Reading the Comics, January 23, 2018: Adult Content Edition

I was all set to say how complaining about’s pages not loading had gotten them fixed. But they only worked for Monday alone; today they’re broken again. Right. I haven’t tried sending an error report again; we’ll see if that works. Meanwhile, I’m still not through last week’s comic strips and I had just enough for one day to nearly enough justify an installment for the one day. Should finish off the rest of the week next essay, probably in time for next week.

Mark Leiknes’s Cow and Boy rerun for the 23rd circles around some of Zeno’s Paradoxes. At the heart of some of them is the question of whether a thing can be divided infinitely many times, or whether there must be some smallest amount of a thing. Zeno wonders about space and time, but you can do as well with substance, with matter. Mathematics majors like to say the problem is easy; Zeno just didn’t realize that a sum of infinitely many things could be a finite and nonzero number. This misses the good question of how the sum of infinitely many things, none of which are zero, can be anything but infinitely large? Or, put another way, what’s different in adding \frac11 + \frac12 + \frac13 + \frac14 + \cdots and adding \frac11 + \frac14 + \frac19 + \frac{1}{16} + \cdots that the one is infinitely large and the other not?

Or how about this. Pick your favorite string of digits. 23. 314. 271828. Whatever. Add together the series \frac11 + \frac12 + \frac13 + \frac14 + \cdots except that you omit any terms that have your favorite string there. So, if you picked 23, don’t add \frac{1}{23} , or \frac{1}{123} , or \frac{1}{802301} or such. That depleted series does converge. The heck is happening there? (Here’s why it’s true for a single digit being thrown out. Showing it’s true for longer strings of digits takes more work but not really different work.)

J C Duffy’s Lug Nuts for the 23rd is, I think, the first time I have to give a content warning for one of these. It’s a porn-movie advertisement spoof. But it mentions Einstein and Pi and has the tagline “she didn’t go for eggheads … until he showed her a new equation!”. So, you know, it’s using mathematics skill as a signifier of intelligence and riffing on the idea that nerds like sex too.

John Graziano’s Ripley’s Believe It or Not for the 23rd has a trivia that made me initially think “not”. It notes Vince Parker, Senior and Junior, of Alabama were both born on Leap Day, the 29th of February. I’ll accept this without further proof because of the very slight harm that would befall me were I to accept this wrongly. But it also asserted this was a 1-in-2.1-million chance. That sounded wrong. Whether it is depends on what you think the chance is of.

Because what’s the remarkable thing here? That a father and son have the same birthday? Surely the chance of that is 1 in 365. The father could be born any day of the year; the son, also any day. Trusting there’s no influence of the father’s birthday on the son’s, then, 1 in 365 it is. Or, well, 1 in about 365.25, since there are leap days. There’s approximately one leap day every four years, so, surely that, right?

And not quite. In four years there’ll be 1,461 days. Four of them will be the 29th of January and four the 29th of September and four the 29th of August and so on. So if the father was born any day but leap day (a “non-bissextile day”, if you want to use a word that starts a good fight in a Scrabble match), the chance the son’s birth is the same is 4 chances in 1,461. 1 in 365.25. If the father was born on Leap Day, then the chance the son was born the same day is only 1 chance in 1,461. Still way short of 1-in-2.1-million. So, Graziano’s Ripley’s is wrong if that’s the chance we’re looking at.

Ah, but what if we’re looking at a different chance? What if we’re looking for the chance that the father is born the 29th of February and the son is also born the 29th of February? There’s a 1-in-1,461 chance the father’s born on Leap Day. And a 1-in-1,461 chance the son’s born on Leap Day. And if those events are independent, the father’s birth date not influencing the son’s, then the chance of both those together is indeed 1 in 2,134,521. So Graziano’s Ripley’s is right if that’s the chance we’re looking at.

Which is a good reminder: if you want to work out the probability of some event, work out precisely what the event is. Ordinary language is ambiguous. This is usually a good thing. But it’s fatal to discussing probability questions sensibly.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 23rd presents his mathematician discovering a new set of numbers. This will happen. Mathematics has had great success, historically, finding new sets of things that look only a bit like numbers were understood. And showing that if they follow rules that are, as much as possible, like the old numbers, we get useful stuff out of them. The mathematician claims to be a formalist, in the punch line. This is a philosophy that considers mathematical results to be the things you get by starting with some symbols and some rules for manipulating them. What this stuff means, and whether it reflects anything of interest in the real world, isn’t of interest. We can know the results are good because they follow the rules.

