Reading the Comics, August 5, 2017: Lazy Summer Week Edition

It wasn’t like the week wasn’t busy. Comic Strip Master Command sent out as many mathematically-themed comics as I might be able to use. But they were again ones that don’t leave me much to talk about. I’ll try anyway. It was looking like an anthropomorphic-symboles sort of week, too.

Tom Thaves’s Frank and Ernest for the 30th of July is an anthropomorphic-symbols joke. The tick marks used for counting make an appearance and isn’t that enough? Maybe.

Dan Thompson’s Brevity for the 31st is another entry in the anthropomorphic-symbols joke contest. This one sticks to mathematical symbols, so if the Frank and Ernest makes the cut this week so must this one.

Eric the Circle for the 31st, this installment by “T daug”, gives the slightly anthropomorphic geometric figure a joke that at least mentions a radius, and isn’t that enough? What catches my imagination about this panel particularly is that the “fractured radius” is not just a legitimate pun but also resembles a legitimate geometry drawing. Drawing a diameter line is sensible enough. Drawing some other point on the circle and connecting that to the ends of the diameter is also something we might do.

Scott Hilburn’s The Argyle Sweater for the 1st of August is one of the logical mathematics jokes you could make about snakes. The more canonical one runs like this: God in the Garden of Eden makes all the animals and bids them to be fruitful. And God inspects them all and finds rabbits and doves and oxen and fish and fowl all growing in number. All but a pair of snakes. God asks why they haven’t bred and they say they can’t, not without help. What help? They need some thick tree branches chopped down. The bemused God grants them this. God checks back in some time later and finds an abundance of baby snakes in the Garden. But why the delay? “We’re adders,” explain the snakes, “so we need logs to multiply”. This joke absolutely killed them in the mathematics library up to about 1978. I’m told.

John Deering’s Strange Brew for the 1st is a monkeys-at-typewriters joke. It faintly reminds me that I might have pledged to retire mentions of the monkeys-at-typewriters joke. But I don’t remember so I’ll just have to depend on saying I don’t think I retired the monkeys-at-typewriters jokes and trust that someone will tell me if I’m wrong.

Dana Simpson’s Ozy and Millie rerun for the 2nd name-drops multiplication tables as the sort of thing a nerd child wants to know. They may have fit the available word balloon space better than “know how to diagram sentences” would.

Mark Anderson’s Andertoons for the 3rd is the reassuringly normal appearance of Andertoons for this week. It is a geometry class joke about rays, line segments with one point where there’s an end and … a direction where it just doesn’t. And it riffs on the notion of the existence of mathematical things. At least I can see it that way.

Rick Kirkman and Jerry Scott’s Baby Blues for the 5th is a rounding-up joke that isn’t about herds of 198 cattle.

Stephen Bentley’s Herb and Jamaal for the 5th tosses off a mention of the New Math as something well out of fashion. There are fashions in mathematics, as in all human endeavors. It startles many to learn this.

Reading the Comics, February 23, 2016: No Students Resist Word Problems Edition

This week Comic Strip Master Command ordered the mention of some of the more familiar bits of mathematical-premise stock that aren’t students resisting word problems. This happens sometimes.

Rick Stromoski’s Soup to Nutz for the 18th of February finds a fresh joke in the infinite-monkeys problem. Well, it uses a thousand monkeys here, but that hardly matters. If you had one long-enough-lived monkey at the typewriter, in principle, we could expect them to type the works of Shakespeare. It’s how long it takes that changes. In practice, it’s going to be too long to wait for anyway. I wonder if the monkeys will ever get computers to replace their typewriters.

Carol Lay’s Lay Lines for the 19th finds a fresh joke in Zeno’s Paradoxes. Lay particularly uses the most famous of Zeno’s Paradoxes. That’s the one about not being able to get anywhere because you have to get halfway there first, and halfway to that, in infinite regression. The other of Zeno’s Paradoxes that anyone who hasn’t just read the Wikipedia article on them can remember is Achilles and the Tortoise. It’s the question of how one can catch up to something. By the time you get to where the thing ahead of you is now, it’s gotten farther ahead still. And it does so again, in infinite regression. The third of the Paradoxes is about motion, depicted here as an arrow trying to fly through the air. Allow that speed is the distance travelled versus the time it takes to travel. But suppose time can be divided into infinitesimally tiny units. Then the distance the arrow travels in that time will also be infinitesimally tiny. So how can its speed have any meaningful definition? And the last is a hard-to-follow thing about three rods moving relative one another. I don’t feel confident describing it because I only intermittently feel like I understand what the paradox is getting at. I believe it’s supposed to be a problem with understanding how speeds can add together.

