Reading the Comics, June 29, 2019: Pacing Edition


These are the last of the comics from the final full week of June. Ordinarily I’d have run this on Tuesday or Thursday of last week. But I also had my monthly readership-report post and that bit about a particle physics simulator also to post. It better fit a posting schedule of something every two or three days to move this to Sunday. This is what I tell myself is the rationale for not writing things up faster.

Ernie Bushmiller’s Nancy Classics for the 27th uses arithmetic as an economical way to demonstrate intelligence. At least, the ability to do arithmetic is used as proof of intelligence. Which shouldn’t surprise. The conventional appreciation for Ernie Bushmiller is of his skill at efficiently communicating the ideas needed for a joke. That said, it’s a bit surprising Sluggo asks the dog “six times six divided by two”; if it were just showing any ability at arithmetic “one plus one” or “two plus two” would do. But “six times six divided by two” has the advantage of being a bit complicated. That is, it’s reasonable Sluggo wouldn’t know it right away, and would see it as something only the brainiest would. But it’s not so complicated that Sluggo wouldn’t plausibly know the question.

Nancy, to Sluggo, pointing to a wrinkled elderly man: 'That's Professor Stroodle, the big scientist. What a brain he must have! Look at that wrinkled brow --- that means lots and lots of brains.' Sluggo 'Wrinkles means brains?' Nancy: 'Sure!' Sluggo, interrogating a wrinkly-faced dog, to Nancy's surprise: 'What's six times six divided by two?'
Ernie Bushmiller’s Nancy Classics for the 27th of June, 2019. It originally ran the 21st of September, 1949. Essays inspired by something in Nancy, either the Ernie Bushmiller classics or the Olivia Jaimes modern ones, should appear at this link. I’m not going to group 1940s Nancy and 2010s Nancy separately.

Eric the Circle for the 28th, this one by AusAGirl, uses “Non-Euclidean” as a way to express weirdness in shape. My first impulse was to say that this wouldn’t really be a non-Euclidean circle. A non-Euclidean geometry has space that’s different from what we’re approximating with sheets of paper or with boxes put in a room. There are some that are familiar, or roughly familiar, such as the geometry of the surface of a planet. But you can draw circles on the surface of a globe. They don’t look like this mooshy T-circle. They look like … circles. Their weirdness comes in other ways, like how the circumference is not π times the diameter.

On reflection, I’m being too harsh. What makes a space non-Euclidean is … well, many things. One that’s easy to understand is to imagine that the space uses some novel definition for the distance between points. Distance is a great idea. It turns out to be useful, in geometry and in analysis, to use a flexible idea of of what distance is. We can define the distance between things in ways that look just like the Euclidean idea of distance. Or we can define it in other, weirder ways. We can, whatever the distance, define a “circle” as the set of points that are all exactly some distance from a chosen center point. And the appearance of those “circles” can differ.

Caption: Non-Euclidean Eric. The picture is of a sloppy, rounded upside-down-T-shaped figure that looks little like a circle.
Eric the Circle for the 28th of June, 2019, this one by AusAGirl. Essays which build on something mentioned in Eric the Circle should appear at this link.

There are literally infinitely many possible distance functions. But there is a family of them which we use all the time. And the “circles” in those look like … well, at the most extreme, they look like squares. Others will look like rounded squares, or like slightly diamond-shaped circles. I don’t know of any distance function that’s useful that would give us a circle like this picture of Eric. But there surely is one that exists and that’s enough for the joke to be certified factually correct. And that is what’s truly important in a comic strip.

Maeve, sitting awake at night, thinking of a Venn diagram: one balloon is 'What I said', the other is 'What I didn't say', and the overlap is 'What I'll ruminate over in self-recriminating perpetuity'.
Sandra Bell-Lundy’s Between Friends for the 29th of June, 2019. Essays in which I discuss something brought up by Between Friends should be at this link.

