I’ve had several weeks since my last Reading the Comics post. They’ve been quiet enough weeks. Let me share some of the recent offerings from Comic Strip Master Command that I enjoyed, though. I enjoy many comic strips but not all of them mention something on-point here.
Isabella Bannerman’s Six Chix for the 18th of July is a wordplay joke, naming a dog Isosceles to respect his front and hindlegs being equal in length. As I say, I’m including these because I like them, not because I have deep thoughts about them.
Bill Amend’s FoxTrot for the 24th of July gets a bit more solidly mathematical, as it’s natural to think of this sort of complicated polyhedron as something mathematicians do. Geometers at least. There’s a comfortable bit of work to be done in these sorts of shapes. They sometimes have appealing properties, for instance balancing weight loads well. Building polyhedrons out of toothpicks and gumdrops, or straws and marshmallows, or some other rigid-and-soft material, is a fine enough activity. I think every mathematics department has some dusty display shelf with a couple of these.
There are many shapes that Paige Fox’s construction might be. To my eye Paige Fox seems to be building a truncated icosahedron, that is to say, the soccer-ball shape. It’s an Archimedean solid, one of the family of thirteen shapes made of nonintersecting regular convex polygons. These are the shapes you discover if you go past Platonic solids. The family is named for that Archimedes, although the work in which he discussed them is now lost.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 26th of July is a different take on the challenge of motivating students to care about mathematics. The “right approach” argument has its appeal, although it’s obviously thinking of “professor” as the only job a mathematician can hold. And even granting that none of the people who understand your work have the power to fire you, that means people who don’t understand your work do have it. Also, people shut down very hard at your promise that they could understand anything about what you do, even when you know how to express it in common-language terms. This gets old fast. I am also skeptical that women are impressed by men at bars who claim to be employed for their intellect.
Anyway, academic jobs are great and more jobs should work by their rules, which, yes, do include extremely loose set hours and built-in seasons where the amount and kind of work you do varies.
Patrick Roberts’s Todd the Dinosaur for the 5th of August is a mathematics-anxiety dream, represented with the sudden challenge to do mental arithmetic. 47 times 342 is an annoying problem, yes, but one can at least approximate it fairly well quickly. 47 is almost 50, which is half a hundred. So 47 times 342 has to be nearly half of a hundred times 342, that is, half of 34,200. This is an easy number to cut in half, though: 17,100. To get this exactly? 47 is three less than fifty, so, subtract three times 342. 342 is about a third of a thousand, we can make a better estimate by subtracting a thousand: 16,100.
If you’re really good you notice that 342 is nine more than 333, so, three times 342 is three times nine more than three times 333. That is, it’s 27 more than 999. So the 16,100 estimate is 26 more than the correct number, 16,074. And I believe if you check, you will find the card in your hand is the ace of clubs. Am I not right, professor?
This was a week of few mathematically-themed comic strips. I don’t mind. If there was a recurring motif, it was about parents not doing mathematics well, or maybe at all. That’s not a very deep observation, though. Let’s look at what is here.
Liniers’s Macanudo for the 18th puts forth 2020 as “the year most kids realized their parents can’t do math”. Which may be so; if you haven’t had cause to do (say) long division in a while then remembering just how to do it is a chore. This trouble is not unique to mathematics, though. Several decades out of regular practice they likely also have trouble remembering what the 11th Amendment to the US Constitution is for, or what the rule is about using “lie” versus “lay”. Some regular practice would correct that, though. In most cases anyway; my experience suggests I cannot possibly learn the rule about “lie” versus “lay”. I’m also shaky on “set” as a verb.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th shows a mathematician talking, in the jargon of first and second derivatives, to support the claim there’ll never be a mathematician president. Yes, Weinersmith is aware that James Garfield, 20th President of the United States, is famous in trivia circles for having an original proof of the Pythagorean theorem. It would be a stretch to declare Garfield a mathematician, though, except in the way that anyone capable of reason can be a mathematician. Raymond Poincaré, President of France for most of the 1910s and prime minister before and after that, was not a mathematician. He was cousin to Henri Poincaré, who founded so much of our understanding of dynamical systems and of modern geometry. I do not offhand know what presidents (or prime ministers) of other countries have been like.
Weinersmith’s mathematician uses the jargon of the profession. Specifically that of calculus. It’s unlikely to communicate well with the population. The message is an ordinary one, though. The first derivative of something with respect to time means the rate at which things are changing. The first derivative of a thing, with respect to time being positive means that the quantity of the thing is growing. So, that first half means “things are getting more bad”.
The second derivative of a thing with respect to time, though … this is interesting. The second derivative is the same thing as the first derivative with respect to time of “the first derivative with respect to time”. It’s what the change is in the rate-of-change. If that second derivative is negative, then the first derivative will, in time, change from being positive to being negative. So the rate of increase of the original thing will, in time, go from a positive to a negative number. And so the quantity will eventually decline.
So the mathematician is making a this-is-the-end-of-the-beginning speech. The point at which the the second derivative of a quantity changes sign is known as the “inflection point”. Reaching that is often seen as the first important step in, for example, disease epidemics. It is usually the first good news, the promise that there will be a limit to the badness. It’s also sometimes mentioned in economic crises or sometimes demographic trends. “Inflection point” is likely as technical a term as one can expect the general public to tolerate, though. Even that may be pushing things.
Gary Wise and Lance Aldrich’s Real Life Adventures for the 19th has a father who can’t help his son do mathematics. In this case, finding square roots. There are many ways to find square roots by hand. Some are iterative, in which you start with an estimate and do a calculation that (typically) gets you a better estimate of the square root you want. And then repeat the calculation, starting from that improved estimate. Some use tables of things one can expect to have calculated, such as exponentials and logarithms. Or trigonometric tables, if you know someone who’s worked out lots of cosines and sines already.
Julie Larson’s The Dinette Set rerun for the 21st fusses around words. Along the way Burl mentions his having learned that two negatives can make a positive, in mathematics. Here it’s (most likely) the way that multiplying or dividing two negative numbers will produce a positive number.
As much as everything is still happening, and so much, there’s still comic strips. I’m fortunately able here to focus just on the comics that discuss some mathematical theme, so let’s get started in exploring last week’s reading. Worth deeper discussion are the comics that turn up here all the time.
Lincoln Peirce’s Big Nate for the 5th is a casual mention. Nate wants to get out of having to do his mathematics homework. This really could be any subject as long as it fit the word balloon.
John Hambrock’s The Brilliant Mind of Edison Lee for the 6th is a funny-answers-to-story-problems joke. Edison Lee’s answer disregards the actual wording of the question, which supposes the group is travelling at an average 70 miles per hour. The number of stops doesn’t matter in this case.
Mark Anderson’s Andertoons for the 6th is the Mark Anderson’s Andertoons for the week. In it Wavehead gives the “just use a calculator” answer for geometry problems.
Not much to talk about there. But there is a fascinating thing about perimeters that you learn if you go far enough in Calculus. You have to get into multivariable calculus, something where you integrate a function that has at least two independent variables. When you do this, you can find the integral evaluated over a curve. If it’s a closed curve, something that loops around back to itself, then you can do something magic. Integrating the correct function on the curve around a shape will tell you the enclosed area.
And this is an example of one of the amazing things in multivariable calculus. It tells us that integrals over a boundary can tell us something about the integral within a volume, and vice-versa. It can be worth figuring out whether your integral is better solved by looking at the boundaries or at the interiors.
Heron’s Formula, for the area of a triangle based on the lengths of its sides, is an expression of this calculation. I don’t know of a formula exactly like that for the perimeter of a quadrilateral, but there are similar formulas if you know the lengths of the sides and of the diagonals.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 5th depicts, fairly, the sorts of things that excite mathematicians. The number discussed here is about algorithmic complexity. This is the study of how long it takes to do an algorithm. How long always depends on how big a problem you are working on; to sort four items takes less time than sorting four million items. Of interest here is how much the time to do work grows with the size of whatever you’re working on.
The mathematician’s particular example, and I thank dtpimentel in the comments for finding this, is about the Coppersmith–Winograd algorithm. This is a scheme for doing matrix multiplication, a particular kind of multiplication and addition of squares of numbers. The squares have some number N rows and N columns. It’s thought that there exists some way to do matrix multiplication in the order of N2 time, that is, if it takes 10 time units to multiply matrices of three rows and three columns together, we should expect it takes 40 time units to multiply matrices of six rows and six columns together. The matrix multiplication you learn in linear algebra takes on the order of N3 time, so, it would take like 80 time units.
We don’t know the way to do that. The Coppersmith–Winograd algorithm was thought, after Virginia Vassilevska Williams’s work in 2011, to take something like N2.3728642 steps. So that six-rows-six-columns multiplication would take slightly over 51.796 844 time units. In 2014, François le Gall found it was no worse than N2.3728639 steps, so this would take slightly over 51.796 833 time units. The improvement doesn’t seem like much, but on tiny problems it never does. On big problems, the improvement’s worth it. And, sometimes, you make a good chunk of progress at once.
This little essay should let me wrap up the rest of the comic strips from the past week. Most of them were casual mentions. At least I thought they were when I gathered them. But let’s see what happens when I actually write my paragraphs about them.
Thaves’s Frank and Ernest for the 2nd is a bit of wordplay, having Euclid and Galileo talking about parallel universes. I’m not sure that Galileo is the best fit for this, but I’m also not sure there’s another person connected who could be named. It’d have to be a name familiar to an average reader as having something to do with geometry. Pythagoras would seem obvious, but the joke is stronger if it’s two people who definitely did not live at the same time. Did Euclid and Pythagoras live at the same time? I am a mathematics Ph.D. and have been doing pop mathematics blogging for nearly a decade now, and I have not once considered the question until right now. Let me look it up.
It doesn’t make any difference. The comic strip has to read quickly. It might be better grounded to post Euclid meeting Gauss or Lobachevsky or Euler (although the similarity in names would be confusing) but being understood is better than being precise.
Stephan Pastis’s Pearls Before Swine for the 2nd is a strip about the foolhardiness of playing the lottery. And it is foolish to think that even a $100 purchase of lottery tickets will get one a win. But it is possible to buy enough lottery tickets as to assure a win, even if it is maybe shared with someone else. It’s neat that an action can be foolish if done in a small quantity, but sensible if done in enough bulk.
Mark Anderson’s Andertoons for the 3rd is the Mark Anderson’s Andertoons for the week. Wavehead has made a bunch of failed attempts at subtracting seven from ten, but claims it’s at least progress that some thing have been ruled out. I’ll go along with him that there is some good in ruling out wrong answers. The tricky part is in how you rule them out. For example, obvious to my eye is that the correct answer can’t be more than ten; the problem is 10 minus a positive number. And it can’t be less than zero; it’s ten minus a number less than ten. It’s got to be a whole number. If I’m feeling confident about five and five making ten, then I’d rule out any answer that isn’t between 1 and 4 right away. I’ve got the answer down to four guesses and all I’ve really needed to know is that 7 is greater than five but less than ten. That it’s an even number minus an odd means the result has to be odd; so, it’s either one or three. Knowing that the next whole number higher than 7 is an 8 says that we can rule out 1 as the answer. So there’s the answer, done wholly by thinking of what we can rule out. Of course, knowing what to rule out takes some experience.
Mark Parisi’s Off The Mark for the 4th is roughly the anthropomorphic numerals joke for the week. It’s a dumb one, but, that’s what sketchbooks are for.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th is the Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th for the week. It shows in joking but not wrong fashion a mathematical physicist’s encounters with orbital mechanics. Orbital mechanics are a great first physics problem. It’s obvious what they’re about, and why they might be interesting. And the mathematics of it is challenging in ways that masses on springs or balls shot from cannons aren’t.
A few problems are very easy, like, one thing in circular orbit of another. A few problems are not bad, like, one thing in an elliptical or hyperbolic orbit of another. All our good luck runs out once we suppose the universe has three things in it. You’re left with problems that are doable if you suppose that one of the things moving is so tiny that it barely exists. This is near enough true for, for example, a satellite orbiting a planet. Or by supposing that we have a series of two-thing problems. Which is again near enough true for, for example, a satellite travelling from one planet to another. But these is all work that finds approximate solutions, often after considerable hard work. It feels like much more labor to smaller reward than we get for masses on springs or balls shot from cannons. Walking off to a presumably easier field is understandable. Unfortunately, none of the other fields is actually easier.
Pythagoras died somewhere around 495 BC. Euclid was born sometime around 325 BC. That’s 170 years apart. So Pythagoras was as far in Euclid’s past as, oh, Maria Gaetana Agnesi is to mine.
I haven’t forgotten about the comic strips. It happens that last week’s were mostly quite casual mentions, strips that don’t open themselves up to deep discussions. I write this before I see what I actually have to write about the strips. But here’s the first half of the past week’s. I’ll catch up on things soon.
Bill Amend’s FoxTrot for the 22nd, a new strip, has Jason and Marcus using arithmetic problems to signal pitches. At heart, the signals between a pitcher and catcher are just an index. They’re numbers because that’s an easy thing to signal given that one only has fingers and that they should be visually concealed. I would worry, in a pattern as complicated as these two would work out, about error correction. If one signal is mis-read — as will happen — how do they recognize it, and how do they fix it? This may seem like a lot of work to put to a trivial problem, but to conceal a message is important, whatever the message is.
James Beutel’s Banana Triangle for the 23rd has a character trying to convince himself of his intelligence. And doing so by muttering mathematics terms, mostly geometry. It’s a common shorthand to represent deep thinking.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 25th is a joke about orders of magnitude. The order of magnitude is, roughly, how big the number is. Often the first step of a physics problem is to try to get a calculation that’s of the right order of magnitude. Or at least close to the order of magnitude. This may seem pretty lax. If we want to find out something with value, say, 231, it seems weird to claim victory that our model says “it will be a three-digit number”. But getting the size of the number right is a first step. For many problems, particularly in cosmology or astrophysics, we’re intersted in things whose functioning is obscure. And relies on quantities we can measure very poorly. This is why we can see getting the order magnitude about right as an accomplishment.
There’s another half-dozen strips from last week that at least mention mathematics. I’ll at least mention them soon, in an essay at this link. Thank you.
There were a handful of other comic strips last week. If they have a common theme (and I’ll try to drag one out) it’s that they circle around pragmatism. Not just using mathematics in the real world but the fussy stuff of what you can calculate and what you can use a calculation for.
And, again, I am hosting the Playful Math Education Blog Carnival this month. If you’ve run across any online tool that teaches mathematics, or highlights some delightful feature of mathematics? Please, let me know about it here, and let me know what of your own projects I should feature with it. The goal is to share things about mathematics that helped you understand more of it. Even if you think it’s a slight thing (“who cares if you can tell whether a number’s divisible by 11 by counting the digits right?”) don’t worry. Slight things count. Speaking of which …
Jef Mallett’s Frazz for the 20th has a kid ask about one of those add-the-digits divisibility tests. What happens if the number is too big to add up all the digits? In some sense, the question is meaningless. We can imagine finding the sum of digits no matter how many digits there are. At least if there are finitely many digits.
