I’m assuming that’s what happened here. Or else a lot of cartoonists had word problems on their minds eight weeks ago. Also eight weeks ago plus whenever they originally drew the comics, for those that are deep in reruns. It was busy enough to split this week’s load into two pieces and might have been worth splitting into three, if I thought I had publishing dates free for all that.

Larry Wright’s Motley Classics for the 28th of May, a rerun from 1989, is a joke about using algebra. Occasionally mathematicians try to use the the ability of people to catch things in midair as evidence of the sorts of differential equations solution that we all can do, if imperfectly, in our heads. But I’m not aware of evidence that anyone does anything that sophisticated. I would be stunned if we didn’t really work by a process of making a guess of where the thing should be and refining it as time allows, with experience helping us make better guesses. There’s good stuff to learn in modeling how to catch stuff, though.

Michael Jantze’s The Norm Classics rerun for the 28th opines about why in algebra you had to not just have an answer but explain why that was the answer. I suppose mathematicians get trained to stop thinking about individual problems and instead look to classes of problems. Is it possible to work out a scheme that works for many cases instead of one? If it isn’t, can we at least say something interesting about why it’s not? And perhaps that’s part of what makes algebra classes hard. To think about a collection of things is usually harder than to think about one, and maybe instructors aren’t always clear about how to turn the specific into the general.

Also I want to say some very good words about Jantze’s graphical design. The mock textbook cover for the title panel on the left is so spot-on for a particular era in mathematics textbooks it’s uncanny. The all-caps Helvetica, the use of two slightly different tans, the minimalist cover art … I know shelves stuffed full in the university mathematics library where every book looks like that. Plus, “[Mathematics Thing] And Their Applications” is one of the roughly four standard approved mathematics book titles. He paid good attention to his references.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 28th deploys a big old whiteboard full of equations for the “secret” of the universe. This makes a neat change from finding the “meaning” of the universe, or of life. The equations themselves look mostly like gibberish to me, but Wise and Aldrich make good uses of their symbols. The symbol , a vector-valued quantity named B, turns up a lot. This symbol we often use to represent magnetic flux. The B without a little arrow above it would represent the intensity of the magnetic field. Similarly an turns up. This we often use for magnetic field strength. While I didn’t spot a — electric field — which would be the natural partner to all this, there are plenty of bare E symbols. Those would represent electric potential. And many of the other symbols are what would naturally turn up if you were trying to model how something is tossed around by a magnetic field. Q, for example, is often the electric charge. ω is a common symbol for how fast an electromagnetic wave oscillates. (It’s not the frequency, but it’s related to the frequency.) The uses of symbols is consistent enough, in fact, I wonder if Wise and Aldrich did use a legitimate sprawl of equations and I’m missing the referenced problem.

Mark O’Hare’s Citizen Dog rerun for the 29th has the dog Fergus struggle against a word problem. Ordinary setup and everything, but I love the way O’Hare draws Fergus in that outfit and thinking hard.

Bill Amend’s FoxTrot Classicfor the 31st, a rerun from the 7th of June, 2006, shows the conflation of “genius” and “good at mathematics” in everyday use. Amend has picked a quixotic but in-character thing for Jason Fox to try doing. Euclid’s Fifth Postulate is one of the classic obsessions of mathematicians throughout history. Euclid admitted the thing — a confusing-reading mess of propositions — as a postulate because … well, there’s interesting geometry you can’t do without it, and there doesn’t seem any way to prove it from the rest of his geometric postulates. So it must be assumed to be true.

There isn’t a way to prove it from the rest of the geometric postulates, but it took mathematicians over two thousand years of work at that to be convinced of the fact. But I know I went through a time of wanting to try finding a proof myself. It was a mercifully short-lived time that ended in my humbly understanding that as smart as I figured I was, I wasn’t that smart. We can suppose Euclid’s Fifth Postulate to be false and get interesting geometries out of that, particularly the geometries of the surface of the sphere, and the geometry of general relativity. Jason will surely sometime learn.

