I’d promised on Sunday the remainder of last week’s mathematically-themed comic strips. I got busy with house chores yesterday and failed to post on time. That’s why this is late. It’s only a couple of comics here, but it does include my list of strips that I didn’t think were on-topic enough. You might like them, or be able to use them, yourself, though.

Niklas Eriksson’s **Carpe Diem** for the 14th depicts a kid enthusiastic about the abilities of mathematics to uncover truths. Suppressed truths, in this case. Well, it’s not as if mathematics hasn’t been put to the service of conspiracy theories before. Mathematics holds a great promise of truth. Answers calculated correctly are, after all, universally true. They can also offer a hypnotizing precision, with all the digits past the decimal point that anyone could want. But one catch among many is whether your calculations are about anything relevant to what you want to know. Another is whether the calculations were done correctly. It’s easy to make a mistake. If one thinks one has found exciting results it’s hard to imagine even looking for one.

You can’t use shadow analysis to prove the Moon landings fake. But the analysis of shadows can be good mathematics. It can locate things in space and in time. This is a kind of “inverse problem”: given this observable result, what combinations of light and shadow and position would have caused that? And there is a related problem. Johannes Vermeer produced many paintings with awesome, photorealistic detail. One hypothesis for how he achieved this skill is that he used optical tools, including a camera obscura and appropriate curved mirrors. So, is it possible to use the objects shown in perspective in his paintings to project where the original objects had to be, and where the painter had to be, to see them? We can calculate this, at least. I am not well enough versed in art history to say whether we have compelling answers.

Art Sansom and Chip Sansom’s **The Born Loser** for the 16th is the rare Roman Numerals joke strip that isn’t anthropomorphizing the numerals. Or a play on how the numerals used are also letters. But yeah, there’s not much use for them that isn’t decorative. Hindu-Arabic numerals have great advantages in compactness, and multiplication and division, and handling fractions of a whole number. And handling big numbers. Roman numerals are probably about as good for adding or subtracting small numbers, but that’s not enough of what we do anymore.

And past that there were three comic strips that had some mathematics element. But they were slight ones, and I didn’t feel I could write about them at length. Might like them anyway. Gordon Bess’s **Redeye** for the 10th of February, and originally run the 24th of September, 1972, has the start of a word problem as example of Pokey’s homework. Mark Litzler’s **Joe Vanilla** for the 11th has a couple scientist-types standing in front of a board with some mathematics symbols. The symbols don’t quite parse, to me, but they look close to it. Like, the line about is *close* to what one would write for the Fourier transformation of the function named l. It would need to be more like and even then it wouldn’t be quite done. So I guess Litzler used some actual reference but only copied as much as worked for the composition. (Which is not a problem, of course. The mathematics has no role in this strip beyond its visual appeal, so only the part that looks good needs to be there.) The Fourier transform’s a commonly-used trick; among many things, it lets us replace differential equations (hard, but instructive, and everywhere) with polynomials (comfortable and familiar and well-understood). Finally among the not-quite-comment-worthy is Pascal Wyse and Joe Berger’s **Berger And Wyse** for the 12th, showing off a Venn Diagram for its joke.

Next Sunday should be a fresh Reading the Comics post, which like all its kind, should appear at this link.