But there is a serious mathematical question here. We accept the existence of numbers so big no human being could ever know their precise value. At least, we accept they exist in the same way that “4” exists. If a computation can’t actually be finished, then, does it actually mean anything? And if we can’t figure a way to shorten the calculation, the way we can usually turn the infinitely-long sum of a series into a neat little formula?
This gets into some cutting-edge mathematics. For calculations, some. But also, importantly, for proofs. A proof is, really, a convincing argument that something is true. The ideal of this is a completely filled-out string of logical deductions. These will take a long while. But, as long as it takes finitely many steps to complete, we normally accept the proof as done. We can imagine proofs that take more steps to complete than could possibly be thought out, or checked, or confirmed. We, living in the days after Gödel, are aware of the idea that there are statements which are true but unprovable. This is not that. Gödel’s Incompleteness Theorems tell us about statements that a deductive system can’t address. This is different. This is things that could be proven true (or false), if only the universe were more vast than it is.
There are logicians who work on the problem of what too-long-for-the-universe proofs can mean. Or even what infinitely long proofs can mean, if we allow those. And how they challenge our ideas of what “proof” and “knowledge” and “truth” are. I am not among these people, though, and can’t tell you what interesting results they have concluded. I just want to let you know the kid in Frazz is asking a question you can get a spot in a mathematics or philosophy department pondering. I mean so far as it’s possible to get a spot in a mathematics or philosophy department.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th is a less heady topic. Its speaker is doing an ethical calculation. These sorts of things are easy to spin into awful conclusions. They treat things like suffering with the same tools that we use to address the rates of fluids mixing, or of video game statistics. This often seems to trivialize suffering, which we feel like we shouldn’t do.
This kind of calculation is often done, though. It’s rather a hallmark of utilitarianism to try writing an equation for an ethical question. It blends often more into economics, where the questions can seem less cruel even if they are still about questions of life and death. But as with any model, what you build into the model directs your results. The lecturer here supposes that guilt is diminished by involving more people. (This seems rather true to human psychology, though it’s likely more that the sense of individual responsibility dissolves in a large enough group. There are many other things at work, though, all complicated and interacting in nonlinear ways.) If we supposed that the important measure was responsibility for the killing, we would get that the more people involved in killing, the worse it is, and that a larger war only gets less and less ethical. (This also seems true to human psychology.)
Jeff Corriveau’s Deflocked for the 20th sees Mamet calculating how many days of life he expects to have left. There are roughly 1,100 days in three years, so, Mamet’s figuring on about 40 years of life. These kinds of calculation are often grim to consider. But we all have long-term plans that we would like to do (retirement, and its needed savings, are an important one) and there’s no making a meaningful plan without an idea of what the goals are.
This finally closes out the last week’s comic strips. Please stop in next week as I get to some more mathematics comics and the Playful Math Education Blog Carnival. Thanks for reading.
The weekday Doonesbury has been in reruns for a very long while. Recently it’s been reprinting strips from the 1990s and something that I remember producing Very Worried Editorials, back in the day.
Garry Trudeau’s Doonesbury for the 17th reprints a sequence that starts off with the dread menace and peril of Grade Inflation, the phenomenon in which it turns out students of the generational cohort after yours are allowed to get A’s. (And, to a lesser extent, the phenomenon in which instructors respond to the treatment of education as a market by giving the “customers” the grades they’re “buying”.) The strip does depict an attitude common towards mathematics, though, the idea that it must be a subject immune to Grade Inflation: “aren’t there absolute answers”? If we are careful to say what we mean by an “absolute answer” then, sure.
But grades? Oh, there is so much subjectivity as to what goes into a course. And into what level to teach that course at. How to grade, and how harshly to grade. It may be easier, compared to other subjects, to make mathematics grading more consistent year-to-year. One can make many problems that test the same skill and yet use different numbers, at least until you get into topics like abstract algebra where numbers stop being interesting. But the factors that would allow any course’s grade to inflate are hardly stopped by the department name.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th is a strip about using a great wall of equations as emblem of deep, substantial thought. The equations depicted are several meaningful ones. The top row is from general relativity, the Einstein Field Equations. These relate the world-famous Ricci curvature tensor with several other tensors, describing how mass affects the shape of space. The P = NP line describes a problem of computational science with an unknown answer. It’s about whether two different categories of problems are, in fact, equivalent. The line about is a tensor-based scheme to describe the electromagnetic field. The next two lines look, to me, like they’re deep in Schrödinger’s Equation, describing quantum mechanics. It’s possible Weinersmith has a specific problem in mind; I haven’t spotted it.
Ruben Bolling’s Super-Fun-Pak Comix for the 18th is one of the Guy Walks Into A Bar line, each of which has a traditional joke setup undermined by a technical point. In this case, it’s the horse counting in base four, in which representation the number 2 + 2 is written as 10. Really, yes, “10 in base four” is the number four. I imagine properly the horse should say “four” aloud. But it is quite hard to read the symbols “10” as anything but ten. It’s not as though anyone looks at the hexadecimal number “4C” and pronounces it “76”, either.
Garry Trudeau’s Doonesbury for the 19th twisted the Grade Inflation peril to something that felt new in the 90s: an attack on mathematics as “Eurocentric”. The joke depends on the reputation of mathematics as finding objectively true things. Many mathematicians accept this idea. After all, once we’ve seen a proof that we can do the quadrature of a lune, it’s true regardless of what anyone thinks of quadratures and lunes, and whether that person is of a European culture or another one.
Garry Trudeau’s Doonesbury rerun for the 19th of February, 2020 of February, 2020. It originally ran the 22nd of December, 1993. I am reminded once again of a fellow grad student, doing his teaching-assistant duties, watching student after student on the calculus exam reduce 1002 to 10. When enough students make the same mistake you start to question your grading scheme. Which is sometimes fair: if everyone gets partway through a question and fails at the same step there’s a prima facie case that the problem was your instruction, not their comprehension. Doesn’t cover dumb arithmetic glitches, though.
But there are several points to object to here. The first is, what’s a quadrature? … This is a geometric thing; it’s finding a square that’s the same area as some given shape, using only straightedge and compass constructions. The second is, what’s a lune? It’s a crescent moon-type shape (hence the name) that you can make by removing the overlap from two circles of specific different radiuses arranged in a specific way. It turns out you can find the quadrature for the lune shape, which makes it seem obvious that you should be able to find the quadrature for a half-circle, a way easier (to us) shape. And it turns out you can’t. The third question is, who cares about making squares using straightedge and compass? And the answer is, well, it’s considered a particularly elegant way of constructing shapes. To the Ancient Greeks. And to those of us who’ve grown in a mathematics culture that owes so much to the Ancient Greeks. Other cultures, ones placing more value on rulers and protractors, might not give a fig about quadratures and lunes.
This before we get into deeper questions. For example, if we grant that some mathematical thing is objectively true, independent of the culture which finds it, then what role does the proof play? It can’t make the thing more or less true. It doesn’t eve matter whether the proof is flawed, or whether it convinces anyone. It seems to imply a mathematician isn’t actually needed for their mathematics. This runs contrary to intuition.
Anyway, this gets off the point of the student here, who’s making a bad-faith appeal to multiculturalism to excuse laziness. It’s difficult to imagine a culture that doesn’t count, at least, even if they don’t do much work with numbers like 144. Granted that, it seems likely they would recognize that 12 has some special relationship with 144, even if they don’t think too much of square roots as a thing.
And do please stop in later this Leap Day week. I figure to have one of my favorite little things, a Reading the Comics day that’s all one day. It should be at this link, when posted. Thank you.
With this essay, I finally finish the comic strips from the first full week of February. You know how these things happen. I’ll get to the comics from last week soon enough, at an essay gathered under this link. For now, some pictures with words:
Art Sansom and Chip Sansom’s The Born Loser for the 7th builds on one of the probability questions people often use. That is the probability of an event, in the weather forecast. Predictions for what the weather will do are so common that it takes work to realize there’s something difficult about the concept. The weather is a very complicated fluid-dynamics problem. It’s almost certainly chaotic. A chaotic system is deterministic, but unpredictable, because to get a meaningful prediction requires precision that’s impossible to ever have in the real world. The slight difference between the number π and the number 3.1415926535897932 throws calculations off too quickly. Nevertheless, it implies that the “chance” of snow on the weekend means about the same thing as the “chance” that Valentinte’s Day was on the weekend this year. The way the system is set up implies it will be one or the other. This is a probability distribution, yes, but it’s a weird one.
What we talk about when we say the “chance” of snow or Valentine’s on a weekend day is one of ignorance. It’s about our estimate that the true value of something is one of the properties we find interesting. Here, past knowledge can guide us. If we know that the past hundred times the weather was like this on Friday, snow came on the weekend less than ten times, we have evidence that suggests these conditions don’t often lead to snow. This is backed up, these days, by numerical simulations which are not perfect models of the weather. But they are ones that represent something very like the weather, and that stay reasonably good for several days or a week or so.
And we have the question of whether the forecast is right. Observing this fact is used as the joke here. Still, there must be some measure of confidence in a forecast. Around here, the weather forecast is for a cold but not abnormally cold week ahead. This seems likely. A forecast that it was to jump into the 80s and stay there for the rest of February would be so implausible that we’d ignore it altogether. A forecast that it would be ten degrees (Fahrenheit) below normal, or above, though? We could accept that pretty easily.
Proving a forecast is wrong takes work, though. Mostly it takes evidence. If we look at a hundred times the forecast was for a 10% chance of snow, and it actually snowed 11% of the time, is it implausible that the forecast was right? Not really, not any more than a coin coming up tails 52 times out of 100 would be suspicious. If it actually snowed 20% of the time? That might suggest that the forecast was wrong. If it snowed 80% of the time? That suggests something’s very wrong with the forecasting methods. It’s hard to say one forecast is wrong, but we can have a sense of what forecasters are more often right than others are.
Doug Savage’s Savage Chickens for the 7th is a cute little bit about counting. Counting things out is an interesting process; for some people, hearing numbers said aloud will disrupt their progress. For others, it won’t, but seeing numbers may disrupt it instead.
Niklas Eriksson’s Carpe Diem for the 8th is a bit of silliness about the mathematical sense of animals. Studying how animals understand number is a real science, and it turns up interesting results. It shouldn’t be surprising that animals can do a fair bit of counting and some geometric reasoning, although it’s rougher than even our untrained childhood expertise. We get a good bit of our basic mathematical ability from somewhere, because we’re evolved to notice some things. It’s silly to suppose that dogs would be able to state the Pythagorean Theorem, at least in a form that we recognize. But it is probably someone’s good research problem to work out whether we can test whether dogs understand the implications of the theorem, and whether it helps them go about dog work any.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 8th speaks of the “Cinnamon Roll Delta Function”. The point is clear enough on its own. So let me spoil a good enough bit of fluff by explaining that it’s a reference to something. There is, lurking in mathematical physics, a concept called the “Dirac delta function”, named for that innovative and imaginative fellow Paul Dirac. It has some weird properties. Its domain is … well, it has many domains. The real numbers. The set of ordered pairs of real numbers, R2. The set of ordered triples of real numbers, R3. Basically any space you like, there’s a Dirac delta function for it. The Dirac delta function is equal to zero everywhere in this domain, except at one point, the “origin”. At that one function, though? There it’s equal to …
Here we step back a moment. We really, really, really want to say that it’s infinitely large at that point, which is what Weinersmith’s graph shows. If we’re being careful, we don’t say that though. Because if we did say that, then we would lose the thing that we use the Dirac delta function for. The Dirac delta function, represented with δ, is a function with the property that for any set D, in the domain, that you choose to integrate over
whenever the origin is inside the interval of integration D. It’s equal to 0 if the origin is not inside the interval of integration. This, whatever the set is. If we use the ordinary definitions for what it means to integrate a function, and say that the delta function is “infinitely big” at the origin, then this won’t happen; the integral will be zero everywhere.
This is one of those cases where physicists worked out new mathematical concepts, and the mathematicians had to come up with a rationalization by which this made sense. This because the function is quite useful. It allows us, mathematically, to turn descriptions of point particles into descriptions of continuous fields. And vice-versa: we can turn continuous fields into point particles. It turns out we like to do this a lot. So if we’re being careful we don’t say just what the Dirac delta function “is” at the origin, only some properties about what it does. And if we’re being further careful we’ll speak of it as a “distribution” rather than a function.
But colloquially, we think of the Dirac delta function as one that’s zero everywhere, except for the one point where it’s somehow “a really big infinity” and we try to not look directly at it.
The sharp-eyed observer may notice that Weinersmith’s graph does not put the great delta spike at the origin, that is, where the x-axis represents zero. This is true. We can create a delta-like function with a singular spot anywhere we like by the process called “translation”. That is, if we would like the function to be zero everywhere except at the point , then we define a function and are done. Translation is a simple step, but it turns out to be useful all the time.
Or they’re making it easy for me. But for another week all the comic strips mentioning mathematics have done so in casual ways. Ones that I don’t feel I can write a substantial paragraph about. And so, ones that I don’t feel I can fairly use the images of here. Here’s strips that at least said “math” somewhere in them:
Greg Cravens’s The Buckets for the 19th plays on the conflation of “zero” and “nothing”. The concepts are related, and we wouldn’t have a zero if we weren’t trying to worth with the concept of nothing. But there is a difference that’s quite hard to talk about without confusing matters.
One of Gary Larson’s The Far Side reprints for the 24th has a man demanding the answer to one question: the square root of an arbitrary number. It’s a little over 70, and that’s as far as anyone could reasonably expect to answer off the top of their head.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 25th presents a sinister reading of the fad of “prove you’re human” puzzles that demanded arithmetic expressions be done. All computer programs, including, like, Facebook group messages are arithmetic operations ultimately. The steps could be translated into simple expressions like this and be done by humans. It just takes work which, I suppose, could also be translated into other expressions.
And with that large pile of mentions I finish off the mathematical comic strips for the day. Also for the month: next Sunday gets us already into February. Sometime then I should post at this link a fresh Reading the Comics essay. Thank you for reading this one.
Let me first share the other comic strips from last week which mentioned mathematics, but in a casual way.
Jerry Scott and Jim Borgman’s Zits for the 14th used the phrase “do the math”, and snarked on the younger generation doing mathematics. This was as part of the longrunning comic’s attempt to retcon the parents from being Baby Boomers to being Generation X. Scott and Borgman can do as they like but, I mean, their kids are named Chad and Jeremy. That’s only tenable if they’re Boomers. (I’m not sure Chad has returned from college in the past ten years.) And even then it was marginal.
So Mark Anderson’s Andertoons for the 12th is the only comic strip of some substance that I noticed last week. You see what a slender month it’s been. It does showcase the unsettling nature of seeing notations for similar things mixed. It’s not that there’s anything which doesn’t parse about having decimals in the numerator or denominator. It just looks weird. And that can be enough to throw someone out of a problem. They might mistake the problem for one that doesn’t have a coherent meaning. Or they might mistake it for one too complicated to do. Learning to not be afraid of a problem that looks complicated is worth doing. As is learning how to tell whether a problem parses at all, even if it looks weird.
The start of the year brings me comic strips I can discuss in some detail. There are also some that just mention a mathematical topic, and don’t need more than a mention that the strip exists. I’ll get to those later.