This sort of approach can be fruitful. It can force you to accept results that are true but intuition-defying. And it can give results impressive confidence. You can even, at least in principle, automate the creating and the checking of logical proofs. The disadvantages are that it takes forever to get anything done. And it’s hard to shake the idea that we ought to have some idea what any of this stuff means.


Reading the Comics, January 6, 2018: Terms Edition

The last couple days of last week saw a rush of comics, although most of them were simpler things to describe. Bits of play on words, if you like.

Samson’s Dark Side of the Horse for the 4th of January, 2018, is one that plays on various meanings of “average”. The mean, alluded to in the first panel, is the average most people think of first. Where you have a bunch of values representing instances of something, add up the values, and divide by the number of instances. (Properly that’s the arithmetic mean. There’s some others, such as the geometric mean, but if someone’s going to use one of those they give you clear warning.) The median, in the second, is the midpoint, the number that half of all instances are less than. So you see the joke. If the distribution of intelligence is normal — which is a technical term, although it does mean “not freakish” — then the median and the mean should be equal. If you had infinitely many instances, and they were normally distributed, the two would be equal. With finitely many instances, the mean and the median won’t be exactly in line, for the same reason if you fairly toss a coin two million times it won’t turn up heads exactly one million times.

Dark Side of the Horse for the 5th delivers the Roman numerals joke of the year. And I did have to think about whether ‘D’ is a legitimate Roman numeral. This would be easier to remember before 1900.

Mike Lester’s Mike du Jour for the 4th is geometry wordplay. I’m not sure the joke stands up to scrutiny, but it lands well enough initially.

Johnny Hart’s Back to BC for the 5th goes to the desire to quantify and count things. And to double-check what other people tell you about this counting. It’s easy, today, to think of the desire to quantify things as natural to humans. I’m not confident that it is. The history of statistics shows this gradual increase in the number and variety of things getting tracked. This strip originally ran the 11th of July, 1960.

Bill Watterson’s Calvin and Hobbes for the 5th talks about averages again. And what a population average means for individuals. It doesn’t mean much. The glory of statistics is that groups are predictable in a way that individuals are not.

John Graziano’s Ripley’s Believe It Or Not for the 5th features a little arithmetic coincidence, that multiplying 21,978 by four reverses its digits. It made me think of Ray Kassinger’s question the other day about parasitic numbers. But this isn’t a parasitic number. A parasitic number is one with a value, multiplied by a particular number, that’s the same as you get by moving its last digit to the front. Flipping the order of digits seems like it should be something and I don’t know what.

Mark Anderson’s Andertoons for the 6th is a confident reassurance that 2018 is a normal, healthy year after all. Or can be. Prime numbers.

Mark O’Hare’s Citizen Dog rerun for the 6th is part of a sequence in which Fergus takes a (human) child’s place in school. Mathematics gets used as a subject that’s just a big pile of unfamiliar terms if you just jump right in. Most subjects are like this if you take them seriously, of course. But mathematics has got an economy of technical terms to stuff into people’s heads, and that have to be understood to make any progress. In grad school my functional analysis professor took great mercy on us, and started each class with re-writing the definitions of all the technical terms introduced the previous class. Also of terms that might be a bit older, but that are important to get right, which is why I got through it confident I knew what a Sobolev Space was. (It’s a collection of functions that have enough derivatives to do your differential equations problem.) Numerator and denominator, we’re experts on by now.

Reading the Comics, December 30, 2017: Looking To 2018 Edition

The last full week of 2017 was also a slow one for mathematically-themed comic strips. You can tell by how many bits of marginally relevant stuff I include. In this case, it also includes a couple that just mention the current or the upcoming year. So you’ve been warned.

Mac King and Bill King’s Magic in a Minute activity for the 24th is a logic puzzle. I’m not sure there’s deep mathematics to it, but it’s some fun to reason out.