Sandra Bell-Lundy’s Between Friends for the 29th is the Venn Diagram joke for the week. Formally, you have to read this diagram charitably for it to parse. If we take the “what” that Maeve says, or doesn’t say, to be particular sentences, then the intersection has to be empty. You can’t both say and not-say a sentence. But it seems to me that any conversation of importance has the things which we choose to say and the things which we choose not to say. And it is so difficult to get the blend of things said and things unsaid correct. And I realize that the last time Between Friends came up here I was similarly defending the comic’s Venn Diagram use. I’m a sympathetic reader, at least to most comic strips.


And that was the conclusion of comic strips through the 29th of June which mentioned mathematics enough for me to write much about. There were a couple other comics that brought up something or other, though. Wulff and Morgenthaler’s WuMo for the 27th of June has a Rubik’s Cube joke. The traditional Rubik’s Cube has three rows, columns, and layers of cubes. But there’s no reason there can’t be more rows and columns and layers. Back in the 80s there were enough four-by-four-by-four cubes sold that I even had one. Wikipedia tells me the officially licensed cubes have gotten only up to five-by-five-by-five. But that there was a 17-by-17-by-17 cube sold, with prototypes for 22-by-22-by-22 and 33-by-33-by-33 cubes. This seems to me like a great many stickers to peel off and reattach.

And two comic strips did ballistic trajectory calculation jokes. These are great introductory problems for mathematical physics. They’re questions about things people can observe and so have a physical intuition for, and yet involve mathematics that’s not too subtle or baffling. John Rose’s Barney Google and Snuffy Smith mentioned the topic the 28th of June. Doug Savage’s Savage Chickens used it the 28th also, because sometimes comic strips just line up like that.


This and other Reading the Comics posts should be at this link. This includes, I hope, the strips of this past week, that is, the start of July, which should be published Tuesday. Thanks for reading at all.

Advertisements

Reading the Comics, April 18, 2019: Slow But Not Stopped Week Edition


The first, important, thing is that I have not disappeared or done something worse. I just had one of those weeks where enough was happening that something had to give. I could either write up stuff for my mathematics blog, or I could feel guilty about not writing stuff up for my mathematics blog. Since I didn’t have time to do both, I went with feeling guilty about not writing, instead. I’m hoping this week will give me more writing time, but I am fooling only myself.

Second is that Comics Kingdom has, for all my complaining, gotten less bad in the redesign. Mostly in that the whole comics page loads at once, now, instead of needing me to click to “load more comics” every six strips. Good. The strips still appear in weird random orders, especially strips like Prince Valiant that only run on Sundays, but still. I can take seeing a vintage Boner’s Ark Sunday strip six unnecessary times. The strips are still smaller than they used to be, and they’re not using the decent, three-row format that they used to. And the archives don’t let you look at a week’s worth in one page. But it’s less bad, and isn’t that all we can ever hope for out of the Internet anymore?

And finally, Comic Strip Master Command wanted to make this an easy week for me by not having a lot to write about. It got so light I’ve maybe overcompensated. I’m not sure I have enough to write about here, but, I don’t want to completely vanish either.

Man walking past a street sign for 52 Ludlow Avenue; the 5 falls down and hits him on the head. Woman with him: 'Numbers are hard.'
Dave Whamond’s Reality Check for the 15th of April, 2019. Appearances in these pages of Reality Check should be gathered at this link.

Dave Whamond’s Reality Check for the 15th is … hm. Well, it’s not an anthropomorphic-numerals joke. It is some kind of wordplay, making concrete a common phrase about, and attitude toward, numbers. I could make the fussy difference between numbers and numerals here but I’m not sure anyone has the patience for that.