Jonathan Lemon’s Rabbits Against Magic for the 2nd is another comic strip built on a very simple model of animal reproduction. We saw one late last year with a rat or mouse making similar calculations. Any calculation like this builds on some outright untrue premises, particularly in supposing that every rabbit that’s born survives, and that the animals breed as much as could do. It also builds on some reasonable simplifications. Things like an average litter size, or an average gestation period, or time it takes infants to start breeding. These sorts of exponential-growth calculations depend a lot on exactly what assumptions you make. I tried reproducing Lemon’s calculation. I didn’t hit 95 billion offspring. But I got near enough to say that Lemon’s right to footnote this as ‘true’. I wouldn’t call them “baby bunnies”, though; after all, some of these offspring are going to be nearly seven years old by the end of this span.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 3rd justifies why “mathematicians are no longer allowed to [sic] sporting events” with mathematicians being difficult. Each of the signs is mean to convey the message “We’re #1”. The notations are just needlessly inaccessible, in that way nerds will do things.
first. The bar over over a decimal like this means to repeat what is underneath the bar without limit. So this is the number represented by 0.99999… and this is another way to write the number 1. This sometimes makes people uncomfortable; the proof is to think what the difference is between 1 and the number represented by 0.999999 … . The difference is smaller than any positive number. It’s certainly not negative. So the difference is zero. So the two numbers have to be the same number.
is the controversial one here. The trouble is that there are two standard rules that clash here. One is the rule that any real number raised to the zeroth power is 1. The other is the rule that zero raised to any positive real number is 0. We don’t ask about zero raised to a negative number. These seem to clash. That we only know zero raised to positive real numbers is 0 seems to break the tie, and justify concluding the number-to-the-zero-power rule should win out. This is probably what Weinersmith, or Weinersmith’s mathematician, was thinking. If you forced me to say what I think should be, and didn’t let me refuse to commit to a value, I’d probably pick “1” too. But.
The expression exists for real-valued numbers x, and that’s fine. We can look at and that number’s 1. But what if x is a complex-valued number? If that’s the case, then this limit isn’t defined. And mathematicians need to work with complex-valued numbers a lot. It would be daft to say “real-valued is 1, but complex-valued isn’t anything”. So we avoid the obvious daftness and normally defer to saying is undefined.
The last expression is . This is that famous base of imaginary numbers, one of those numbers for which . Complex-valued numbers can be multiplied and divided and raised to powers just like real-valued numbers can. And, remarkably — it surprised me — the number is equal to . That’s the reciprocal of .
There are a couple of ways to show this. A straightforward method uses the famous Euler formula, that . This implies that . So has to equal . That’s equal to , or . If you find it weird that an imaginary number raised to an imaginary number gives you a real number — it’s a touch less than 0.208 — then, well, you see how weird even the simple things can be.
Gary Larson’s The Far Side for the 4th references Abraham Lincoln’s famous use of “four score and seven” to represent 87. There have been many ways to give names to numbers. As we’ve gotten comfortable with decimalization, though, most of them have faded away. I think only dozens and half-dozens remain in common use; if it weren’t for Lincoln’s style surely nobody today would remember “score” as a way to represent twenty. It probably avoids ambiguities that would otherwise plague words like “hundred”, but it does limit one’s prose style. The talk about carrying the one and taking away three is flavor. There’s nothing in turning eighty-seven into four-score-and-seven that needs this sort of arithmetic.
I hope later this week to list the comic strips which just mentioned some mathematical topic. That essay, and next week’s review of whatever this week is mathematical, should appear at this link. Thanks for reading.
And here’s the other half of last week’s comic strips that name-dropped mathematics in such a way that I couldn’t expand it to a full paragraph. We’ll likely be back to something more normal next week.
David Malki’s Wondermark for the 20th is built on the common idiom of giving more than 100%. I’m firmly on the side of allowing “more than 100%” in both literal and figurative uses of percent, so there’s not much more to say.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th uses Big Numbers as the sort of thing that need a down-to-earth explanation. The strip is about explanations that don’t add clarity. It shows my sense of humor that I love explanations that are true but explain nothing. The more relevant and true without helping the better. Right up until it’s about something I could be explaining instead.
Tom Batiuk’s vintage Funky Winkerbean for the 21st is part of a week of strips from the perspective of a school desk. It includes a joke about football players working mathematics problems. The strip originally ran the 8th of February, 1974, looks like.
And here’s the rest of last week’s mathematically-themed comic strips. On reflection, none of them are so substantially about the mathematics they mention for me to go into detail. Again, Comic Strip Master Command is helping me rebuild my energies after the A-to-Z wrapped up. I appreciate it, folks, but would like, you know, two or three strips a week I can sink my teeth into.
Charles Schulz’s Peanuts rerun for the 11th sees Sally Brown working out metric system unit conversions. The strip originally ran the 13th of December, 1972, a year when people in the United States briefly thought there might ever be a reason to use the prefix “deci-” for something besides decibels. “centi-” for anything besides “centimeter” is pretty dodgy too.
Rick Detorie’s One Big Happy for the 13th is a strip about percentages, and the question of whether a percentage over 100 can be meaningful. I’m solidly in the camp that says “of course it can be”.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 13th is titled “Do Not Date A Mathematician”. This seems personal. The point here is the mathematician believing her fiancee has “demonstrated a poor understanding of probability” by declaring his belief in soulmates. The joke seems to be missing some key points, though. Just declaring a belief in soulmates doesn’t say anything about his understanding of probability. If we suppose that he believed every person had exactly one soulmate, and that these soulmates were uniformly distributed across the world’s population, and that people routinely found their soulmates. But if those assumptions aren’t made then you can’t say that the fiancee is necessarily believing in something improbable.
You know, I had picked these comic strips out as the ones that, last week, had the most substantial mathematics content. And on preparing this essay I realize there’s still not much. Maybe I could have skipped out on the whole week instead.
Bill Amend’s FoxTrot for the 1st is mostly some wordplay. Jason’s finding ways to represent the counting numbers with square roots. The joke plays more tightly than one might expect. Root beer was, traditionally, made with sassafras root, hence the name. (Most commercial root beers don’t use actual sassafras anymore as the safrole in it is carcinogenic.) The mathematical term root, meanwhile, derives from the idea that the root of a number is the thing which generates it. That 2 is the fourth root of 16, because four 2’s multiplied together is 16. That idea. This draws on the metaphor of the roots of a plant being the thing which lets the plant grow. This isn’t one of those cases where two words have fused together into one set of letters.
Jef Mallett’s Frazz for the 1st is set up with an exponential growth premise. The kid — I can’t figure out his name — promises to increase the number of push-ups he does each day by ten percent, with exciting forecasts for how many that will be before long. As Frazz observes, it’s not especially realistic. It’s hard to figure someone working themselves up from nothing to 300 push-ups a day in only two months.
Also much else of the kid’s plan doesn’t make sense. On the second day he plans to do 1.1 push-ups? On the third 1.21 push-ups? I suppose we can rationalize that, anyway, by taking about getting a fraction of the way through a push-up. But if we do that, then, I make out by the end of the month that he’d be doing about 15.863 push-ups a day. At the end of two months, at this rate, he’d be at 276.8 push-ups a day. That’s close enough to three hundred that I’d let him round it off. But nobody could be generous enough to round 15.8 up to 90.
An alternate interpretation of his plans would be to say that each day he’s doing ten percent more, and round that up. So that, like, on the second day he’d do 1.1 rounded up to 2 push-ups, and on the third day 2.2 rounded up to 3 push-ups, and so on. Then day thirty looks good: he’d be doing 94. But the end of two months is a mess as by then he’d be doing 1,714 push-ups a day. I don’t see a way to fit all these pieces together. I’m curious what the kid thought his calculation was. Or, possibly, what Jef Mallett thought the calculation was.
Zach Weinersmith’s for the 2nd has a kid rejecting accounting in favor of his art. But, wanting to do that art with optimum efficiency … ends up doing accounting. It’s a common story. A common question after working out that someone can do a thing is how to do it best. Best has many measures, yes. But the logic behind how to find it stays the same. Here I admit my favorite kinds of games tend to have screen after screen of numbers, with the goal being to make some number as great as possible considering. If they ever made Multiple Entry Accounting Simulator none of you would ever hear from me again.
Which may be some time! Between Reading the Comics, A to Z, recap posts, and the occasional bit of filler I’ve just finished slightly over a hundred days in a row posting something. That is, however, at its end. I don’t figure to post anything tomorrow. I may not have anything before Sunday’s Reading the Comics post, at this link. I’ll be letting my typing fingers sleep in instead. Thanks for reading.
See if you can spot where I discover my having made a big embarrassing mistake. It’s fun! For people who aren’t me!
Lincoln Peirce’s Big Nate for the 24th has boy-genius Peter drawing “electromagnetic vortex flow patterns”. Nate, reasonably, sees this sort of thing as completely abstract art. I’m not precisely sure what Peirce means by “electromagnetic vortex flow”. These are all terms that mathematicians, and mathematical physicists, would be interested in. That specific combination, though, I can find only a few references for. It seems to serve as a sensing tool, though.
No matter. Electromagnetic fields are interesting to a mathematical physicist, and so mathematicians. Often a field like this can be represented as a system of vortices, too, points around which something swirls and which combine into the field that we observe. This can be a way to turn a continuous field into a set of discrete particles, which we might have better tools to study. And to draw what electromagnetic fields look like — even in a very rough form — can be a great help to understanding what they will do, and why. They also can be beautiful in ways that communicate even to those who don’t undrestand the thing modelled.
Megan Dong’s Sketchshark Comics for the 25th is a joke based on the reputation of the Golden Ratio. This is the idea that the ratio, (roughly 1:1.6), is somehow a uniquely beautiful composition. You may sometimes see memes with some nice-looking animal and various boxes superimposed over it, possibly along with a spiral. The rectangles have the Golden Ratio ratio of width to height. And the ratio is kind of attractive since is about 1.618, and is about 0.618. It’s a cute pattern, and there are other similar cute patterns.. There is a school of thought that this is somehow transcendently beautiful, though.
It’s all bunk. People may find stuff that’s about one-and-a-half times as tall as it is wide, or as wide as it is tall, attractive. But experiments show that they aren’t more likely to find something with Golden Ratio proportions more attractive than, say, something with proportions, or , or even to be particularly consistent about what they like. You might be able to find (say) that the ratio of an eagle’s body length to the wing span is something close to . But any real-world thing has a lot of things you can measure. It would be surprising if you couldn’t find something near enough a ratio you liked. The guy is being ridiculous.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 26th builds on the idea that everyone could be matched to a suitable partner, given a proper sorting algorithm. I am skeptical of any “simple algorithm” being any good for handling complex human interactions such as marriage. But let’s suppose such an algorithm could exist.
This turns matchmaking into a problem of linear programming. Arguably it always was. But the best possible matches for society might not — likely will not be — the matches everyone figures to be their first choices. Or even top several choices. For one, our desired choices are not necessarily the ones that would fit us best. And as the punch line of the comic implies, what might be the globally best solution, the one that has the greatest number of people matched with their best-fit partners, would require some unlucky souls to be in lousy fits.
Although, while I believe that’s the intention of the comic strip, it’s not quite what’s on panel. The assistant is told he’ll be matched with his 4,291th favorite choice, and I admit having to go that far down the favorites list is demoralizing. But there are about 7.7 billion people in the world. This is someone who’ll be a happier match with him than 6,999,995,709 people would be. That’s a pretty good record, really. You can fairly ask how much worse that is than the person who “merely” makes him happier than 6,999,997,328 people would
There were just a handful of comic strips that mentioned mathematical topics I found substantial. Of those that did, computational science came up a couple times. So that’s how we got to here.
Rick Detorie’s One Big Happy for the 17th has Joe writing an essay on the history of computing. It’s basically right, too, within the confines of space and understandable mistakes like replacing Pennsylvania with an easier-to-spell state. And within the confines of simplification for the sake of getting the idea across briefly. Most notable is Joe explaining ENIAC as “the first electronic digital computer”. Anyone calling anything “the first” of an invention is simplifying history, possibly to the point of misleading. But we must simplify any history to have it be understandable. ENIAC is among the first computers that anyone today would agree is of a kind with the laptop I use. And it’s certainly the one that, among its contemporaries, most captured the public imagination.
Incidentally, Heman Hollerith was born on Leap Day, 1860; this coming year will in that sense see only his 39th birthday.
Ryan North’s Dinosaur Comics for the 18th is based on the question of whether P equals NP. This is, as T-Rex says, the greatest unsolved problem in computer science. These are what appear to be two different kinds of problems. Some of them we can solve in “polynomial time”, with the number of steps to find a solution growing as some polynomial function of the size of the problem. Others seem to be “non-polynomial”, meaning the number of steps to find a solution grows as … something not a polynomial.
You see one problem. Not knowing a way to solve a problem in polynomial time does not necessarily mean there isn’t a solution. It may mean we just haven’t thought of one. If there is a way we haven’t thought of, then we would say P equals NP. And many people assume that very exciting things would then follow. Part of this is because computational complexity researchers know that many NP problems are isomorphic to one another. That is, we can describe any of these problems as a translation of another of these problems. This is the other part which makes this joke: the declaration that ‘whether God likes poutine’ is isomorphic to the question ‘does P equal NP’.
We tend to assume, also, that if P does equal NP then NP problems, such as breaking public-key cryptography, are all suddenly easy. This isn’t necessarily guaranteed. When we describe something as polynomial or non-polynomial time we’re talking about the pattern by which the number of steps needed to find the solution grows. In that case, then, an algorithm that takes one million steps plus one billion times the size-of-the-problem to the one trillionth power is polynomial time. An algorithm that takes two raised to the size-of-the-problem divided by one quintillion (rounded up to the next whole number) is non-polynomial. But for most any problem you’d care to do, this non-polynomial algorithm will be done sooner. If it turns out P does equal NP, we still don’t necessarily know that NP problems are practical to solve.
Bil Keane and Jeff Keane’s The Family Circus for the 20th has Dolly explaining to Jeff about the finiteness of the alphabet and infinity of numbers. I remember in my childhood coming to understand this and feeling something unjust in the difference between the kinds of symbols. That we can represent any of those whole numbers with just ten symbols (thirteen, if we include commas, decimals, and a multiplication symbol for the sake of using scientific notation) is an astounding feat of symbolic economy.
Zach Weinersmth’s Saturday Morning Breakfast cereal for the 21st builds on the statistics of genetics. In studying the correlations between one thing and another we look at something which varies, usually as the result of many factors, including some plain randomness. If there is a correlation between one variable and another we usually can describe how much of the change in one quantity depends on the other. This is what the scientist means on saying the presence of this one gene accounts for 0.1% of the variance in eeeeevil. The way this is presented, the activity of one gene is responsible for about one-thousandth of the level of eeeeevil in the person.
As the father observes, this doesn’t seem like much. This is because there are a lot of genes describing most traits. And that before we consider epigenetics, the factors besides what is in DNA that affect how an organism develops. I am, unfortunately, too ignorant of the language of genetics to be able to say what a typical variation for a single gene would be, and thus to check whether Weinersmith has the scale of numbers right.