John Graziano’s Ripley’s Believe It Or Not for the 24th mentions the bit of recreational group theory that normal people know, the Rubik’s Cube. The group theory comes in from rotations: you can take rows or columns on the cube and turn them, a quarter or a half or a three-quarters turn. Which rows you turn, and which ways you turn them, form a group. So it’s a toy that inspires deep questions. Who wouldn’t like to know in how few moves a cube could be solved? We know there are at least some puzzles that take 18 moves to solve. (You can calculate the number of different cube arrangements there are, and how many arrangements you could make by shuffling a cube around with 17 moves. There’s more possible arrangements than there are ones you can get to in 17 moves; therefore, there must be at least one arrangement that takes 18 moves to solve.) A 2010 computer-assisted proof by Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge showed that at most 20 face turns are needed for every possible cube to be solved. I don’t know if there’s been any success figuring out whether 19 or even 18 is necessarily enough.

Griffith: 'Here we are, Zippy, back in the land of our childhood.' Zippy: 'Are we still in the ninth grade?' Griffith: 'Kind of ... although I still can't remember a thing about algebra.' Zippy: 'So many spitballs and paper airplanes ago!!' Griffith: 'Why did I act up so much in school, Zippy? Was it a Freudian thing?' Zippy: 'It was a cry for kelp.' Griffith: 'Don't you mean a cry for help? I don't think kelp was even a word I knew back in the 50s.' Zippy: 'Seaweed is the fifth dimension!'
Bill Griffith’s Zippy the Pinhead for the 26th of December, 2017. This is not as strongly a memoir or autobiographical strip as Griffith will sometimes do, which is a shame. Those are always captivating. I have fun reading Zippy the Pinhead and understand why people wouldn’t. But the memoir strips I recommend even to people who don’t care for the usual fare.

Bill Griffith’s Zippy the Pinhead for the 26th just mentions algebra as a thing that Griffith can’t really remember, even in one of his frequent nostalgic fugues. I don’t know that Zippy’s line about the fifth dimension is meant to refer to geometry. It might refer to the band, but that would be a bit odd. Yes, I know, Zippy the Pinhead always speaks oddly, but in these nostalgic fugue strips he usually provides some narrative counterpoint.

Larry Wright’s Motley Classics for the 26th originally ran in 1986. I mention this because it makes the odd dialogue of getting “a new math program” a touch less odd. I confess I’m not sure what the kid even got. An educational game? Something for numerical computing? The coal-fired, gear-driven version of Mathematica that existed in the 1980s? It’s a mystery, it is.

Ryan Pagelow’s Buni for the 27th is really a calendar joke. It seems to qualify as an anthropomorphic numerals joke, though. It’s not a rare sentiment either.

Jef Mallett’s Frazz for the 29th is similarly a calendar joke. It does play on 2017 being a prime number, a fact that doesn’t really mean much besides reassuring us that it’s not a leap year. I’m not sure just what’s meant by saying it won’t repeat for another 2017 years, at least that wouldn’t be just as true for (say) 2015 or 2019. But as Frazz points out, we do cling to anything that floats in times like these.

Reading the Comics, May 31, 2017: Feast Week Edition

You know we’re getting near the end of the (United States) school year when Comic Strip Master Command orders everyone to clear out their mathematics jokes. I’m assuming that’s what happened here. Or else a lot of cartoonists had word problems on their minds eight weeks ago. Also eight weeks ago plus whenever they originally drew the comics, for those that are deep in reruns. It was busy enough to split this week’s load into two pieces and might have been worth splitting into three, if I thought I had publishing dates free for all that.

Larry Wright’s Motley Classics for the 28th of May, a rerun from 1989, is a joke about using algebra. Occasionally mathematicians try to use the the ability of people to catch things in midair as evidence of the sorts of differential equations solution that we all can do, if imperfectly, in our heads. But I’m not aware of evidence that anyone does anything that sophisticated. I would be stunned if we didn’t really work by a process of making a guess of where the thing should be and refining it as time allows, with experience helping us make better guesses. There’s good stuff to learn in modeling how to catch stuff, though.