Man in a cloudscape: 'I made it to heaven!' Angel: 'You sure did! Now you get to do the best stuff! You can design new systems of mathematics! You can attempt to create self-consistent physics systems. Beset of all, try to create a maximally complex reality using the simplest possible constructions!' Man: 'But that sounds terrible.' Angel: 'QUIET! He hears EVERYTHING.'
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 17th of April, 2019. I am surprised that this is the first time this strip has drawn a mention this month. Well, this and other Saturday Morning Breakfast Cereal posts are at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 17th touches around mathematics without, I admit, necessarily saying anything specific. The angel(?) welcoming the man to heaven mentions creating new systems of mathematics as some fit job for the heavenly host. The discussion of creating self-consistent physics systems seems mathematical in nature too. I’m not sure whether saying one could “attempt” to create self-consistent physics is meant to imply that our universe’s physics are not self-consistent. To create a “maximally complex reality using the simplest possible constructions” seems like a mathematical challenge as well. There are important fields of mathematics built on optimizing, trying to create the most extreme of one thing subject to some constraints or other.

I think the strip’s premise is the old, partially a joke, concept that God is a mathematician. This would explain why the angel(?) seems to rate doing mathematics or mathematics-related projects as so important. But even then … well, consider. There’s nothing about designing new systems of mathematics that ordinary mortals can’t do. Creating new physics or new realities is beyond us, certainly, but designing the rules for such seems possible. I think I understood this comic better then I had thought about it less. Maybe including it in this column has only made trouble for me.

First chicken: 'What do you want for your birthday?' Second chicken: 'I want everybody to ignore my birthday!' First: 'But if I ignore your birthday I'll be giving the perfect birthday gift, which means I'll be celebrating your birthday, which means I won't be ignoring it!!! AAAAUGH! BIRTHDAY PARADOX!!'
Doug Savage’s Savage Chickens for the 17th of April, 2019. Essays inspired by something from Savage Chickens should be at this link.

Doug Savage’s Savage Chickens for the 17th amuses me by making a strip out of a logic paradox. It’s not quite your “this statement is a lie” paradox, but it feels close to that, to me. To have the first chicken call it “Birthday Paradox” also teases a familiar probability problem. It’s not a true paradox. It merely surprises people who haven’t encountered the problem before. This would be the question of how many people you need to have in a group before there’s a 50 percent (75 percent, 99 percent, whatever you like) chance of at least one pair sharing a birthday.

And I notice on Wikipedia a neat variation of this birthday problem. This generalization considers splitting people into two distinct groups, and how many people you need in each group to have a set chance of a pair, one person from each group, sharing a birthday. Apparently both a 32-person group of 16 women and 16 men, or a 49-person group of 43 women and six men, have a 50% chance of some woman-man pair sharing a birthday. Neat.

Man speaking to a teacher: 'There are two angry parents outside. One's upset that you're teaching multiplication ... the other us upset you're teaching division.' Outside the door are an angry bunny and an angry amoeba.
Mark Parisi’s Off The Mark for the 18th of April, 2019. And essays inspired by Off The Mark should appear at this link.

Mark Parisi’s Off The Mark for the 18th sports a bit of wordplay. It’s built on how multiplication and division also have meanings in biology. … If I’m not mis-reading my dictionary, “multiply” meant any increase in number first, and the arithmetic operation we now call multiplication afterwards. Division, similarly, meant to separate into parts before it meant the mathematical operation as well. So it might be fairer to say that multiplication and division are words that picked up mathematical meaning.


And if you thought this week’s pickings had slender mathematical content? Jef Mallett’s Frazz, for the 19th, just mentioned mathematics homework. Well, there were a couple of quite slight jokes the previous week too, that I never mentioned. Jenny Campbell’s Flo and Friends for the 8th did a Roman numerals joke. The rerun of Richard Thompson’s Richard’s Poor Almanac for the 11th had the Platonic Fir Christmas tree, rendered as a geometric figure. I’ve discussed the connotations of that before.

And there we are. I hope to have some further writing this coming week. But if all else fails my next Reading the Comics essay, like all of them, should be at this link.