Now let me discuss the comic strips from last week with some real meat to their subject matter. There weren’t many: after Wednesday of last week there were only casual mentions of any mathematics topic. But one of the strips got me quite excited. You’ll know which soon enough.
Mac King and Bill King’s Magic in a Minute for the 10th uses everyone’s favorite topological construct to do a magic trick. This one uses a neat quirk of the Möbius strip: that if sliced along the center of its continuous loop you get not two separate shapes but one Möbius strip of greater length. There are more astounding feats possible. If the strip were cut one-third of the way from an edge it would slice the strip into two shapes, one another Möbius strip and one a simple loop.
Or consider not starting with a Möbius strip. Make the strip of paper by taking one end and twisting it twice around, for a full loop, before taping it to the other end. Slice this down the center and what results are two interlinked rings. Or place three twists in the original strip of paper before taping the ends together. Then, the shape, cut down the center, unfolds into a trefoil knot. But this would take some expert hand work to conceal the loops from the audience while cutting. It’d be a neat stunt if you could stage it, though.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 10th uses mathematics as obfuscation. We value mathematics for being able to make precise and definitely true statements. And for being able to describe the world with precision and clarity. But this has got the danger that people hear mathematical terms and tune out, trusting that the point will be along soon after some complicated talk.
The formulas on the blackboard are nearly all legitimate, and correct, formulas for the value of π. The upper-left and the lower-right formulas are integrals, and ones that correspond to particular trigonometric formulas. The The middle-left and the upper-right formulas are series, the sums of infinitely many terms. The one in the upper right, , was roughly proven by Leonhard Euler. Euler developed a proof that’s convincing, but that assumed that infinitely-long polynomials behave just like finitely-long polynomials. In this context, he was correct, but this can’t be generally trusted to happen. We’ve got proofs that, to our eyes, seem rigorous enough now.
The center-left formula doesn’t look correct to me. To my eye, this looks like a mistaken representation of the formula
But it’s obscured by Haskins’s head. It may be that this formula’s written in a format that, in full, would be correct. There are many, many formulas for π (here’s Mathworld’s page of them and here’s Wikipedia’s page of π formulas); it’s impossible to list them all.
The center-right formula is interesting because, in part, it looks weird. It’s written out as
That looks at first glance like something’s gone wrong with one of those infinite-product series for π. Not so; this is a notation used for continued fractions. A continued fraction has a string of denominators that are typically some whole number plus another fraction. Often the denominator of that fraction will itself be a whole number plus another fraction. This gets to be typographically challenging. So we have this notation instead. Its syntax is that
There are many attractive formulas for π. It’s temping to say this is because π is such a lovely number it naturally has beautiful formulas. But more likely humans are so interested in π we go looking for formulas with some appealing sequence to them. There are some awful-looking formulas out there too. I don’t know your tastes, but for me I feel my heart cool when I see that π is equal to four divided by this number:
however much I might admire the ingenuity which found that relationship, and however efficiently it may calculate digits of π.
Glenn McCoy and Gary McCoy’s The Duplex for the 13th uses skill at arithmetic as shorthand for proving someone’s a teacher. There’s clearly some implicit idea that this is a school teacher, probably for elementary schools, and doesn’t have a particular specialty. But it is only three panels; they have to get the joke done, after all.
So finally I get to the mathematically-themed comic strips of last week. There were four strips which group into natural pairings. So let’s use that as the name for this edition.
Vic Lee’s Pardon My Planet for the 3rd puts forth “cookie and cake charts”, as a riff on pie charts. There’s always room for new useful visual representations of data, certainly, although quite a few of the ones we do use are more than two centuries old now. Pie charts, which we trace to William Playfair’s 1801 Statistical Breviary, were brought to the public renown by Florence Nightingale. She wanted her reports on the causes of death in the Crimean War to communicate well, and illustrations helped greatly.
Wayno and Piraro’s Bizarro for the 9th is another pie chart joke. If I weren’t already going on about pie charts this week I probably would have relegated this to the “casual mentions” heap. I love the look of the pie, though.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 5th jokes about stereotypes of mathematics and English classes. Or exams, anyway. There is some stabbing truth in the presentation of English-as-math-class. Many important pieces of mathematics are definitions or axioms. In an introductory class there’s not much you can usefully say about, oh, why we’d define a limit to be this rather than that. The book surely has its reasons and we’ll avoid confusion by trusting in them.
I dislike the stereotype of English as a subject rewarding longwinded essays that avoid the question. It seems at least unfair to what good academic writing strives for. (If you wish to argue about bad English writing, you have your blog for that, but let’s not pretend mathematics lacks fundamentally bad papers.) And writing an essay about why a thing should be true, or interesting, is certainly worthwhile. I’m reminded of a mathematical logic professor I had, who spoke of a student who somehow could not do a traditional proper-looking proof. But could write a short essay explaining why a thing should be true which convinced the professor that the student deserved an A. The professor was sad that the student was taking the course pass-fail.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 6th shows off a bit of mathematical modeling. The specific problem is silly, yes. But the approach is dead on: identify the things that affect what you’re interested in, and how they interact. Add to this estimates of the things’ values and you’ll get at least a provisional answer. You can then use that answer to guide the building of a more precise model, if you need one.
This little bugs-on-Superman problem makes note of the units everything’s measured in. Paying attention to the units is often done in dimensional analysis, a great tool for building simple models. I ought to write an essay sequence about that sometime.
Mark Anderson’s Andertoons for the 9th is the Mark Anderson’s Andertoons for the week. This one plays on the use of the same word to measure an angle and a temperature. Degree, etymologically, traces back to “a step”, like you might find in stairs. This, taken to represent a stage of progress, got into English in the 13th century. By the late 14th century “degree” was used to describe this 1/360th slice of a circle. By the 1540s it was a measure of heat. Making the degree the unit of temperature, as on a thermometer, seems to be written down only as far back as the 1720s.
And for a last strip of the week, Gary Wise and Lance Aldrich’s Real Life Adventures for the 7th mentions an advantage of being a cartoonist “instead of an engineer” is how cartooning doesn’t require math. Also I guess this means the regular guy in Real Life Adventures represents one (or both?) of the creators? I guess that makes the name Real Life Adventures make more sense. I just thought he was a generic comic strip male. And, of course, there’s nothing about mathematics that keeps one from being a cartoonist, although I don’t know of any current daily-syndicated cartoonists with strong mathematics backgrounds. Bill Amend, of FoxTrot, and Bud Grade, of The Piranha Club/Ernie, were both physics majors, which is a heavy-mathematics program.
I knew by Thursday this would be a brief week. The number of mathematically-themed comic strips has been tiny. I’m not upset, as the days turned surprisingly full on me once again. At some point I would have to stop being surprised that every week is busier than I expect, right?
Anyway, the week gives me plenty of chances to look back to 1936, which is great fun for people who didn’t have to live through 1936.
Elzie Segar’s Thimble Theatre rerun for the 28th of October is part of the story introducing Eugene the Jeep. The Jeep has astounding powers which, here, are finally explained as being due to it being a fourth-dimensional creature. Or at least able to move into the fourth dimension. This is amazing for how it shows off the fourth dimension being something you could hang a comic strip plot on, back in the day. (Also back in the day, humor strips with ongoing plots that might run for months were very common. The only syndicated strips like it today are Gasoline Alley, Alley Oop, the current storyline in Safe Havens where they’ve just gone and terraformed Mars, and Popeye, rerunning old daily stories.) The Jeep has many astounding powers, including that he can’t be kept inside — or outside — anywhere against his will, and he’s able to forecast the future.
Could there be a fourth-dimensional animal? I dunno, I’m not a dimensional biologist. It seems like we need a rich chemistry for life to exist. Lots of compounds, many of them long and complicated ones. Can those exist in four dimensions? I don’t know the quantum mechanics of chemical formation well enough to say. I think there’s obvious problems. Electrical attraction and repulsion would fall off much more rapidly with distance than they do in three-dimensional space. This seems like it argues chemical bonds would be weaker things, which generically makes for weaker chemical compounds. So probably a simpler chemistry. On the other hand, what’s interesting in organic chemistry is shapes of molecules, and four dimensions of space offer plenty of room for neat shapes to form. So maybe that compensates for the chemical bonds. I don’t know.
But if we take the premise as given, that there is a four-dimensional animal? With some minor extra assumptions then yeah, the Jeep’s powers fit well enough. Not being able to be enclosed follows almost naturally. You, a three-dimensional being, can’t be held against your will by someone tracing a line on the floor around you. The Jeep — if the fourth dimension is as easy to move through as the third — has the same ability.
Forecasting the future, though? We have a long history of treating time as “the” fourth dimension. There’s ways that this makes good organizational sense. But we do have to treat time as somehow different from space, even to make, for example, general relativity work out. If the Jeep can see and move through time? Well, yeah, then if he wants he can check on something for you, at least if it’s something whose outcome he can witness. If it’s not, though? Well, maybe the flow of events from the fourth dimension is more obvious than it is from a mere three, in the way that maybe you can spot something coming down the creek easily, from above, in a way that people on the water can’t tell.
Olive Oyl and Popeye use the Jeep to tease one another, asking for definite answers about whether the other is cute or not. This seems outside the realm of things that the fourth dimension could explain. In the 1960s cartoons he even picks up the power to electrically shock offenders; I don’t remember if this was in the comic strips at all.
Elzie Segar’s Thimble Theatre rerun for the 29th of October, 2019. It originally ran the 29th of May, 1936. Also wait, where did Wimpy pick up all this talk about the fourth dimension? I guess if you’re going to let a line of smooth patter take the place of working you have to be on top of anything that might come up, but it still seems like a lot of work he’s gone to here to use the Jeep to win horse races.
Elzie Segar’s Thimble Theatre rerun for the 29th of October has Wimpy doing his best to explain the fourth dimension. I think there’s a warning here for mathematician popularizers here. He gets off to a fair start and then it all turns into a muddle. Explaining the fourth dimension in terms of the three dimensions we’re familiar with seems like a good start. Appealing to our intuition to understand something we have to reason about has a long and usually successful history. But then Wimpy goes into a lot of talk about the mystery of things, and it feels like it’s all an appeal to the strangeness of the fourth dimension. I don’t blame Popeye for not feeling it’s cleared anything up. Segar would come back, in this storyline, to several other attempted explanations of the Jeep’s powers, although they do come back around to, y’know, it’s a magical animal. They’re all over the place in the Popeye comic universe.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 28th of October is a riff on predictability and encryption. Good encryption schemes rely on randomness. Concealing the content of a message means matching it to an alternate message. Each of the alternate messages should be equally likely to be transmitted. This way, someone who hasn’t got the key would not be able to tell what’s being sent. The catch is that computers do not truly do randomness. They mostly rely on quasirandom schemes that could, in principle, be detected and spoiled. There are ways to get randomness, mostly involving putting in something from the real world. Sensors that detect tiny fluctuations in temperature, for example, or radio detectors. I recall one company going for style and using a wall of lava lamps, so that the rise and fall of lumps were in some way encoded into unpredictable numbers.
Robb Armstrong’s JumpStart for the 2nd of November is a riff on the Birthday “Paradox”, the thing where you’re surprised to find someone shares a birthday with you. (I have one small circle of friends featuring two people who share my birthday, neatly enough.) Paradox is in quotes because it defies only intuition, not logic. The logic is clear that you need only a couple dozen people before some pair will probably share a birthday. Marcie goes overboard in trying to guess how many people at her workplace would share their birthday on top of that. Birthdays are nearly uniformly spread across all days of the year. There are slight variations; September birthdays are a little more likely than, say, April ones; the 13th of any month is a less likely birthday than the 12th or the 24th are. But this is a minor correction, aptly ignored when you’re doing a rough calculation. With 615 birthdays spread out over the year you’d expect the average day to be the birthday of about 1.7 people. (To be not silly about this, a ten-day span should see about 17 birthdays.) However, there are going to be “clumps”, days where three or even four people have birthdays. There will be gaps, days nobody has a birthday, or even streaks of days where nobody has a birthday. If there weren’t a fair number of days with a lot of birthdays, and days with none, we’d have to suspect birthdays weren’t random here.
There were also a handful of comic strips just mentioning mathematics, that I can’t make anything in depth about. Here’s two.
The past week started strong for mathematically-themed comics. Then it faded out into strips that just mentioned the existence of mathematics. I have no explanation for this phenomenon. It makes dividing up the week’s discussion material easy enough, though.
John Zakour and Scott Roberts’s Maria’s Day rerun for the 19th is a lottery joke. Maria’s come up with a scheme to certainly win the grand prize in a lottery. There’s no disputing that one could, on buying enough tickets, get an appreciable chance of winning. Even, in principle, get a certain win. There’s no guaranteeing a solo win, though. But sometimes lottery jackpots will grow large enough that even if you had to split the prize two or three ways it’d be worth it.
Tom Horacek’s Foolish Mortals for the 21st plays on the common wisdom that mathematicians’ best work is done when they’re in their 20s. Or at least their most significant work. I don’t like to think that’s so, as someone who went through his 20s finding nothing significant. But my suspicion is that really significant work is done when someone with fresh eyes looks at a new problem. Young mathematicians are in a good place to learn, and are looking at most everything with fresh eyes, and every problem is new. Still, experienced mathematicians, bringing the habits of thought that served well one kind of problem, looking at something new will recreate this effect. We just need to find ideas to think about that we haven’t worn down.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st has a petitioner asking god about whether P = NP. This is shorthand for a famous problem in the study of algorithms. It’s about finding solutions to problems, and how much time it takes to find the solution. This time usually depends on the size of whatever it is you’re studying. The question, interesting to mathematicians and computer scientists, is how fast this time grows. There are many classes of these problems. P stands for problems solvable in polynomial time. Here the number of steps it takes grows at, like, the square or the cube or the tenth power of the size of the thing. NP is non-polynomial problems, growing, like, with the exponential of the size of the thing. (Do not try to pass your computer science thesis defense with this description. I’m leaving out important points here.) We know a bunch of P problems, as well as NP problems.
Like, in this comic, God talks about the problem of planning a long delivery route. Finding the shortest path that gets to a bunch of points is an NP problem. What we don’t know about NP problems is whether the problem is we haven’t found a good solution yet. Maybe next year some bright young 68-year-old mathematician will toss of a joke on a Reddit subthread and then realize, oh, this actually works. Which would be really worth knowing. One thing we know about NP problems is there’s a big class of them that are all, secretly, versions of each other. If we had a good solution for one we’d have a solution for all of them. So that’s why a mathematician or computer scientist would like to hear God’s judgement on how the world is made.
Hector D. Cantú and Carlos Castellanos’s Baldo for the 22nd has Baldo asking his sister to do some arithmetic. I fancy he’s teasing her. I like doing some mental arithmetic. If nothing else it’s worth having an expectation of the answer to judge whether you’ve asked the computer to do the calculation you actually wanted.