Michael Jantze’s The Norm Classics rerun for the 28th opines about why in algebra you had to not just have an answer but explain why that was the answer. I suppose mathematicians get trained to stop thinking about individual problems and instead look to classes of problems. Is it possible to work out a scheme that works for many cases instead of one? If it isn’t, can we at least say something interesting about why it’s not? And perhaps that’s part of what makes algebra classes hard. To think about a collection of things is usually harder than to think about one, and maybe instructors aren’t always clear about how to turn the specific into the general.

Also I want to say some very good words about Jantze’s graphical design. The mock textbook cover for the title panel on the left is so spot-on for a particular era in mathematics textbooks it’s uncanny. The all-caps Helvetica, the use of two slightly different tans, the minimalist cover art … I know shelves stuffed full in the university mathematics library where every book looks like that. Plus, “[Mathematics Thing] And Their Applications” is one of the roughly four standard approved mathematics book titles. He paid good attention to his references.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 28th deploys a big old whiteboard full of equations for the “secret” of the universe. This makes a neat change from finding the “meaning” of the universe, or of life. The equations themselves look mostly like gibberish to me, but Wise and Aldrich make good uses of their symbols. The symbol \vec{B} , a vector-valued quantity named B, turns up a lot. This symbol we often use to represent magnetic flux. The B without a little arrow above it would represent the intensity of the magnetic field. Similarly an \vec{H} turns up. This we often use for magnetic field strength. While I didn’t spot a \vec{E} — electric field — which would be the natural partner to all this, there are plenty of bare E symbols. Those would represent electric potential. And many of the other symbols are what would naturally turn up if you were trying to model how something is tossed around by a magnetic field. Q, for example, is often the electric charge. ω is a common symbol for how fast an electromagnetic wave oscillates. (It’s not the frequency, but it’s related to the frequency.) The uses of symbols is consistent enough, in fact, I wonder if Wise and Aldrich did use a legitimate sprawl of equations and I’m missing the referenced problem.

John Graziano’s Ripley’s Believe It Or Not for the 28th mentions how many symbols are needed to write out the numbers from 1 to 100. Is this properly mathematics? … Oh, who knows. It’s just neat to know.

Mark O’Hare’s Citizen Dog rerun for the 29th has the dog Fergus struggle against a word problem. Ordinary setup and everything, but I love the way O’Hare draws Fergus in that outfit and thinking hard.

The Eric the Circle rerun for the 29th by ACE10203040 is a mistimed Pi Day joke.

Bill Amend’s FoxTrot Classicfor the 31st, a rerun from the 7th of June, 2006, shows the conflation of “genius” and “good at mathematics” in everyday use. Amend has picked a quixotic but in-character thing for Jason Fox to try doing. Euclid’s Fifth Postulate is one of the classic obsessions of mathematicians throughout history. Euclid admitted the thing — a confusing-reading mess of propositions — as a postulate because … well, there’s interesting geometry you can’t do without it, and there doesn’t seem any way to prove it from the rest of his geometric postulates. So it must be assumed to be true.

There isn’t a way to prove it from the rest of the geometric postulates, but it took mathematicians over two thousand years of work at that to be convinced of the fact. But I know I went through a time of wanting to try finding a proof myself. It was a mercifully short-lived time that ended in my humbly understanding that as smart as I figured I was, I wasn’t that smart. We can suppose Euclid’s Fifth Postulate to be false and get interesting geometries out of that, particularly the geometries of the surface of the sphere, and the geometry of general relativity. Jason will surely sometime learn.

Reading the Comics, May 20, 2017: Major Computer Malfunction Week Edition

I was hit by a massive computer malfunction this week, the kind that forced me to buy a new computer and spend half a week copying stuff over from a limping hard drive and hoping it would maybe work if I held things just right. Mercifully, Comic Strip Master Command gave me a relatively easy week. No huge rush of mathematically-themed comic strips and none that are going to take a thousand words of writing to describe. Let’s go.

Sam Hepburn’s Questionable Quotebook for the 14th includes this week’s anthropomorphic geometry sketch underneath its big text block.

Eric the Circle for the 15th, this one by “Claire the Square”, is the rare Eric the Circle to show off properties of circles. So maybe that’s the second anthropomorphic geometry sketch for the week. If the week hadn’t been dominated by my computer woes that might have formed the title for this edition.