Anyway, the point of the paradoxes is not something as trite as “silly Ancient Greeks didn’t understand calculus”. They had an awfully good understanding of what makes calculus work. The point is that either space and time are infinitely divisible or else they aren’t. Either possibility has consequences that challenge our intuitions of how space and time should work.

Dave Blazek’s Loose Parts for the 19th uses scientific notation. It’s a popular way to represent large (and small) numbers. It’s built on the idea that there are two interesting parts to a number: about how big it is, and what its leading values are. We use some base, nearly always 10, raised to a power to represent how big the number is. And we use the rest, a number between 1 and whatever the base is, to represent the leading values. Blazek’s channel 3 x 103 is just channel 3000, though. My satellite TV package has channels numbering from 6 up through 9999, although not all of them. Many are empty. Still, it would be a more excessive number of options if he were on channel 3 x 106, or 3,000,000.

Russell Myers’s Broom Hilda for the 22nd shows Nerwin trying to learn addition by using a real-world model. I tend to be willing to let people use whatever tool they find works to learn something. But any learning aid has its limits, and trying to get around them can be challenging, or just creepy.

Dave Whamond’s Reality Check for the 22nd is another version of that rounding-up joke that’s gone around Comic Strip Master Command, and your friends’ Facebook timelines, several times now. Well, I enjoy how suspicious the sheep up front are.

Rick Kirkman and Jerry Scott’s Baby Blues for the 23rd I include mostly because I wanted some pictures to include here. But mathematics is always a reliable choice when one needs scary school work to do. And I grant that fraction are particularly unsettling. There is something exotic in being told 1/2 is much bigger than 1/6, when one knows that 2 is so much smaller than 6. And just when one’s gotten comfortable with that, someone has you subtract one fraction from another.

In the olden days of sailors and shipping, the pay for a ship’s crew would be in shares of the take of the whole venture. The story I have read, but which I am not experienced enough to verify, depends on not understanding fractions. Naive sailors would demand rather than the offered 96th (or whatever) share of the revenues a 100th or 150th or even bigger numbers. Paymasters would pretend to struggle with before assenting to. Perhaps it’s so. Not understanding finance is as old as finance. But it does also feel like a legend designed to answer the question of when will someone need to know mathematics anyway.

David L Hoyt and Jeff Knurek’s Jumble for the 24th is not necessarily a mathematics comic. It could be philosophy or theology or possibly some other fields. Still, I imagine you can have fun working this out even if the final surprise-answer jumped out at me before I looked at the other words.

Reading the Comics, January 21, 2016: Andertoons Edition

It’s been a relatively sleepy week from Comic Strip Master Command. Fortunately, Mark Anderson is always there to save me.

In the Andertoons department for the 17th of January, Mark Anderson gives us a rounding joke. It amuses me and reminds me of the strip about rounding up the 196 cows to 200 (or whatever it was). But one of the commenters was right: 800 would be an even rounder number. If the teacher’s sharp he thought of that next.

Andertoons is back the 21st of January, with a clash-of-media-expectations style joke. Since there’s not much to say of that, I am drawn to wondering what the teacher was getting to with this diagram. The obvious-to-me thing to talk about two lines intersecting would be which sets of angles are equal to one another, and how to prove it. But to talk about that easily requires giving names to the diagram. Giving the intersection point the name Q is a good start, and P and R are good names for the lines. But without points on the lines identified, and named, it’s hard to talk about any of the four angles there. If the lesson isn’t about angles, if it’s just about the lines and their one point of intersection, then what’s being addressed? Of course other points, and labels, could be added later. But I’m curious if there’s an obvious and sensible lesson to be given just from this starting point. If you have one, write in and let me know, please.

Ted Shearer’s Quincy for the 19th of January (originally the 4th of November, 1976) sees a loss of faith in the Law of Averages. We all sympathize. There are several different ways to state the Law of Averages. These different forms get at the same idea: on average, things are average. More, if we go through a stretch when things are not average, then, we shouldn’t expect that to continue. Things should be closer to average next time.