Mike Thompson’s Grand Avenue for the 22nd has Gabby demanding to know the point of learning Roman numerals. As numerals, not much that I can see; they serve just historical and decorative purposes these days, mostly as a way to make an index look more fancy. As a way to learn that how we represent numbers is arbitrary, though? And that we can use different schemes if that’s more convenient? That’s worth learning, although it doesn’t have to be Roman numerals. They do have the advantage of using familiar symbols, though, which (say) the Babylonian sexagesimal system would not.
The second half of last week’s mathematically-themed comic strips had an interesting range of topics. Two of them seemed to circle around the making of models. So that’s my name for this installment.
Ryan North’s Dinosaur Comics for the 26th has T-Rex trying to build a model. In this case, it’s to project how often we should expect to see a real-life Batman. T-Rex is building a simple model, which is fine. Simple models, first, are usually easier to calculate with. How they differ from reality can give a guide to how to make a more complex model. Or they can indicate the things that have to be learned in order to make a more complex model. The difference between a model’s representation and the observed reality (or plausibly expected reality) can point out problems in one’s assumptions, too.
For example, T-Rex supposes that a Batman needs to have billionaire parents. This makes for a tiny number of available parents. But surely what’s important is that a Batman be wealthy enough he doesn’t have to show up to any appointments he doesn’t want to make. Having a half-billion dollars, or a “mere” hundred million, would allow that. Even a Batman who had “only” ten million dollars would be about as free to be a superhero. Similarly, consider the restriction to Olympic athletes. Astronaut Ed White, who on Gemini IV became the first American to walk in space, was not an Olympic athlete; but he certainly could have been. He missed by a split-second in the 400 meter hurdles race. Surely someone as physically fit as Ed White would be fit enough for a Batman. Not to say that “Olympic athletes or NASA astronauts” is a much bigger population than “Olympic athletes”. (And White was unusually fit even for NASA astronauts.) But it does suggest that merely counting Olympic athletes is too restrictive.
But that’s quibbling over the exact numbers. The process is a good rough model. List all the factors, suppose that all the factors are independent of one another, and multiply how likely it is each step happens by the population it could happen to. It’s hard to imagine a simpler model, but it’s a place to start.
Greg Wallace’s Nothing Is Not Something for the 26th is a bit of a geometry joke. It’s built on the idiom of the love triangle, expanding it into more-sided shapes. Relationships between groups of people like this can be well-represented in graph theory, with each person a vertex, and each pair of involved people an edge. There are even “directed graphs”, where each edge contains a direction. This lets one represent the difference between requited and unrequited interests.
Brian Anderson’s Dog Eat Doug for the 27th has Sophie the dog encounter some squirrels trying to disprove a flat Earth. They’re not proposing a round Earth either; they’ve gone in for a rhomboid. Sophie’s right to point out that drilling is a really hard way to get through the Earth. That’s a practical matter, though.
Is it possible to tell something about the shape of a whole thing from a small spot? In the terminology, what kind of global knowledge can we get from local information? We can do some things. For example, we can draw a triangle on the surface of the Earth and measure the interior angles to see what they sum to. If this could be done perfectly, finding that the interior angles add up to more than 180 degrees would show the triangle’s on a spherical surface. But that also has practical limitations. Like, if we find that locally the planet is curved then we can rule out it being entirely flat. But it’s imaginable that we’d be on the one dome of an otherwise flat planet. At some point you have to either assume you’re in a typical spot, or work out ways to find what’s atypical. In the Conspiracy Squirrels’ case, that would be the edge between two faces of the rhomboid Earth. Then it becomes something susceptible to reason.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 27th has the mathematician making another model. And this is one of the other uses of a model: to show a thing can’t happen, show that it would have results contrary to reason. But then you have to validate the model, showing that its premises do represent reality so well that its conclusion should be believed. This can be hard. There’s some nice symbol-writing on the chalkboard here, although I don’t see that they parse. Particularly, the bit on the right edge of the panel, where the writing has a rotated-by-180-degrees ‘E’ followed by an ‘x’, a rotated-by-180-degrees ‘A’, and then a ‘z’, is hard to fit inside an equation like this. The string of symbols mean “there exists some x for which, for all z, (something) is true”. This fits at the start of a proof, or before an equation starts. It doesn’t make grammatical sense in the middle of an equation. But, in the heat of writing out an idea, mathematicians will write out ungrammatical things. As with plain-text writing, it’s valuable to get an idea down, and edit it into good form later.
Tom Batiuk’s Funky Winkerbean Vintage for the 28th sees the school’s Computer explaining the nature of its existence, and how it works. Here the Computer claims to just be filled with thousands of toes to count on. It’s silly, but it is the case that there’s no operation a computer does that isn’t something a human can do, manually. If you had the paper and the time you could do all the steps of a Facebook group chat, a game of SimCity, or a rocket guidance computer’s calculations. The results might just be impractically slow.
I trust nobody’s too upset that I postponed the big Reading the Comics posts of this week a day. There’s enough comics from last week to split them into two essays. Please enjoy.
Scott Shaw! and Stan Sakai’s Popeye’s Cartoon Club for the 22nd is one of a yearlong series of Sunday strips, each by different cartoonists, celebrating the 90th year of Popeye’s existence as a character. And, I’m a Popeye fan from all the way back when Popeye was still a part of the pop culture. So that’s why I’m bringing such focus to a strip that, really, just mentions the existence of algebra teachers and that they might present a fearsome appearance to people.
Lincoln Pierce’s Big Nate for the 22nd has Nate seeking an omen for his mathematics test. This too seems marginal. But I can bring it back to mathematics. One of the fascinating things about having data is finding correlations between things. Sometimes we’ll find two things that seem to go together, including apparently disparate things like basketball success and test-taking scores. This can be an avenue for further research. One of these things might cause the other, or at least encourage it. Or the link may be spurious, both things caused by the same common factor. (Superstition can be one of those things: doing a thing ritually, in a competitive event, can help you perform better, even if you don’t believe in superstitions. Psychology is weird.)
But there are dangers too. Nate shows off here the danger of selecting the data set to give the result one wants. Even people with honest intentions can fall prey to this. Any real data set will have some points that just do not make sense, and look like a fluke or some error in data-gathering. Often the obvious nonsense can be safely disregarded, but you do need to think carefully to see that you are disregarding it for safe reasons. The other danger is that while two things do correlate, it’s all coincidence. Have enough pieces of data and sometimes they will seem to match up.
Norm Feuti’s Gil rerun for the 22nd has Gil practicing multiplication. It’s really about the difficulties of any kind of educational reform, especially in arithmetic. Gil’s mother is horrified by the appearance of this long multiplication. She dubs it both inefficient and harder than the way she learned. She doesn’t say the way she learned, but I’m guessing it’s the way that I learned too, which would have these problems done in three rows beneath the horizontal equals sign, with a bunch of little carry notes dotting above.
Gil’s Mother is horrified for bad reasons. Gil is doing exactly the same work that she was doing. The components of it are just written out differently. The only part of this that’s less “efficient” is that it fills out a little more paper. To me, who has no shortage of paper, this efficiency doens’t seem worth pursuing. I also like this way of writing things out, as it separates cleanly the partial products from the summations done with them. It also means that the carries from, say, multiplying the top number by the first digit of the lower can’t get in the way of carries from multiplying by the second digits. This seems likely to make it easier to avoid arithmetic errors, or to detect errors once suspected. I’d like to think that Gil’s Mom, having this pointed out, would drop her suspicions of this different way of writing things down. But people get very attached to the way they learned things, and will give that up only reluctantly. I include myself in this; there’s things I do for little better reason than inertia.
People will get hung up on the number of “steps” involved in a mathematical process. They shouldn’t. Whether, say, “37 x 2” is done in one step, two steps, or three steps is a matter of how you’re keeping the books. Even if we agree on how much computation is one step, we’re left with value judgements. Like, is it better to do many small steps, or few big steps? My own inclination is towards reliability. I’d rather take more steps than strictly necessary, if they can all be done more surely. If you want speed, my experience is, it’s better off aiming for reliability and consistency. Speed will follow from experience.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 22nd builds on mathematical physics. Lagrangian mechanics offers great, powerful tools for solving physics problems. It also offers a philosophically challenging interpretation of physics problems. Look at the space made up of all the possible configurations of the system. Take one point to represent the way the system starts. Take another point to represent the way the system ends. Grant that the system gets from that starting point to that ending point. How does it do that? What is the path in this configuration space that goes in-between this start and this end?
We can find the path by using the Lagrangian. Particularly, integrate the Lagrangian over every possible curve that connects the starting point and the ending point. This is every possible way to match start and end. The path that the system actually follows will be an extremum. The actual path will be one that minimizes (or maximizes) this integral, compared to all the other paths nearby that it might follow. Yes, that’s bizarre. How would the particle even know about those other paths?
This seems bad enough. But we can ignore the problem in classical mechanics. The extremum turns out to always match the path that we’d get from taking derivatives of the Lagrangian. Those derivatives look like calculating forces and stuff, like normal.
Then in quantum mechanics the problem reappears and we can’t just ignore it. In the quantum mechanics view no particle follows “a” “path”. It instead is found more likely in some configurations than in others. The most likely configurations correspond to extreme values of this integral. But we can’t just pretend that only the best-possible path “exists”.
Thus the strip’s point. We can represent mechanics quite well. We do this by pretending there are designated starting and ending conditions. And pretending that the system selects the best of every imaginable alternative. The incautious pop physics writer, eager to find exciting stuff about quantum mechanics, will describe this as a particle “exploring” or “considering” all its options before “selecting” one. This is true in the same way that we can say a weight “wants” to roll down the hill, or two magnets “try” to match north and south poles together. We should not mistake it for thinking that electrons go out planning their days, though. Newtonian mechanics gets us used to the idea that if we knew the positions and momentums and forces between everything in the universe perfectly well, we could forecast the future and retrodict the past perfectly. Lagrangian mechanics seems to invite us to imagine a world where everything “perceives” its future and all its possible options. It would be amazing if this did not capture our imaginations.
Bil Keane and Jeff Keane’s Family Circus for the 24th has young Billy amazed by the prospect of algebra, of doing mathematics with both numbers and letters. I’m assuming Billy’s awestruck by the idea of letters representing numbers. Geometry also uses quite a few letters, mostly as labels for the parts of shapes. But that seems like a less fascinating use of letters.
The second half of last week’s comics I hope to post here on Wednesday. Stick around and we’ll see how close I come to making it. Thank you.
There were a couple more comic strips than made a good fit in yesterday’s recap. Here’s the two that I had much to write about.
Jason Poland’s Robbie and Bobby for the 18th is another rerun. I mentioned it back in December of 2016. Zeno’s Paradoxical Pasta plays on the most famous of Zeno’s Paradoxes, about how to get to a place one has to get halfway there, but to get halfway there requires getting halfway to halfway. This goes on in infinite regression. The paradox is not a failure to understand that we can get to a place, or finish swallowing a noodle.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st gets that strip back to my attention after, like, days out of it. It’s a logic joke, as promised, and that’s mathematics enough for me. Of course the risk of dying from a lightning strike has to be even lower than the risk of being struck by lightning.
And then there were comic strips that are just of too slight mathematical content for me to go into at length. Several of them all ran on the same day, the 15th of September. Let me give you them.
Jenny Campbell’s Flo and Friends has a couple senior citizens remembering mathematics lessons from their youth. And getting oddly smug about doing it without calculators.
While there were a good number of comic strips to mention mathematics this past week, there were only a few that seemed substantial to me. This works well enough. This probably is going to be the last time I keep the Reading the Comics post until after Sunday, at least until the Fall 2019 A To Z is finished.
And I’m still open to topics for the first third of the alphabet. If you’d like to see my try to understand a thing of your choice please nominate one or more concepts over at this page. You might be the one to name a topic I can’t possibly summarize!
Gordon Bess’s Redeye rerun for the 18th is a joke building on animals’ number sense. And, yeah, about dumb parents too. Horses doing arithmetic have a noteworthy history. But more in the field of understanding how animals learn, than in how they do arithmetic. In particular in how animals learn to respond to human cues, and how slight a cue has to be to be recognized and acted on. I imagine this reflects horses being unwieldy experimental animals. Birds — pigeons and ravens, particularly — make better test animals.
Art Sansom and Chip Sansom’s The Born Loser for the 18th gives a mental arithmetic problem. It’s a trick question, yes. But Brutus gives up too soon on what the problem is supposed to be. Now there’s no calculating, in your head, exactly how many seconds are in a year; that’s just too much work. But an estimate? That’s easy.
At least it’s easy if you remember one thing: a million seconds is about eleven and a half days. I find this easy to remember because it’s one of the ideas used all the time to express how big a million, a billion, and a trillion are. A million seconds are about eleven and a half days. A billion seconds are a little under 32 years. A trillion seconds are about 32,000 years, which is about how long it’s been since the oldest known domesticated dog skulls were fossilized. I’m sure that gives everyone a clear idea of how big a trillion is. The important thing, though, is that a million seconds is about eleven and a half days.
So. Think of the year. There are — as the punch line to Hattie’s riddle puts it — twelve 2nd’s in the year. So there are something like a million seconds spent each year on days that are the 2nd of the month. There about a million seconds spent each year on days that are the 1st of the month, too. There are about a million seconds spent each year on days that are the 3rd of the month. And so on. So, there’s something like 31 million seconds in the year.
You protest. There aren’t a million seconds in twelve days; there’s a million seconds in eleven and a half days. True. Also there aren’t 31 days in every month; there’s 31 days in seven months of the year. There’s 30 days in four months, and 28 or 29 in the remainder. That’s fine. This is mental arithmetic. I’m undercounting the number of seconds by supposing that a million seconds makes twelve days. I’m overcounting the number of seconds by supposing that there are twelve months of 31 days each. I’m willing to bet this undercount and this overcount roughly balance out. How close do I get?
There are 31,536,000 seconds in a common year. That is, a non-leap-year. So “31 million” is a bit low. But it’s not bad for working without a calculator.
Ryan North’s Dinosaur Comics for the 19th lays on us the Eubulides Paradox. It’s traced back to the fourth century BCE. Eubulides was a Greek philosopher, student of “Not That” Euclid of Megara. We know Eubulides for a set of paradoxes, including the Sorites paradox. As T-Rex’s friends point out, we’ve all heard this paradox. We’ve all gone on with our lives, knowing that the person who said it wanted us to say they were very clever. Fine.
But if we take this seriously we find … this keeps not being simple. We can avoid the problem by declaring self-referential statements exist outside of truth or falsity. This forces us to declare the sentence “this sentence is true” can’t be true. This seems goofy. We can avoid the problem by supposing there are things that are neither true nor false. That solves our problem here at the mere cost of ruining our ability to prove stuff by contradiction. There’s a lot of stuff we prove by contradiction. It’s hard to give that all up for this (Although, so far as I’m aware, anything that can be proved by contradiction can also be proven by a direct line of reasoning. The direct line may just be tedious.) We can solve this problem by saying that our words are fuzzy imprecise things. This is true enough, as see any time my love and I debate how many things are in “a couple of things”. But declaring that we just can’t express the problem well enough to answer it seems like running away from the question. We can resolve things by accepting there are limits to what can be proved by logic. Gödel’s Incompleteness Theorem shows that any interesting enough logic system has statements that are true but unprovable. A version of this paradox helps us get to this interesting conclusion.