I was hit by a massive computer malfunction this week, the kind that forced me to buy a new computer and spend half a week copying stuff over from a limping hard drive and hoping it would maybe work if I held things just right. Mercifully, Comic Strip Master Command gave me a relatively easy week. No huge rush of mathematically-themed comic strips and none that are going to take a thousand words of writing to describe. Let’s go.

Eric the Circle for the 15th, this one by “Claire the Square”, is the rare Eric the Circle to show off properties of circles. So maybe that’s the second anthropomorphic geometry sketch for the week. If the week hadn’t been dominated by my computer woes that might have formed the title for this edition.

Werner Wejp-Olsen’s Inspector Danger’s Crime Quiz for the 15th puts a mathematician in mortal peril and leaves him there to die. As is traditional for this sort of puzzle the mathematician left a dying clue. (Mathematicians were similarly kind to their investigators on the 4th of July, 2016 and the 9th of July, 2012. I was expecting the answer to be someone with a four-letter and an eight-letter name, none of which anybody here had. Doesn’t matter. It’ll never stand up in court.

John Graziano’s Ripley’s Believe It Or Not for the 17th features one of those astounding claims that grows out of number theory. Graziano asserts that there are an astounding 50,613,244,155,051,856 ways to score exactly 100 points in (ten-pin) bowling. I won’t deny that this seems high to me. But partitioning a number — that is, taking a (positive) whole number and writing down the different ways one can add up (positive) whole numbers to get that sum — often turns up a lot of possibilities. That there should be many ways to get a score of 100 by adding between ten and twenty numbers that could be between zero and ten each, plus the possibility of adding pairs of the numbers (for spares) or trios of numbers (for strikes) makes this less astonishing.

Wikipedia led me to this page, from Balmoral Software, about all the different ways there are to score different numbers. The most surprising thing it reveals to me is that 100 isn’t even the score with the greatest number of possible scores. 77 is. There are 172,542,309,343,731,946 ways to score exactly 77 points. I agree this ought to make me feel better about my game. It doesn’t. It turns out there are, altogether, something like 5,726,805,883,325,784,576 possible different outcomes for a bowling game. And how we can tell that, given there’s no practical way to go and list all of them, is described at the end of the page.

The technique is called “divide and conquer”. There’s no way to list all the outcomes of ten frames of bowling, but there’s certainly a way to list all the outcomes of one. Or two. Or three. So, work out how many possible scores there would be in few enough frames you can handle that. Then combine these shortened games into one that’s the full ten frames. There’s some trouble in matching up the ends of the short games. A spare or a strike in the last frame of a shortened game means one has to account for the first or first two frames of the next one. But this is still an easier problem than the one we started with.

Bill Amend’s FoxTrot Classics for the 18th (rerun from the 25th of May, 2006) is your standard percentages and infinities joke. Really would have expected Paige’s mother to be wise to this game by now, but this sort of thing happens.

Slow week around here for mathematically-themed comic strips. These happen. I suspect Comic Strip Master Command is warning me to stop doing two-a-week essays on reacting to comic strips and get back to more original content. Message received. If I can get ahead of some projects Monday and Tuesday we’ll get more going.

Patrick Roberts’s Todd the Dinosaur for the 20th is a typical example of mathematics being something one gets in over one’s head about. Of course it’s fractions. Is there anything in elementary school that’s a clearer example of something with strange-looking rules and processes for some purpose students don’t even know what they are? In middle school and high school we get algebra. In high school there’s trigonometry. In high school and college there’s calculus. In grad school there’s grad school. There’s always something.

Jeff Stahler’s Moderately Confused for the 21st is the usual bad-mathematics-of-politicians joke. It may be a little more on point considering the Future Disgraced Former President it names, but the joke is surely as old as politicians and hits all politicians with the same flimsiness.