Werner Wejp-Olsen’s Inspector Danger’s Crime Quiz for the 15th puts a mathematician in mortal peril and leaves him there to die. As is traditional for this sort of puzzle the mathematician left a dying clue. (Mathematicians were similarly kind to their investigators on the 4th of July, 2016 and the 9th of July, 2012. I was expecting the answer to be someone with a four-letter and an eight-letter name, none of which anybody here had. Doesn’t matter. It’ll never stand up in court.

John Graziano’s Ripley’s Believe It Or Not for the 17th features one of those astounding claims that grows out of number theory. Graziano asserts that there are an astounding 50,613,244,155,051,856 ways to score exactly 100 points in (ten-pin) bowling. I won’t deny that this seems high to me. But partitioning a number — that is, taking a (positive) whole number and writing down the different ways one can add up (positive) whole numbers to get that sum — often turns up a lot of possibilities. That there should be many ways to get a score of 100 by adding between ten and twenty numbers that could be between zero and ten each, plus the possibility of adding pairs of the numbers (for spares) or trios of numbers (for strikes) makes this less astonishing.

Wikipedia led me to this page, from Balmoral Software, about all the different ways there are to score different numbers. The most surprising thing it reveals to me is that 100 isn’t even the score with the greatest number of possible scores. 77 is. There are 172,542,309,343,731,946 ways to score exactly 77 points. I agree this ought to make me feel better about my game. It doesn’t. It turns out there are, altogether, something like 5,726,805,883,325,784,576 possible different outcomes for a bowling game. And how we can tell that, given there’s no practical way to go and list all of them, is described at the end of the page.

The technique is called “divide and conquer”. There’s no way to list all the outcomes of ten frames of bowling, but there’s certainly a way to list all the outcomes of one. Or two. Or three. So, work out how many possible scores there would be in few enough frames you can handle that. Then combine these shortened games into one that’s the full ten frames. There’s some trouble in matching up the ends of the short games. A spare or a strike in the last frame of a shortened game means one has to account for the first or first two frames of the next one. But this is still an easier problem than the one we started with.

Bill Amend’s FoxTrot Classics for the 18th (rerun from the 25th of May, 2006) is your standard percentages and infinities joke. Really would have expected Paige’s mother to be wise to this game by now, but this sort of thing happens.

Reading the Comics, March 25, 2017: Slow Week Edition

Slow week around here for mathematically-themed comic strips. These happen. I suspect Comic Strip Master Command is warning me to stop doing two-a-week essays on reacting to comic strips and get back to more original content. Message received. If I can get ahead of some projects Monday and Tuesday we’ll get more going.

Patrick Roberts’s Todd the Dinosaur for the 20th is a typical example of mathematics being something one gets in over one’s head about. Of course it’s fractions. Is there anything in elementary school that’s a clearer example of something with strange-looking rules and processes for some purpose students don’t even know what they are? In middle school and high school we get algebra. In high school there’s trigonometry. In high school and college there’s calculus. In grad school there’s grad school. There’s always something.

Teacher: 'Todd, are you wearing water wings? Why, pray tell?' 'So I can make it to the third grade! We're startin' fractions today and YOU said you had a feeling I was gonna get in over my head.' 'Dang!'
Patrick Roberts’s Todd the Dinosaur for the 20th of March, 2017. I’ll allow the kids-say-the-darndest-things setup for the strip. I’m stuck on wondering just how much good water wings that size could do. Yes, he’s limited by his anatomy but aren’t we all?

Jeff Stahler’s Moderately Confused for the 21st is the usual bad-mathematics-of-politicians joke. It may be a little more on point considering the Future Disgraced Former President it names, but the joke is surely as old as politicians and hits all politicians with the same flimsiness.

John Graziano’s Ripley’s Believe It Or Not for the 22nd names Greek mathematician Pythagoras. That’s close enough to on-point to include here, especially considering what a slow week it’s been. It may not be fair to call Pythagoras a mathematician. My understanding is we don’t know that actually did anything in mathematics, significant or otherwise. His cult attributed any of its individuals’ discoveries to him, and may have busied themselves finding other, unrelated work to credit to their founder. But there’s so much rumor and gossip about Pythagoras that it’s probably not fair to automatically dismiss any claim about him. The beans thing I don’t know about. I would be skeptical of anyone who said they were completely sure.