So this is one of those things it should be easy to laugh off, but why it should be easy is hard.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st is about the other great logic problem of the 20th century. The Halting Problem here refers to Turing Machines. This is the algorithmic model for computing devices. It’s rather abstract, so the model won’t help you with your C++ homework, but nothing will. But it turns out we can represent a computer running a program as a string of cells. Each cell holds one of a couple possible values. The program is a series of steps. Each step starts at one cell. The program resets the value of that cell to something dictated by the algorithm. Then, the program moves focus to another cell, again as the algorithm dictates. Do enough of this and you get SimCity 2000. I don’t know all the steps in-between.
So. The Halting Program is this: take a program. Run it. What happens in the long run? Well, it does something or other, yes. But there’s three kinds of things it can do. It can run for a while and then finish, that is, ‘halt’. It can run for a while and then get into a repeating loop, after which it repeats things forever. It can run forever without repeating itself. (Yeah, I see the structural resemblance to terminating decimals, repeating decimals, and irrational numbers too, but I don’t know of any link there.) The Halting Problem asks, if all we know is the algorithm, can we know what happens? Can we say for sure the program will always end, regardless of what the data it works on are? Can we say for sure the program won’t end if we feed it the right data to start?
If the program is simple enough — and it has to be extremely simple — we can say. But, basically, if the program is complicated enough to be even the least bit interesting, it’s impossible to say. Even just running the program isn’t enough: how do you know the difference between a program that takes a trillion seconds to finish and one that never finishes?
For human needs, yes, a program that needs a trillion seconds might as well be one that never finishes. Which is not precisely the joke Weinersmith makes here, but is circling around similar territory.
Three of the strips I have for this installment feature kids around mathematics talk. That’s enough for a theme name.
Gary Delainey and Gerry Rasmussen’s Betty for the 23rd is a strip about luck. It’s easy to form the superstitious view that you have a finite amount of luck, or that you have good and bad lucks which offset each other. It feels like it. If you haven’t felt like it, then consider that time you got an unexpected $200, hours before your car’s alternator died.
If events are independent, though, that’s just not so. Whether you win $600 in the lottery this week has no effect on whether you win any next week. Similarly whether you’re struck by lightning should have no effect on whether you’re struck again.
Except that this assumes independence. Even defines independence. This is obvious when you consider that, having won $600, it’s easier to buy an extra twenty dollars in lottery tickets and that does increase your (tiny) chance of winning again. If you’re struck by lightning, perhaps it’s because you tend to be someplace that’s often struck by lightning. Probability is a subtler topic than everyone acknowledges, even when they remember that it is such a subtle topic.
Darrin Bell’s Candorville for the 23rd jokes about the uselessness of arithmetic in modern society. I’m a bit surprised at Lemont’s glee in not having to work out tips by hand. The character’s usually a bit of a science nerd. But liking science is different from enjoying doing arithmetic. And bad experiences learning mathematics can sour someone on the subject for life. (Which is true of every subject. Compare the number of people who come out of gym class enjoying physical fitness.)
If you need some Internet Old, read the comments at GoComics, which include people offering dire warnings about what you need in case your machine gives the wrong answer. Which is technically true, but for this application? Getting the wrong answer is not an immediately awful affair. Also a lot of cranky complaining about tipping having risen to 20% just because the United States continues its economic punishment of working peoples.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 25th is some wordplay. Mathematicians often need to find minimums of things. Or maximums of things. Being able to do one lets you do the other, as you’d expect. If you didn’t expect, think about it a moment, and then you expect it. So min and max are often grouped together.
Paul Trap’s Thatababy for the 26th is circling around wordplay, turning some common shape names into pictures. This strip might be aimed at mathematics teachers’ doors. I’d certainly accept these as jokes that help someone learn their shapes.
There were a decent number of mathematically-themed comic strips this past week. This figures, because I’ve spent this past week doing a lot of things, and look to be busier this coming week. Nothing to do but jump into it, then.
Jason Chatfield’s Ginger Meggs for the 21st is your usual strip about the student resisting the story problem. Story problems are hard to set. Ideally, they present problems like mathematicians actually do, proposing the finding of something it would be interesting to learn. But it’s hard to find different problems like this. You might be fairly interested in how long it takes a tub filling with water to overflow, but the third problem of this kind is going to look a lot like the first two. And it’s also hard to find problems that allow for no confounding alternate interpretations, like this. Have some sympathy and let us sometimes just give you an equation to solve.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 21st is a pun built on two technical definitions for “induction”. The one used in mathematics, and logic, is a powerful tool for certain kinds of proof. It’s hard to teach how to set it up correctly, though. It’s a way to prove an infinitely large number of logical propositions, though. Let me call those propositions P1, P2, P3, P4, and so on. Pj for every counting number j. The first step of the proof is showing that some base proposition is true. This is usually some case that’s really easy to do. This is the fun part of a proof by induction, because it feels like you’ve done half the work and it amounts to something like, oh, showing that 1 is a triangular number.
The second part is hard. You have to show that whenever Pj is true, this implies that Pj + 1 is also true. This is usually a step full of letters representing numbers rather than anything you can directly visualize with, like, dots on paper. This is usually the hard part. But put those two halves together? And you’ve proven that all your propositions are true. Making things line up like that is so much fun.
Mark Anderson’s Andertoons for the 22nd is the Mark Anderson’s Andertoons for the week. It’s again your student trying to get out of not really knowing mathematics in class. Longtime readers will know, though, that I’m fond of rough drafts in mathematics. I think most mathematicians are. If you are doing something you don’t quite understand, then you don’t know how to do it well. It’s worth, in that case, doing an approximation of what you truly want to do. This is for the same reason writers are always advised to write something and then edit later. The rough draft will help you find what you truly want. In thinking about the rough draft, you can get closer to the good draft.
Stephen Bentley’s Herb and Jamaal for the 22nd is one lost on me. I grew up when Schoolhouse Rock was a fun and impossible-to-avoid part of watching Saturday Morning cartoons. So there’s a lot of simple mathematics that I learned by having it put to music and played often.
Still, it’s surprising Herb can’t think of why it might be easier to remember something that’s fun, that’s put to a memory-enhancing tool like music, and repeated often, than it is to remember whether 8 times 7 is 54. Arithmetic gets easier to remember when you notice patterns, and find them delightful. Even fun. It’s a lot like everything else humans put any attention to, that way.
I hoped I’d get a Reading the Comics post in for Tuesday, and even managed it. With this I’m all caught up to the syndicated comic strips which, last week, brought up some mathematics topic. I’m open for nominations about what to publish here Thursday. Write in quick.
Hilary Price’s Rhymes With Orange for the 30th is a struggling-student joke. And set in summer school, so the comic can be run the last day of June without standing out to its United States audience. It expresses a common anxiety, about that point when mathematics starts using letters. It superficially seems strange that this change worries students. Students surely had encountered problems where some term in an equation was replaced with a blank space and they were expected to find the missing term. This is the same work as using a letter. Still, there are important differences. First is that a blank line (box, circle, whatever) has connotations of “a thing to be filled in”. A letter seems to carry meaning in to the problem, even if it’s just “x marks the spot”. And a letter, as we use it in English, always stands for the same thing (or at least the same set of things). That ‘x’ may be 7 in one problem and 12 in another seems weird. I mean weird even by the standards of English orthography.
A letter might represent a number whose value we wish to know; it might represent a number whose value we don’t care about. These are different ideas. We usually fall into a convention where numbers we wish to know are more likely x, y, and z, while those we don’t care about are more likely a, b, and c. But even that’s no reliable rule. And there may be several letters in a single equation. It’s one thing to have a single unknown number to deal with. To have two? Three? I don’t blame people fearing they can’t handle that.
Mark Leiknes’s Cow and Boy for the 30th has Billy and Cow pondering the Prisoner’s Dilemma. This is one of the first examples someone encounters in game theory. Game theory sounds like the most fun part of mathematics. It’s the study of situations in which there’s multiple parties following formal rules which allow for gains or losses. This is an abstract description. It means many things fit a mathematician’s idea of a game.
Mark Leiknes’s Cow and Boy rerun for the 30th of June, 2019. The comic strip is long since ended, but hasn’t quite rerun enough times for me to get tired of it. So essays featuring Cow and Boy appear this link. The gnome is a lawn gnome who came to life and … you know, this was a pretty weird comic and I understand why it didn’t make it in the newspapers. Just roll with it.
The Prisoner’s Dilemma is described well enough by Billy. It’s built on two parties, each — separately and without the ability to coordinate — having to make a choice. Both would be better off, under interrogation, to keep quiet and trust that the cops can’t get anything significant on them. But both have the temptation that if they rat out the other, they’ll get off free while their former partner gets screwed. And knowing that their partner has the same temptation. So what would be best for the two of them requires them both doing the thing that maximizes their individual risk. The implication is unsettling: everyone acting in their own best interest is supposed to produce the best possible result for society. And here, for the society of these two accused, it breaks down entirely.
Exponents have been written as numbers in superscript following a base for a long while now. The notation developed over the 17th century. I don’t know why mathematicians settled on superscripts, as opposed to the many other ways a base and an exponent might fit together. It’s a good mnemonic to remember, say, “z raised to the 10th” is z with a raised 10. But I don’t know the etymology of “raised” in a mathematical context well enough. It’s plausible that we say “raised” because that’s what the notation suggests.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 2nd argues for the beauty of mathematics as a use for it. It’s presented in a brutal manner, but saying brutal things to kids is a comic motif with history to it. Well, in an existentialist manner, but that gets pretty brutal quickly.
The proof of the Pythagorean Theorem is one of the very many known to humanity. This one is among the family of proofs that are wordless. At least nearly wordless. You can get from here to with very little prompting. If you do need prompting, it’s this: there are two expressions for how much area of the square with sides a-plus-b. One of these expressions uses only terms of a and b. The other expression uses terms of a, b, and c. If this doesn’t get a bit of a grin out of you, don’t worry. There’s, like, 2,037 other proofs we already know about. We might ask whether we need quite so many proofs of the Pythagorean theorem. It doesn’t seem to be under serious question most of the time.
And then a couple comic strips last week just mentioned mathematics. Morrie Turner’s Wee Pals for the 1st of July has the kids trying to understand their mathematics homework. Could have been anything. Mike Thompson’s Grand Avenue for the 5th started a sequence with the kids at Math Camp. The comic is trying quite hard to get me riled up. So far it’s been the kids agreeing that mathematics is the worst, and has left things at that. Hrmph.
Some months stretch my pop-mathematics writing skills, tasking me with finding new insights into the things I thought I understood and new ways to present them. Some months I’ve written about comic strips a lot. This was one of the latter. Here, let me nearly finish writing about the comic strips of June 2019 that had some mathematical content.
Jonathan Lemon’s Rabbits Against Magic for the 23rd is the Venn Diagram meta-joke for the week. Properly speaking, yes, Eight-Ball hasn’t drawn a Venn Diagram here. Representing two sets in a Venn Diagram, by the proper rules, requires two circles with one overlap. Indicating that both sets have the same elements means noting that there are no elements outside the intersection of these circles. One point of a Venn Diagram is showing all the possible logical relations between sets and maybe then marking off the ones that happen to be relevant to the problem. What Eight-Ball is drawing is an Euler Diagram, which has looser requirements. There’s no sense fighting this terminology battle, though. It makes cleaner pictures to draw a Venn Diagram modified to only show the relations that actually exist. If the goal is to communicate information, clarity counts. A joke counts as information.
Eight-Ball’s propositions are … well, a bit muddled. His first set is “people who like to think they are good at math”. His second set is “which of those people like Venn Diagrams”. This implies the second set can’t be anything but a subset of the first. So this we’d represent as one circle inside another, at least if we allow that there exists at least one person who likes to think they’re good at math, but still doesn’t like Venn Diagrams. It’s fine for the purposes of comic hyperbole to claim there is no such thing, of course, and I don’t quarrel with that.
Why not have the second group be “people who like Venn Diagrams”, without the restriction that they already think they’re good at math? Here I think there is a serious logical constraint. My suspicion is that Venn Diagrams are liked by people who don’t think they’re good at math. Also by people who aren’t good at math. Venn Diagrams are a wonderful tool because they present the relationships of sets in a way that uses our spatial intuitions. They wouldn’t make a good Internet joke format if they were liked only by people who think they’re good at math. Which is why Jonathan Lemon had to write the joke that way. It’s plausible comic hyperbole to say everyone who thinks they’re good at math likes Venn Diagrams. But there are too many people who react to explicit mathematics content with a shudder, but who like Venn Diagram jokes, to make “everyone who likes Venn Diagrams thinks they’re good at math” plausible.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 23rd is a lying-with-statistics joke. The median is an average of a data set. It’s “an” average because, in English, we mean several different things by “average”. Translated into mathematics these different things are, really, completely unrelated. The “median” is the midpoint of the ordered list of the data set. So, as the Man In Black says, half the data in the set is below that value, and half is above. This can be a better measure of “average” than the arithmetic mean is. It tells us a slight something about the distribution, about how the data is arranged. Not much, but then, it’s just one number. What do you want? It has an advantage over the arithmetic mean, which is the thing normal people intend when they say “average”. That advantage is that it’s relatively insensitive to outliers. One or two really large, or tiny, data points can throw the mean way off. The classic example we use these days is to look at the average wealth of twenty people in the room. If Bill Gates enters the room, the mean jumps way up. The median? Doesn’t alter much. (Bill Gates is the figure I see used these days, but it could be anyone impossibly wealthy. I imagine there are versions where it’s Jeff Bezos entering the room. I imagine a century ago, the proposition would be to imagine J P Morgan entering the room, except that a century ago he had been dead six years.)
Steve Skelton’s 2 Cows and a Chicken for the 26th of June, 2019. Oh, this strip ag — wait, no. Is this a new tag?. No, but the strip was on hiatus a while. 2 Cows And A Chicken has appeared before, in essays at this link. You know it wasn’t until transcribing this comic for the alt text that I realized the ‘dings’ were Chicken pecking at the pot and not a noise that he was making directly. I don’t know why I would have thought he’d have just been making ‘ding’ noises. Also it was the end of my transcribing when I realized what Chicken was doing.
Steve Skelton’s 2 Cows and a Chicken for the 26th shows off a counting chicken as a wonder. Animals do have some sense of mathematics. We know in some detail how well crows and ravens can count, and do simple arithmetic. This is partly because we know good ways to test crow and raven arithmetic skills. And we’ve come to appreciate their intelligence as deep and surprising. Chickens, to my knowledge, have gotten less study. But I would expect they’ve got skills. If nothing else, I would expect chickens to have a good understanding of the transitive property. This is the rule that if ‘a’ is greater than ‘b’, and ‘b’ is greater than ‘c’, then it follows that ‘a’ is greater than ‘c’. Chickens have a pecking order, and animals with that kind of hierarchy tend to know transitivity. I don’t know that the reasons for that link have been proven, but, c’mon. And animals doing arithmetic, like the cook says, have been good sideshow attractions or performances for a long while. They’ve also been good starts for scientific study, as people try to work out questions like how intelligence formed, and what other ways it might have formed.