John Graziano’s Ripley’s Believe It Or Not for the 22nd names Greek mathematician Pythagoras. That’s close enough to on-point to include here, especially considering what a slow week it’s been. It may not be fair to call Pythagoras a mathematician. My understanding is we don’t know that actually did anything in mathematics, significant or otherwise. His cult attributed any of its individuals’ discoveries to him, and may have busied themselves finding other, unrelated work to credit to their founder. But there’s so much rumor and gossip about Pythagoras that it’s probably not fair to automatically dismiss any claim about him. The beans thing I don’t know about. I would be skeptical of anyone who said they were completely sure.

Vic Lee’s Pardon My Planet for the 23rd is the usual sort of not-understanding-mathematics joke. In this case it’s about percentages, which are good for baffling people who otherwise have a fair grasp on fractions. I wonder if people would be better at percentages if they learned to say “percent” as “out of a hundred” instead. I’m sure everyone who teaches percentages teaches that meaning, but that doesn’t mean the warning communicates.

Stephan Pastis’s Pearls Before Swine for the 24th jams a bunch of angle puns into its six panels. I think it gets most of the basic set in there.

Samson’s Dark Side Of The Horse for the 25th mentions sudokus, and that’s enough for a slow week like this. I thought Horace was reaching for a calculator in the last panel myself, and was going to say that wouldn’t help any. But then I checked the numbers in the boxes and that made it all better.

It’s another busy enough week for mathematically-themed comic strips that I’m dividing the harvest in two. There’s a natural cutting point since there weren’t any comics I could call relevant for the 15th. But I’m moving a Saturday Morning Breakfast Cereal of course from the 16th into this pile. That’s because there’s another Saturday Morning Breakfast Cereal of course from after the 16th that I might include. I’m still deciding if it’s close enough to on topic. We’ll see.

John Graziano’s Ripley’s Believe It Or Not for the 12th mentions the “Futurama Theorem”. The trivia is true, in that writer Ken Keeler did create a theorem for a body-swap plot he had going. The premise was that any two bodies could swap minds at most one time. So, after a couple people had swapped bodies, was there any way to get everyone back to their correct original body? There is, if you bring two more people in to the body-swapping party. It’s clever.

From reading comment threads about the episode I conclude people are really awestruck by the idea of creating a theorem for a TV show episode. The thing is that “a theorem” isn’t necessarily a mind-boggling piece of work. It’s just the name mathematicians give when we have a clearly-defined logical problem and its solution. A theorem and its proof can be a mind-wrenching bit of work, like Fermat’s Last Theorem or the Four-Color Map Theorem are. Or it can be on the verge of obvious. Keeler’s proof isn’t on the obvious side of things. But it is the reasoning one would have to do to solve the body-swap problem the episode posited without cheating. Logic and good story-telling are, as often, good partners.

Teresa Burritt’s Frog Applause is a Dadaist nonsense strip. But for the 13th it hit across some legitimate words, about a 14 percent false-positive rate. This is something run across in hypothesis testing. The hypothesis is something like “is whatever we’re measuring so much above (or so far below) the average that it’s not plausibly just luck?” A false positive is what it sounds like: our analysis said yes, this can’t just be luck, and it turns out that it was. This turns up most notoriously in medical screenings, when we want to know if there’s reason to suspect a health risk, and in forensic analysis, when we want to know if a particular person can be shown to have been a particular place at a particular time. A 14 percent false positive rate doesn’t sound very good — except.

Suppose we are looking for a rare condition. Say, something one person out of 500 will have. A test that’s 99 percent accurate will turn up positives for the one person who has got it and for five of the people who haven’t. It’s not that the test is bad; it’s just there are so many negatives to work through. If you can screen out a good number of the negatives, though, the people who haven’t got the condition, then the good test will turn up fewer false positives. So suppose you have a cheap or easy or quick test that doesn’t miss any true positives but does have a 14 percent false positive rate. That would screen out 430 of the people who haven’t got whatever we’re testing for, leaving only 71 people who need the 99-percent-accurate test. This can make for a more effective use of resources.