For example. Let’s suppose in a typical week Quincy’s teacher calls on him ten times, and he’s got a 50-50 chance of knowing the answer for each question. So normally he’s right five times. If he had a lousy week in which he knew the right answer just once, yes, that’s dismal-feeling. We can be confident that next week, though, he’s likely to put in a better performance.

That doesn’t mean he’s due for a good stretch, though. He’s as likely next week to get three questions right as he is to get eight right. Eight feels fantastic. But three is only a bit less dismal-feeling than one. The Gambler’s Fallacy, which is one of those things everyone wishes to believe in when they feel they’re due, is that eight right answers should be more likely than three. After all, that’ll make his two-week average closer to normal. But if Quincy’s as likely to get any question right or wrong, regardless of what came before, then he can’t be more likely to get eight right than to get three right. All we can say is he’s more likely to get three or eight right than he is to get one (or nine) right the next week. He’d better study.

(I don’t talk about this much, because it isn’t an art blog. But I would like folks to notice the line art, the shading, and the grey halftone screening. Shearer puts in some nicely expressive and active artwork for a joke that doesn’t need any setting whatsoever. I like a strip that’s pleasant to look at.)

Tom Toles’s Randolph Itch, 2 am for the 19th of January (a rerun from the 18th of April, 2000) has got almost no mathematical content. But it’s funny, so, here. The tag also mentions Max Planck, one of the founders of quantum mechanics. He developed the idea that there was a smallest possible change in energy as a way to make the mathematics of black-body radiation work out. A black-body is just what it sounds like: get something that absorbs all light cast on it, and shine light on it. The thing will heat up. This is expressed by radiating light back out into the world. And if it doesn’t give you that chill of wonder to consider that a perfectly black thing will glow, then I don’t think you’ve pondered that quite enough.

Mark Pett’s Mister Lowe for the 21st of January (a rerun from the 18th of January, 2001) is a kid-resisting-the-word-problem joke. It’s meant to be a joke about Quentin overthinking the situation until he gets the wrong answer. Were this not a standardized test, though, I’d agree with Quentin. The given answers suppose that Tommy and Suzie are always going to have the same number of apples. But is inferring that a fair thing to expect from the test-takers? Why couldn’t Suzie get four more apples and Tommy none?

Probably the assumption that Tommy and Suzie get the same number of apples was left out because Pett had to get the whole question in within one panel. And I may be overthinking it no less than Quentin is. I can’t help doing that. I do like that the confounding answers make sense: I can understand exactly why someone making a mistake would make those. Coming up with plausible wrong answers for a multiple-choice test is no less difficult in mathematics than it is in other fields. It might be harder. It takes effort to remember the ways a student might plausibly misunderstand what to do. Test-writing is no less a craft than is test-taking.

Reading the Comics, August 14, 2015: Name-Dropping Edition

There have been fewer mathematically-themed comic strips than usual the past week, but they have been coming in yet. This week seems to have included a fair number of name-drops of interesting mathematical concepts.

David L Hoyt and Jeff Knurek’s Jumble (August 10) name-drops the abacus. It has got me wondering about how abacuses were made in the pre-industrial age. On the one hand they could in principle be made by anybody who has beads and rods. On the other hand, a skillfully made abacus will make the tool so much more effective. Who made and who sold them? I honestly don’t know.

Mick Mastroianni and Mason Mastroianni’s Dogs of C Kennel (August 11) has Tucker reveal that most of the mathematics he scrawls is just to make his work look harder. I suspect Tucker overdid his performance. My experience is you can get the audience’s eyes to glaze over with much less mathematics on the board.

Leigh Rubin’s Rubes (August 11) mentions chaos theory. It’s not properly speaking a Chaos Butterfly comic strip. But certainly it’s in the vicinity.

Zach Weinersmith’s Saturday Morning Breakfast Cereal (August 11) name-drops Banach-Tarski. This is a reference to a famous-in-some-circles theorem, or paradox. The theorem, published in 1924 by Stefan Banach and Alfred Tarski, shows something astounding. It’s possible to take a ball, and disassemble it into a number of pieces. Then, doing nothing more than sliding and rotating the pieces, one can reassemble the pieces to get two balls each with the same volume of the original. If that doesn’t sound ridiculous enough, consider that it’s possible to do this trick by cutting the ball into as few as five pieces. (Four, if you’re willing to exclude the exact center of the original ball.) So you can see why this is called a paradox, and why this joke works for people who know the background.

Scott Hilburn’s The Argyle Sweater (August 12) illustrates that joke about rounding up the cattle you might have seen going around.