Greg Cravens’s The Buckets for the 27th is a joke about the representation of numbers. Cravens has a good observation here about learning the differences between representations, and of not being able to express just what representation you want. I love Eddie’s horrified face as his mother (Sarah) tries to spell out the word. There’s probably a good exercise to be done in thinking of as many ways to represent fifteen as possible.
Etymologically, “fifteen” has exactly the origin you would say if you were dragged out of a sound sleep by someone demanding the history of the word RIGHT NOW, THERE’S NO TIME TO EXPLAIN. In Old English it was “fiftyne”, with “fif” meaning “five” and “tyne” meaning “ten more than”. This construction, pretty much five-and-ten, has fallen out of favor in English. Once we get past nineteen we more commonly write out, like, “twenty-one” and “thirty-five” and such. The alternate construction, which would be, like, one-and-twenty, or nine-and-sixty, or such, seems to have fallen out of use except as a more poetic way to express the idea. I don’t know why, say, five-and-twenty would have shifted to twenty-five while the equivalent five-and-ten didn’t shift to … teenfive(?). I would make an uninformed guess that words used more commonly tend to be more stable, and we tend to need smaller numbers more than bigger ones.
I’ll have some more comic strips for you later in the week. Before then should be a statistics review, as I figure out whether anyone is reading this blog after a month when I wrote basically nothing. The next Reading the Comics post should be at this link probably on Thursday. Thank you for reading any of this.
A couple years back we needed to patch a bunch of weak spots in the roof. We found all the spots that needed shoring up and measured how long they were, and went to buy some wood and get it cut to fit. I turned over the list of sizes and the guy told us we’d have to buy more than one of the standard-size sheets of plywood to do it. I thought, wait, no, that can’t be, and sketched out possible ways to cut the wood and fit pieces together. Finally I concluded that, oh, yes, the guy whose job it was to figure out how much wood was needed for particular tasks knew what he was talking about. His secret? I don’t know. What finally convinced me was adding up the total area of the wood we’d need, and finding that it was more than what one sheet would be.
Dave Blazek’s Loose Parts for the 19th uses a whiteboard full of mathematics as visual shorthand for “some really complicated subject”. It’s a good set of mathematics symbols on the whiteboard. They don’t mean anything in the combination shown, though. It’s just meant to bewilder.
The key is the Mover’s claim that he can look at any amount of stuff and tell you whether it fits in the moving bins. Working out something like this is a version of the knapsack problem. The knapsack problem is … well, the problem you imagine it might be, if someone told you “some mathematicians study a thing called the knapsack problem”? That’s about right. Formally, it’s about selecting from a set of things of different value. How hard is it to pick a subset of things with exactly that value? Or find that there is no such subset?
Well, in a sense, not hard at all. You can just keep trying combinations. Eventually you’ll either find a set that works, or you’ll try every possibility and find none of them work. This is known as “exhaustion”, and correctly. If there are ten things, there are 3,628,800 possibilities. Then it gets really bad. If there are twenty things, there are 2,432,902,008,176,640,000 possibilities. Finding the one that works? That could take a while.
So being able to tell whether a collection of things can fit within a particular space? That’s a form of the knapsack problem. Being able to always solve that any faster than just “try out every combination until you find one that works”? That would be incredible. The problem is hard. That’s a technical term. It means what you imagine it means, but more precisely.
So why the mathematician’s response? It’s because the problem of hacking the common Internet security algorithms is also hard. (I am discussing here how difficult hacking would be if the algorithm were implemented perfectly. There are many hacking techniques available because of bugs. Programs are not written perfectly. Compilers do not translate them to computer code perfectly. Computers are not built perfectly. These and more flaws make hacking more possible than it should be.) It’s the same kind of hard as this knapsack problem. I mean “the same” more technically than you might imagine. If you had a method to quickly solve this knapsack problem, then, you could use this to break computer encryption quickly. And, it turns out, vice-versa, so at least there’s some fairness to things. So if the the Mover can, truly, always instantly tell whether a set of things fit in the moving bins, then hacking e-mails should be possible to. The Mover would have to team up with a mathematician who studies computational problems like this. I don’t know how to do it, myself. I think about the how to do this and feel lost, myself.
So is the Mover full of it? Let’s put this more nicely. Is he at least unduly optimistic about his claims?
Nah. What makes the knapsack problem hard is that you have to find a solution that quickly finds answers for every possible set of things. But the Mover doesn’t have to deal with that. Most of the stuff is in boxes. It’s in mostly simple polygonal shapes. There’s not, like, 400 million items, each the size of a Cheerio. The Mover may plausibly have never encountered a set of things to move where he couldn’t tell whether it fits.
And, yes, there’s selection bias. Suppose he declared that no, this load had to fit into two vans. But that actually a sufficiently clever arrangement would have let it fit in one. Who would ever know he was wrong? He’d only ever know his intuition was wrong if he declared something would fit in one van and, in fact, it couldn’t.
Percy Crosby’s Skippy for the 21st is a student-at-the-board problem. It’s using the punch line that “I don’t know” might be a true answer to any problem. There are many real mathematics problems for which nobody really knows an answer.
But Miss Larkin has good advice here. Maybe you don’t know the final answer. But do you know anything? Write it down. It’s good for partial credit, at least. Working out a part of the problem might also be useful, too. Often you can work out how to do a hard problem by looking at a similar but simpler problem. If Skippy is lost at 8 + 4 + 7 + 5, could he do at least 8 + 4 + 7? Could he do 8 + 4? Maybe this wouldn’t help him get to the ultimate answer. Often a difficult problem turns out to be solved by solving a circle of simple problems, that starve out the hard.
Samson’s Dark Side of the Horse for the 21st is the Roman Numerals joke for this time around. I’m not sure this whether this is a repeat. The strip does a lot of Roman Numerals jokes, and counting-sheep jokes.
Our roof patches held up for their need, which was just to last a couple months while we contracted for a replacement roof. And, happily, the roof replacement got done speedily and during a week that did not rain. (Back in grad school the apartment I was in had its roof replaced on a day that, it turns out, would get a spontaneous downpour halfway through. My apartment was on the top floor. This made for an exciting afternoon.)
We continue to be in the summer vacation doldrums for mathematically-themed comic strips. But there’ve been a couple coming out. I could break this week’s crop into two essays, for example. All of today’s strips are comics that turn up in my essays a lot. It’s like hanging out with a couple of old friends.
Samson’s Dark Side of the Horse for the 17th uses the motif of arithmetic expressions as “difficult” things. The expressions Samson quotes seem difficult for being syntactically weird: What does the colon under the radical sign mean in ? Or they’re difficult for being indirect, using a phrase like “50%” for “half”. But with some charity we can read this as Horace talking about 3:33 am to about 6:30 am. I agree that those are difficult hours.
It also puts me in mind of a gift from a few years back. An aunt sent me an Irrational Watch, with a dial that didn’t have the usual counting numbers on it. Instead there were various irrational numbers, like the Golden Ratio or the square root of 50 or the like. Also the Euler-Mascheroni Constant, a number that may or may not be irrational. Nobody knows. It’s likely that it is irrational, but it’s not proven. It’s a good bit of fun, although it does make it a bit harder to use the watch for problems like “how long is it until 4:15?” This isn’t quite what’s going on here — the square root of nine is a noticeably rational number — but it seems in that same spirit.
Mark Anderson’s Andertoons for the 18th sees Wavehead react to the terminology of the “improper fraction”. “Proper” and “improper” as words carry a suggestion of … well, decency. Like there’s something faintly immoral about having an improper fraction. “Proper” and “improper”, as words, attach to many mathematical concepts. Several years ago I wrote that “proper” amounted to “it isn’t boring”. This is a fair way to characterize, like, proper subsets or proper factors or the like. It’s less obvious that is a boring fraction.
I may need to rewrite that old essay. An “improper” form satisfies all the required conditions for the term. But it misses some of the connotation of the term. It’s true that, say, the new process takes “a fraction of the time” of the old, if the old process took one hour and the new process takes fourteen years. But if you tried telling someone that they would assume you misunderstood something. The ordinary English usage of “fraction” carries the connotation of “a fraction between zero and one”, and that’s what makes a “proper fraction”.
In practical terms, improper fractions are fine. I don’t know of any mathematicians who seriously object to them, or avoid using them. The hedging word “seriously” is in there because of a special need. That need is: how big is, say, ? Is it bigger than five? Is it smaller than six? An improper fraction depends on you knowing, in this case, your fourteen-times tables to tell. Switching that to a mixed fraction, , helps figure out what the number means. That’s as far as we have to worry about the propriety of fractions.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th uses the form of a Fermi problem for its joke. Fermi problems have a place in mathematical modeling. The idea is to find an estimate for some quantity. We often want to do this. The trick is to build a simple model, and to calculate using a tiny bit of data. The Fermi problem that has someone reached public consciousness is called the Fermi paradox. The question that paradox addresses is, how many technologically advanced species are there in the galaxy? There’s no way to guess. But we can make models and those give us topics to investigate to better understand the problem. (The paradox is that reasonable guesses about the model suggest there should be so many aliens that they’d be a menace to air traffic. Or that the universe should be empty except for us. Both alternatives seem unrealistic.) Such estimates can be quite wrong, of course. I remember a Robert Heinlein essay in which he explained the Soviets were lying about the size of Moscow, his evidence being he didn’t see the ship traffic he expected when he toured the city. I do not remember that he analyzed what he might have reasoned wrong when he republished this in a collection of essays he didn’t seem to realize were funny.
So the interview question presented is such a Fermi problem. The job applicant, presumably, has not committed to memory the number of employees at the company. But there would be clues. Does the company own the whole building it’s in, or just a floor? Just an office? How large is the building? How large is the parking lot? Are there people walking the hallways? How many desks are in the offices? The question could be answerable. The applicant has a pretty good chain of reasoning too.
Bill Amend’s FoxTrot Classics for the 20th has several mathematical jokes in it. One is the use of excessively many decimal points to indicate intelligence. Grant that someone cares about the hyperbolic cosines of 15.2. There is no need to cite its wrong value to nine digits past the decimal. Decimal points are hypnotic, though, and listing many of them has connotations of relentless, robotic intelligence. That is what Amend went for in the characters here. That and showing how terrible nerds are when they find some petty issue to rage over.
Eugene is correct about the hyperbolic cosine being wrong, there, though. He’s not wrong to check that. It’s good form to have some idea what a plausible answer should be. It lets one spot errors, for one. No mathematician is too good to avoid making dumb little mistakes. And computing tools will make mistakes too. Fortunately they don’t often, but this strip originally ran a couple years after the discovery of the Pentium FDIV bug. This was a glitch in the way certain Pentium chips handled floating-point division. It was discovered by Dr Thomas Nicely, at Lynchberg College, who found inconsistencies in some calculations when he added Pentium systems to the computers he was using. This Pentium bug may have been on Amend’s mind.
Eugene would have spotted right away that the hyperbolic cosine was wrong, though, and didn’t need nine digits for it. The hyperbolic cosine is a function. Its domain is the real numbers. It range is entirely numbers greater than or equal to one, or less than or equal to minus one. A 0.9 something just can’t happen, not as the hyperbolic cosine for a real number.
And what is the hyperbolic cosine? It’s one of the hyperbolic trigonometric functions. The other trig functions — sine, tangent, arc-sine, and all that — have their shadows too. You’ll see the hyperbolic sine and hyperbolic tangent some. You will never see the hyperbolic arc-cosecant and anyone trying to tell you that you need it is putting you on. They turn up in introductory calculus classes because you can differentiate them, and integrate them, the way you can ordinary trig functions. They look just different enough from regular trig functions to seem interesting for half a class. By the time you’re doing this, your instructor needs that.
The ordinary trig functions come from the unit circle. You can relate the Cartesian coordinates of a point on the circle described by to the angle made between that point and the center of the circle and the positive x-axis. Hyperbolic trig functions we can relate the Cartesian coordinates of a point on the hyperbola described by to angles instead. The functions … don’t have a lot of use at the intro-to-calculus level. Again, other than that they let you do some quite testable differentiation and integration problems that don’t look exactly like regular trig functions do. They turn up again if you get far enough into mathematical physics. The hyperbolic cosine does well in describing catenaries, that is, the shape of flexible wires under gravity. And the family of functions turn up in statistical mechanics, often, in the mathematics of heat and of magnetism. But overall, these functions aren’t needed a lot. A good scientific calculator will offer them, certainly. But it’ll be harder to get them.
There is another oddity at work here. The cosine of 15.2 degrees is about 0.965, yes. But mathematicians will usually think of trigonometric functions — regular or hyperbolic — in terms of radians. This is just a different measure of angles. A right angle, 90 degrees, is measured as radians. The use of radians makes a good bit of other work easier. Mathematicians get to accustomed to using radians that to use degrees seems slightly alien. The cosine of 15.2 radians, then, would be about -0.874. Eugene has apparently left his calculator in degree mode, rather than radian mode. If he weren’t so worked up about the hyperbolic cosine being wrong he might have noticed. Perhaps that will be another exciting error to discover down the line.
This strip was part of a several-months-long story Bill Amend did, in which Jason has adventures at Math Camp. I don’t remember the whole story. But I do expect the strip to have several more appearances here this summer.
So this has been a week full of plans and machinations. But along the way, I made a discovery about Tiger. Curious? Of course you are. Who would not be? Read on and learn what my discovery is.
Hector D. Cantú and Carlos Castellanos’s Baldo for the 26th has Gracie counting by mathematical expressions. This kind of thing can be fun, at least for someone who enjoys doing arithmetic. Several years ago someone gave me a calendar in which every day was designated by an expression. As a mental exercise it wasn’t much, to my tastes. If you know that this is the second of the month, it’s no great work to figure out what should be. But there is the fun in coming up with different ways to express a number. And here let me mention an old piece about how Paul Dirac worked out an expression for every counting number, using exactly four 2’s.
John Graziano’s Ripley’s Believe It or Not for the 26th mentions several fairly believable things. The relevant part is about naming the kind of surface that a Pringles chip represents. That is, the surface a Pringles chip would be if it weren’t all choppy and irregular, and if it continued indefinitely.
The shape is, as Graziano’s Ripley’s claims, a hypberbolic paraboloid. It’s a shape you get to know real well if you’re a mathematics major. They turn up in multivariable calculus and, if you do mathematical physics, in dynamical systems. It’s also a shape mathematics majors get to calling a “saddle shape”, because it looks enough like a saddle if you’re not really into horses.
The shape is one of the “quadratic surfaces”. These are shapes which can be described as the sets of Cartesian coordinates that make a quadratic equation true. Equations in Cartesian coordinates will have independent variables x, y, and z, unless there’s a really good reason. A quadratic equation will be the sum of some constant times x, and some constant times x2, and some constant times y, and some constant times y2, and some constant times z, and some constant times z2. Also some constant times xy, and some constant times yz, and some constant times xz. No xyz, though. And it might have some constant added to the mix at the end of all this.
There are seventeen different kinds of quadratic surfaces. Some of them are familiar, like ellipsoids or cones. Some hardly seem like they could be called “quadratic”, like intersecting planes. Or parallel planes. Some look like mid-century modern office lobby decor, like elliptic cylinders. And some have nice, faintly science-fictional shapes, like hyperboloids or, as in here, hyperbolic paraboloids. I’m not a judge of which ones would be good snack shapes.