Reading the Comics, April 10, 2019: Grand Avenue and Luann Want My Attention Edition


So this past week has been a curious blend for the mathematically-themed comics. There were many comics mentioning some mathematical topic. But that’s because Grand Advenue and Luann Againn — reprints of early 90s Luann comics — have been doing a lot of schoolwork. There’s a certain repetitiveness to saying, “and here we get a silly answer to a story problem” four times over. But we’ll see what I do with the work.

Mark Anderson’s Andertoons for the 7th is Mark Anderson’s Andertoons for the week. Very comforting to see. It’s a geometry-vocabulary joke, with Wavehead noticing the similar ends of some terms. I’m disappointed that I can’t offer much etymological insight. “Vertex”, for example, derives from the Latin for “highest point”, and traces back to the Proto-Indo-European root “wer-”, meaning “to turn, to bend”. “Apex” derives from the Latin for “summit” or “extreme”. And that traces back to the Proto-Indo-European “ap”, meaning “to take, to reach”. Which is all fine, but doesn’t offer much about how both words ended up ending in “ex”. This is where my failure to master Latin by reading a teach-yourself book on the bus during my morning commute for three months back in 2002 comes back to haunt me. There’s probably something that might have helped me in there.

On the blackboard is a square-based pyramid with 'apex' labelled; also a circular cone with 'vertex' labelled. Wavehead: 'And if you put them together they're a duplex.'
Mark Anderson’s Andertoons for the 7th of March, 2019. I write about this strip a lot. Essays mentioning Andertoons are at this link.

Mac King and Bill King’s Magic in a Minute for the 7th is an activity puzzle this time. It’s also a legitimate problem of graph theory. Not a complicated one, but still, one. Graph theory is about sets of points, called vertices, and connections between points, called edges. It gives interesting results for anything that’s networked. That shows up in computers, in roadways, in blood vessels, in the spreads of disease, in maps, in shapes.

Here's a tough little puzzle to get your brain firing on all four cylinders. See if you can connect the matching numbered boxes with three lines. The catch is that the liens cannot cross over each other. From left to right are disjoint boxes labelled 1, 2, 1, and 2. Above and below the center of the row are two boxes labelled 3.
Mac King and Bill King’s Magic in a Minute for the 7th of March, 2019. I should have the essays mentioning Magic In A Minute at this link.

One common problem, found early in studying graph theory, is about whether a graph is planar. That is, can you draw the whole graph, all its vertices and edges, without any lines cross each other? This graph, with six vertices and three edges, is planar. There are graphs that are not. If the challenge were to connect each number to a 1, a 2, and a 3, then it would be nonplanar. That’s a famous non-planar graph, given the obvious name K3, 3. A fun part of learning graph theory — at least fun for me — is looking through pictures of graphs. The goal is finding K3, 3 or another one called K5, inside a big messy graph.

Exam Question: Jack bought seven marbles and lost six. How many additional marbles must Jack buy to equal seven? Kid's answer: 'Jack wouldn't know. He's lost his marbles.'
Mike Thompson’s Grand Avenue for the 8th of March, 2019. I’m not always cranky about this comic strips. Examples of when I’m not are at this link, as are the times I’m annoyed with Grand Avenue.

Mike Thompson’s Grand Avenue for the 8th has had a week of story problems featuring both of the kid characters. Here’s the start of them. Making an addition or subtraction problem about counting things is probably a good way of making the problem less abstract. I don’t have children, so I don’t know whether they play marbles or care about them. The most recent time I saw any of my niblings I told them about the subtleties of industrial design in the old-fashioned Western Electric Model 2500 touch-tone telephone. They love me. Also I’m not sure that this question actually tests subtraction more than it tests reading comprehension. But there are teachers who like to throw in the occasional surprisingly easy one. Keeps students on their toes.

Gunther: 'You put a question mark next to the part about using the slope-intercept form of a linear equation. What don't you understand?' Luann: 'Lemme see. Oh ... yeah. I don't understand why on earth I need to know this.'
Greg Evans’s Luann Againn for the 10th of March, 2019. This strip originally ran the 10th of March, 1991. Essays which include some mention of Luann, either current or 1990s reprints, are at this link.