Vic Lee’s Pardon My Planet for the 23rd is the usual sort of not-understanding-mathematics joke. In this case it’s about percentages, which are good for baffling people who otherwise have a fair grasp on fractions. I wonder if people would be better at percentages if they learned to say “percent” as “out of a hundred” instead. I’m sure everyone who teaches percentages teaches that meaning, but that doesn’t mean the warning communicates.

'OK, then let's compromise. I'll be right most of the time - at least 46 percent of the time. And you can be right whenever there is math involved.'
Vic Lee’s Pardon My Planet for the 23rd of March, 2017. Don’t mind me, I’m busy trying to convince myself the back left leg of that park bench is hidden behind the guy’s leg and not missing altogether and it’s still pretty touch-and-go on that.

Stephan Pastis’s Pearls Before Swine for the 24th jams a bunch of angle puns into its six panels. I think it gets most of the basic set in there.

Samson’s Dark Side Of The Horse for the 25th mentions sudokus, and that’s enough for a slow week like this. I thought Horace was reaching for a calculator in the last panel myself, and was going to say that wouldn’t help any. But then I checked the numbers in the boxes and that made it all better.

Reading the Comics, February 15, 2017: SMBC Cuts In Line Edition

It’s another busy enough week for mathematically-themed comic strips that I’m dividing the harvest in two. There’s a natural cutting point since there weren’t any comics I could call relevant for the 15th. But I’m moving a Saturday Morning Breakfast Cereal of course from the 16th into this pile. That’s because there’s another Saturday Morning Breakfast Cereal of course from after the 16th that I might include. I’m still deciding if it’s close enough to on topic. We’ll see.

John Graziano’s Ripley’s Believe It Or Not for the 12th mentions the “Futurama Theorem”. The trivia is true, in that writer Ken Keeler did create a theorem for a body-swap plot he had going. The premise was that any two bodies could swap minds at most one time. So, after a couple people had swapped bodies, was there any way to get everyone back to their correct original body? There is, if you bring two more people in to the body-swapping party. It’s clever.

From reading comment threads about the episode I conclude people are really awestruck by the idea of creating a theorem for a TV show episode. The thing is that “a theorem” isn’t necessarily a mind-boggling piece of work. It’s just the name mathematicians give when we have a clearly-defined logical problem and its solution. A theorem and its proof can be a mind-wrenching bit of work, like Fermat’s Last Theorem or the Four-Color Map Theorem are. Or it can be on the verge of obvious. Keeler’s proof isn’t on the obvious side of things. But it is the reasoning one would have to do to solve the body-swap problem the episode posited without cheating. Logic and good story-telling are, as often, good partners.

Teresa Burritt’s Frog Applause is a Dadaist nonsense strip. But for the 13th it hit across some legitimate words, about a 14 percent false-positive rate. This is something run across in hypothesis testing. The hypothesis is something like “is whatever we’re measuring so much above (or so far below) the average that it’s not plausibly just luck?” A false positive is what it sounds like: our analysis said yes, this can’t just be luck, and it turns out that it was. This turns up most notoriously in medical screenings, when we want to know if there’s reason to suspect a health risk, and in forensic analysis, when we want to know if a particular person can be shown to have been a particular place at a particular time. A 14 percent false positive rate doesn’t sound very good — except.

Suppose we are looking for a rare condition. Say, something one person out of 500 will have. A test that’s 99 percent accurate will turn up positives for the one person who has got it and for five of the people who haven’t. It’s not that the test is bad; it’s just there are so many negatives to work through. If you can screen out a good number of the negatives, though, the people who haven’t got the condition, then the good test will turn up fewer false positives. So suppose you have a cheap or easy or quick test that doesn’t miss any true positives but does have a 14 percent false positive rate. That would screen out 430 of the people who haven’t got whatever we’re testing for, leaving only 71 people who need the 99-percent-accurate test. This can make for a more effective use of resources.

Gary Wise and Lance Aldrich’s Real Life Adventures for the 13th is an algebra-in-real-life joke and I can’t make something deeper out of that.

Mike Shiell’s The Wandering Melon for the 13th is a spot of wordplay built around statisticians. Good for taping to the mathematics teacher’s walls.