Samson’s Dark Side of the Horse for the 26th is a funny-answer-to-a-story-problem joke. I had thought these had all switched over to apples, rather than candy bars. But that would make the punch line less believable.
Bud Blake’s Tiger for the 31st is a rerun, of course. Blake died in 2005 and no one else drew his comic strip. It’s a funny-answer-to-a-story-problem joke. And, more, it’s a repeat of a Tiger strip I’ve already run here. I admit a weird pride when I notice a comic strip doing a repeat. It gives me some hope that I might still be able to remember things. But this is also a special Tiger repeat. It’s the strip which made me notice Bud Blake redrawing comics he had already used. This one is not a third iteration of the strip which reran in April 2015 and June 2016. It’s a straight repeat of the June 2016 strip.
The mystery to me now is why King Features apparently has less than three years’ worth of reruns in the bank for Tiger. The comic ran from 1965 to 2003, and it’s not as though the strip made pop culture references or jokes ripped from the headlines. Even if the strip changed its dimensions over the decades, to accommodate shrinking newspapers, there should be a decade at least of usable strips to rerun.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 31st uses a chart to tease mathematicians, both in the comic and in the readership. The joke is in the format of the graph. The graph is supposed to argue that the Mathematician’s pedantry is increasing with time, and it does do that. But it is customary in this sort of graph for the independent variable to be the horizontal axis and the dependent variable the vertical. So, if the claim is that the pedantry level rises as time goes on, yes, this is a … well, I want to say wrong way to arrange the axes. This is because the chart, as drawn, breaks a convention. But convention is a tool to help people’s comprehension. We are right to ignore convention if doing so makes the chart better serve its purpose. Which, the punch line is, this does.
It turned out to be Thursday. These things happen. The comics for the second half of last week were more marginal
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 20th is a joke about holographic cosmology, proving that there are such things as jokes about holographic cosmology. Cosmology is about the big picture stuff, like, why there is a universe and why it looks like that. It’s a rather mathematical field, owing to the difficulty of doing controlled experiments. Holograms are that same technology used back in the 80s to put shoddy three-dimensional-ish pictures of eagles on credit cards. (In the United States. I imagine they were other animals in other countries.) Holograms, at least when they’re well-made, encode the information needed to make a three-dimensional image in a two-dimensional surface. (Please pretend that anything made of matter is two-dimensional like that.)
Holographic cosmology is a mathematical model for the universe. It represents the things in a space with a description of information on the boundary of this space. This seems bizarre and it won’t surprise you that key inspiration was in the strange physics of black holes. Properties of everything which falls into a black hole manifest in the event horizon, the boundary between normal space and whatever’s going on inside the black hole. The black hole is this three-dimensional volume, but in some way everything there is to say about it is the two-dimensional edge.
Dr Leonard Susskind did much to give this precise mathematical form. You didn’t think the character name was just a bit of whimsy, did you? Susskind’s work showed how the information of a particle falling into a black hole — information here meaning stuff like its position and momentum — turn into oscillations in the event horizon. The holographic principle argues this can be extended to ordinary space, the whole of the regular universe. Is this so? It’s hard to say. It’s a corner of string theory. It’s difficult to run experiments that prove very much. And we are stuck with an epistemological problem. If all the things in the universe and their interactions are equally well described as a three-dimensional volume or as a two-dimensional surface, which is “real”? It may seem intuitively obvious that we experience a three-dimensional space. But that intuition is a way we organize our understanding of our experiences. That’s not the same thing as truth.
Gene Weingarten, Dan Weingarten, and David Clark’s Barney and Clyde for the 22nd is a joke about power, and how it can coerce someone out of truth. Arithmetic serves as an example of indisputable truth. It could be any deductive logic statement, or for that matter a definition. Arithmetic is great for the comic purpose needed here, though. Anyone can understand, at least the simpler statements, and work out their truth or falsity. And need very little word balloon space for it.
Bill Griffith’s Zippy the Pinhead for the 25th also features a quick mention of algebra as the height of rationality. Also as something difficult to understand. Most fields are hard to understand, when you truly try. But algebra works well for this writing purpose. Anyone who’d read Zippy the Pinhead has an idea of what understanding algebra would be like, the way they might not have an idea of holographic cosmology.
Teresa Logan’s Laughing Redhead Comics for the 25th is the Venn diagram joke for the week, this one with a celebrity theme. Your choice whether the logic of the joke makes sense. Ryan Reynolds and John Krasinski are among those celebrities that I keep thinking I don’t know, but that it turns out I do know. Ryan Gosling I’m still not sure about.
And then there are a couple strips too slight even to appear in this collection. Dean Young and John Marshall’s Blondie on the 22nd did a lottery joke, with discussion of probability along the way. (And I hadn’t had a tag for ‘Blondie’ before, so that’s an addition which someday will baffle me.) Bob Shannon’s Tough Town for the 23rd mentions mathematics teaching. It’s in service of a pun.
And now I’ll cover the handful of comic strips which ran last week and which didn’t fit in my Sunday report. And link to a couple of comics that ultimately weren’t worth discussion in their own right, mostly because they were repeats of ones I’ve already discussed. I have been trimming rerun comics out of my daily reading. But there are ones I like too much to give up, at least not right now.
Bud Blake’s Tiger for the 25th has Tiger quizzing Punkinhead on counting. The younger kid hasn’t reached the point where he can work out numbers without a specific physical representation. It would come, if he were in one of those comics where people age.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 24th is an optimization problem, and an expectation value problem. The wisdom-seeker searches for the most satisfying life. The mathematician-guru offers an answer based in probability and expectation values. List all the possible outcomes, and how probable each are, and how much of the relevant quantity you get (or lose) with each outcome. This is a quite utilitarian view of life-planning. Finding the best possible outcome, given certain constraints, is another big field of mathematics.
John Atkinson’s Wrong Hands for the 26th is a nonsense-equation panel. It’s built on a cute idea. If you do wan to know how many bears you can fit in the kitchen you would need something like this. Not this, though. You can tell by the dimensions. ‘x’, as the area of the kitchen, has units of, well, area. Square feet, or square meters, or square centimeters, or whatever is convenient to measure its area. The average volume of a bear, meanwhile, has units of … volume. Cubic feet, or cubic meters, or cubic centimeters, or the like. The one divided by the other has units of one-over-distance.
And I don’t know what the units of desire to have bears in your kitchen are, but I’m guessing it’s not “bear-feet”, although that would be worth a giggle. The equation would parse more closely if y were the number of bears that can fit in a square foot, or something similar. I say all this just to spoil Atkinson’s fine enough bit of nonsense.
Percy Crosby’s Skippy for the 26th is a joke built on inappropriate extrapolation. 3520 seconds is a touch under an hour. Skippy’s pace, if he could keep it up, would be running a mile every five minutes, 52 seconds. That pace isn’t impossible — I find it listed on charts for marathon runners. But that would be for people who’ve trained to be marathon or other long-distance runners. They probably have different fifty-yard run times.
And now for some of the recent comics that didn’t seem worth their own discussion, and why they didn’t.
Niklas Eriksson’s Carpe Diem for the 20th features reciting the digits of π as a pointless macho stunt. There are people who make a deal of memorizing digits of π. Everyone needs hobbies, and memorizing meaningless stuff is a traditional fanboy’s way of burying oneself in the thing appreciated. Me, I can give you π to … I want to say sixteen digits. I might have gone farther in my youth, but I was heartbroken when I learned one of the digits I had memorized I got wrong, and so after correcting that mess I gave up going farther.
The first, important, thing is that I have not disappeared or done something worse. I just had one of those weeks where enough was happening that something had to give. I could either write up stuff for my mathematics blog, or I could feel guilty about not writing stuff up for my mathematics blog. Since I didn’t have time to do both, I went with feeling guilty about not writing, instead. I’m hoping this week will give me more writing time, but I am fooling only myself.
Second is that Comics Kingdom has, for all my complaining, gotten less bad in the redesign. Mostly in that the whole comics page loads at once, now, instead of needing me to click to “load more comics” every six strips. Good. The strips still appear in weird random orders, especially strips like Prince Valiant that only run on Sundays, but still. I can take seeing a vintage Boner’s Ark Sunday strip six unnecessary times. The strips are still smaller than they used to be, and they’re not using the decent, three-row format that they used to. And the archives don’t let you look at a week’s worth in one page. But it’s less bad, and isn’t that all we can ever hope for out of the Internet anymore?
And finally, Comic Strip Master Command wanted to make this an easy week for me by not having a lot to write about. It got so light I’ve maybe overcompensated. I’m not sure I have enough to write about here, but, I don’t want to completely vanish either.
Dave Whamond’s Reality Check for the 15th is … hm. Well, it’s not an anthropomorphic-numerals joke. It is some kind of wordplay, making concrete a common phrase about, and attitude toward, numbers. I could make the fussy difference between numbers and numerals here but I’m not sure anyone has the patience for that.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 17th touches around mathematics without, I admit, necessarily saying anything specific. The angel(?) welcoming the man to heaven mentions creating new systems of mathematics as some fit job for the heavenly host. The discussion of creating self-consistent physics systems seems mathematical in nature too. I’m not sure whether saying one could “attempt” to create self-consistent physics is meant to imply that our universe’s physics are not self-consistent. To create a “maximally complex reality using the simplest possible constructions” seems like a mathematical challenge as well. There are important fields of mathematics built on optimizing, trying to create the most extreme of one thing subject to some constraints or other.
I think the strip’s premise is the old, partially a joke, concept that God is a mathematician. This would explain why the angel(?) seems to rate doing mathematics or mathematics-related projects as so important. But even then … well, consider. There’s nothing about designing new systems of mathematics that ordinary mortals can’t do. Creating new physics or new realities is beyond us, certainly, but designing the rules for such seems possible. I think I understood this comic better then I had thought about it less. Maybe including it in this column has only made trouble for me.
Doug Savage’s Savage Chickens for the 17th amuses me by making a strip out of a logic paradox. It’s not quite your “this statement is a lie” paradox, but it feels close to that, to me. To have the first chicken call it “Birthday Paradox” also teases a familiar probability problem. It’s not a true paradox. It merely surprises people who haven’t encountered the problem before. This would be the question of how many people you need to have in a group before there’s a 50 percent (75 percent, 99 percent, whatever you like) chance of at least one pair sharing a birthday.
And I notice on Wikipedia a neat variation of this birthday problem. This generalization considers splitting people into two distinct groups, and how many people you need in each group to have a set chance of a pair, one person from each group, sharing a birthday. Apparently both a 32-person group of 16 women and 16 men, or a 49-person group of 43 women and six men, have a 50% chance of some woman-man pair sharing a birthday. Neat.
Mark Parisi’s Off The Mark for the 18th sports a bit of wordplay. It’s built on how multiplication and division also have meanings in biology. … If I’m not mis-reading my dictionary, “multiply” meant any increase in number first, and the arithmetic operation we now call multiplication afterwards. Division, similarly, meant to separate into parts before it meant the mathematical operation as well. So it might be fairer to say that multiplication and division are words that picked up mathematical meaning.
There were a handful of comic strips from last week which I didn’t already discuss. Two of them inspire me to write about how we know how to do things. That makes a good theme.
Marcus Hamilton and Scott Ketcham’s Dennis the Menace for the 27th gets into deep territory. How does we could count to a million? Maybe some determined soul has actually done it. But it would take the better part of a month. Things improve some if we allow that anything a computing machine can do, a person could do. This seems reasonable enough. It’s heady to imagine that all the computing done to support, say, a game of Roller Coaster Tycoon could be done by one person working alone with a sheet of paper. Anyway, a computer could show counting up to a million, a billion, a trillion, although then we start asking whether anyone’s checked that it hasn’t skipped some numbers. (Don’t laugh. The New York Times print edition includes an issue number, today at 58,258, at the top of the front page. It’s meant to list the number of published daily editions since the paper started. They mis-counted once, in 1898, and nobody noticed until 1999.)
Anyway, allow that. Nobody doubts that, if we put enough time and effort into it, we could count up to any positive whole number, or as they say in the trade, “counting number”. But … there is some largest number that we could possibly count to, even if we put every possible resource and all the time left in the universe to that counting. So how do we know we “could” count to a number bigger than that? What does it mean to say we “could” if the circumstances of the universe are such that we literally could not?
Counting up to a number seems uncontroversial enough. If I wanted to prove it I’d say something like “if we can count to the whole number with value N, then we can count to the whole number with value N + 1 by … going one higher.” And “We can count to the whole number 1”, proving that by enunciating as clearly as I can. The induction follows. Fine enough. That’s a nice little induction proof.
But … what if we needed to do more work? What if we needed to do a lot of work? There is a corner of logic which considers infinitely long proofs, or infinitely long statements. They’re not part of the usual deductive logic that any mathematician knows and relies on. We’re used to, at least in principle, being able to go through and check every step of a proof. If that becomes impossible is that still a proof? It’s not my field, so I feel comfortable not saying what’s right and what’s wrong. But it is one of those lectures in your Mathematical Logic course that leaves you hanging your jaw open.
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 27th is a joke about algorithms. These are the processes by which we know how to do a thing. Here, Hansel and Gretel are shown using what’s termed a “greedy algorithm” to follow pebbles back home. This kind of thing reflects trying to find an acceptable solution, in this case, finding a path somewhere. What makes it “greedy” is each step. You’re at a pebble. You can see other pebbles nearby. Which one do you go to? Go to some extreme one; in this case, the nearest. It could instead have been the biggest, or the shiniest, the one at the greatest altitude, the one nearest a water source. Doesn’t matter. You choose your summum bonum and, at each step, take the move that maximizes that.
The wicked mother knows something about this sort of algorithm, one that promises merely a solution and not the best solution. And that is that all these solutions can be broken. You can set up a problem that the algorithm can’t solve. Greedy algorithms are particularly vulnerable to this. They’re called “local maximums”. You find the best answer of the ones nearby, but not the best one you possibly could locate.
Why use an algorithm like this, that can be broken so? That’s because we often want to do problems like finding a path through the woods. There are so many possible paths that it’s hard to find one of the acceptable ones. But there are processes that will, typically, find an acceptable answer. Maybe processes that will let us take an acceptable answer and improve it to a good answer. And this is getting into my field.
Actual persons encountering one of these pebble rings would (probably) notice they were caught in a loop. And what they’d do, then, is suspend the greedy rule: instead of going to the nearest pebble they could find, they’d pick something else. Maybe simply the nearest pebble they hadn’t recently visited. Maybe the second-nearest pebble. Maybe they’d give up and strike out in a random direction, trusting they’ll find some more pebbles. This can lead them out of the local maximum they don’t want toward the “global maximum”, the path home, that they do. There’s no reason they can’t get trapped again — this is why the wicked mother made many loops — and no reason they might not get caught in a loop of loops again. Every algorithm like this can get broken by some problem, after all. But sometimes taking the not-the-best steps can lead you to a better solution. That’s the insight at the heart of “Metropolis-Hastings” algorithms, which was my field before I just read comic strips all the time.