Mike Shiell’s The Wandering Melon for the 13th is a spot of wordplay built around statisticians. Good for taping to the mathematics teacher’s walls.

Eric the Circle for the 14th, this one by “zapaway”, is another bit of wordplay. Tans and tangents.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 16th identifies, aptly, a difference between scientists and science fans. Weinersmith is right that loving trivia is a hallmark of a fan. Expertise — in any field, not just science — is more about recognizing patterns of problems and concepts, ways to bring approaches from one field into another, this sort of thing. And the digits of π are great examples of trivia. There’s no need for anyone to know the 1,681st digit of π. There’s few calculations you could ever do when you needed more than three dozen digits. But if memorizing digits seems like fun then π is a great set to learn. e is the only other number at all compelling.

The thing is, it’s very hard to become an expert in something without first being a fan of it. It’s possible, but if a field doesn’t delight you why would you put that much work into it? So even though the scientist might have long since gotten past caring how many digits of π, it’s awfully hard to get something memorized in the flush of fandom out of your head.

I know you’re curious. I can only remember π out to 3.14158926535787962. I might have gotten farther if I’d tried, but I actually got a digit wrong, inserting a ‘3’ before that last ’62’, and the effort to get that mistake out of my head obliterated any desire to waste more time memorizing digits. For e I can only give you 2.718281828. But there’s almost no hope I’d know that far if it weren’t for how e happens to repeat that 1828 stanza right away.

So last week, for schedule reasons, I skipped the Christmas Eve strips and promised to get to them this week. There weren’t any Christmas Eve mathematically-themed comic strips. Figures. This week, I need to skip New Year’s Eve comic strips for similar schedule reasons. If there are any, I’ll talk about them next week.

Lorie Ransom’s The Daily Drawing for the 28th is a geometry wordplay joke for this installment. Two of them, when you read the caption.

John Graziano’s Ripley’s Believe It or Not for the 28th presents the quite believable claim that Professor Dwight Barkley created a formula to estimate how long it takes a child to ask “are we there yet?” I am skeptical the equation given means all that much. But it’s normal mathematician-type behavior to try modelling stuff. That will usually start with thinking of what one wants to represent, and what things about it could be measured, and how one expects these things might affect one another. There’s usually several plausible-sounding models and one has to select the one or ones that seem likely to be interesting. They have to be simple enough to calculate, but still interesting. They need to have consequences that aren’t obvious. And then there’s the challenge of validating the model. Does its description match the thing we’re interested in well enough to be useful? Or at least instructive?

Len Borozinski’s Speechless for the 28th name-drops Albert Einstein and the theory of relativity. Marginal mathematical content, but it’s a slow week.

John Allison’s Bad Machinery for the 29th mentions higher dimensions. More dimensions. In particular it names ‘ana’ and ‘kata’ as “the weird extra dimensions”. Ana and kata are a pair of directions coined by the mathematician Charles Howard Hinton to give us a way of talking about directions in hyperspace. They echo the up/down, left/right, in/out pairs. I don’t know that any mathematicians besides Rudy Rucker actually use these words, though, and that in his science fiction. I may not read enough four-dimensional geometry to know the working lingo. Hinton also coined the “tesseract”, which has escaped from being a mathematician’s specialist term into something normal people might recognize. Mostly because of Madeline L’Engle, I suppose, but that counts.

Samson’s Dark Side of the Horse for the 29th is Dark Side of the Horse‘s entry this essay. It’s a fun bit of play on counting, especially as a way to get to sleep.

Mark Anderson’s Andertoons for the 30th relieves us by having a Mark Anderson strip for this essay. And makes for a good Roman numerals gag.

Ryan Pagelow’s Buni for the 30th can be counted as an anthropomorphic-numerals joke. I know it’s more of a “ugh 2016 was the worst year” joke, but it parses either way.