Eric the Circle for the 14th, this one by “zapaway”, is another bit of wordplay. Tans and tangents.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 16th identifies, aptly, a difference between scientists and science fans. Weinersmith is right that loving trivia is a hallmark of a fan. Expertise — in any field, not just science — is more about recognizing patterns of problems and concepts, ways to bring approaches from one field into another, this sort of thing. And the digits of π are great examples of trivia. There’s no need for anyone to know the 1,681st digit of π. There’s few calculations you could ever do when you needed more than three dozen digits. But if memorizing digits seems like fun then π is a great set to learn. e is the only other number at all compelling.

The thing is, it’s very hard to become an expert in something without first being a fan of it. It’s possible, but if a field doesn’t delight you why would you put that much work into it? So even though the scientist might have long since gotten past caring how many digits of π, it’s awfully hard to get something memorized in the flush of fandom out of your head.

I know you’re curious. I can only remember π out to 3.14158926535787962. I might have gotten farther if I’d tried, but I actually got a digit wrong, inserting a ‘3’ before that last ’62’, and the effort to get that mistake out of my head obliterated any desire to waste more time memorizing digits. For e I can only give you 2.718281828. But there’s almost no hope I’d know that far if it weren’t for how e happens to repeat that 1828 stanza right away.

Reading the Comics, December 30, 2016: New Year’s Eve Week Edition

So last week, for schedule reasons, I skipped the Christmas Eve strips and promised to get to them this week. There weren’t any Christmas Eve mathematically-themed comic strips. Figures. This week, I need to skip New Year’s Eve comic strips for similar schedule reasons. If there are any, I’ll talk about them next week.

Lorie Ransom’s The Daily Drawing for the 28th is a geometry wordplay joke for this installment. Two of them, when you read the caption.

John Graziano’s Ripley’s Believe It or Not for the 28th presents the quite believable claim that Professor Dwight Barkley created a formula to estimate how long it takes a child to ask “are we there yet?” I am skeptical the equation given means all that much. But it’s normal mathematician-type behavior to try modelling stuff. That will usually start with thinking of what one wants to represent, and what things about it could be measured, and how one expects these things might affect one another. There’s usually several plausible-sounding models and one has to select the one or ones that seem likely to be interesting. They have to be simple enough to calculate, but still interesting. They need to have consequences that aren’t obvious. And then there’s the challenge of validating the model. Does its description match the thing we’re interested in well enough to be useful? Or at least instructive?

Len Borozinski’s Speechless for the 28th name-drops Albert Einstein and the theory of relativity. Marginal mathematical content, but it’s a slow week.

John Allison’s Bad Machinery for the 29th mentions higher dimensions. More dimensions. In particular it names ‘ana’ and ‘kata’ as “the weird extra dimensions”. Ana and kata are a pair of directions coined by the mathematician Charles Howard Hinton to give us a way of talking about directions in hyperspace. They echo the up/down, left/right, in/out pairs. I don’t know that any mathematicians besides Rudy Rucker actually use these words, though, and that in his science fiction. I may not read enough four-dimensional geometry to know the working lingo. Hinton also coined the “tesseract”, which has escaped from being a mathematician’s specialist term into something normal people might recognize. Mostly because of Madeline L’Engle, I suppose, but that counts.

Samson’s Dark Side of the Horse for the 29th is Dark Side of the Horse‘s entry this essay. It’s a fun bit of play on counting, especially as a way to get to sleep.

John Graziano’s Ripley’s Believe It or Not for the 29th mentions a little numbers and numerals project. Or at least representations of numbers. Finding other orders for numbers can be fun, and it’s a nice little pastime. I don’t know there’s an important point to this sort of project. But it can be fun to accomplish. Beautiful, even.

Mark Anderson’s Andertoons for the 30th relieves us by having a Mark Anderson strip for this essay. And makes for a good Roman numerals gag.

Ryan Pagelow’s Buni for the 30th can be counted as an anthropomorphic-numerals joke. I know it’s more of a “ugh 2016 was the worst year” joke, but it parses either way.

John Atkinson’s Wrong Hands for the 30th is an Albert Einstein joke. It’s cute as it is, though.