Greg Evans’s Luann Againn for the 10th is part of a sequence showing Gunther helping Luann with her mathematics homework. The story started the day before, but this was the first time a specific mathematical topic was named. The point-slope form is a conventional way of writing an equation which corresponds to a particular line. There are many ways to write equations for lines. This is one that’s convenient to use if you know coordinates for one point on the line and the slope of the line. Any coordinates which make the equation true are then the coordinates for some point on the line.

How To Survive a Shark Attack (illustrated with a chicken surviving a shark.0 Keep your eye on the shark and move slowly toward safety. Don't make any sudden movements such as splashing or jazz hands. If the shark comes at you, punch it in the gills, snout, or eyes. You won't hurt the shark, but it will be surprised by your audacity. If all else fails, try to confuse it with logical paradoxes. Chicken: 'This statement is false.' Shark, wide-eyed and confused: '?'
Doug Savage’s Savage Chickens for the 10th of March, 2019. And when I think of something to write about Savage Chickens the results are at this link.

Doug Savage’s Savage Chickens for the 10th tosses in a line about logical paradoxes. In this case, using a classic problem, the self-referential statement. Working out whether a statement is true or false — its “truth value” — is one of those things we expect logic to be able to do. Some self-referential statements, logical claims about themselves, are troublesome. “This statement is false” was a good one for baffling kids and would-be world-dominating computers in science fiction television up to about 1978. Some self-referential statements seem harmless, though. Nobody expects even the most timid world-dominating computer to be bothered by “this statement is true”. It takes more than just a statement being about itself to create a paradox.


And a last note. The blog hardly needs my push to help it out, but, sometimes people will miss a good thing. Ben Orlin’s Math With Bad Drawings just ran an essay about some of the many mathematics-themed comics that Hilary Price and Rina Piccolo’s Rhymes With Orange has run. The comic is one of my favorites too. Orlin looks through some of the comic’s twenty-plus year history and discusses the different types of mathematical jokes Price (with, in recent years, Piccolo) makes.

Myself, I keep all my Reading the Comics essays at this link, and those mentioning some aspect of Rhymes With Orange at this link.

Reading the Comics, April 5, 2019: The Slow Week Edition


People reading my Reading the Comics post Sunday maybe noticed something. I mean besides my correct, reasonable complaining about the Comics Kingdom redesign. That is that all the comics were from before the 30th of March. That is, none were from the week before the 7th of April. The last full week of March had a lot of comic strips. The first week of April didn’t. So things got bumped a little. Here’s the results. It wasn’t a busy week, not when I filter out the strips that don’t offer much to write about. So now I’m stuck for what to post Thursday.

Jason Poland’s Robbie and Bobby for the 3rd is a Library of Babel comic strip. This is mathematical enough for me. Jorge Luis Borges’s Library is a magnificent representation of some ideas about infinity and probability. I’m surprised to realize I haven’t written an essay specifically about it. I have touched on it, in writing about normal numbers, and about the infinite monkey theorem.

At a tower. Bobby: 'The library of Babel!' Robbie: 'Inside is every book that will ever be written! It may take the rest of our lives to search, but it'll be worth it!' Bobby: 'What? No index?' Robbie: 'The search for meaning has no index.' Bobby (on the phone): 'I just downloaded one.' Robbie: 'It can't have everything. ... Mark Twain vs Frankenstein? Dante in Space? Harry Potter Infinity?' Bobby: 'Yep. All available as e-books too! Wow, Jeff Goldblum does the audio books.' Robbie: 'pfff. Well, forget this place!' (They leave a 'BORING' sign across the library's door.)
Jason Poland’s Robbie and Bobby for the 3rd of April, 2019. I would have sworn that I write more about this strip. But this seems to be the first time I’ve mentioned it since 2017. Well, that and other Robbie and Bobby-based essays are at this link.

The strip explains things well enough. The Library holds every book that will ever be written. In the original story there are some constraints. Particularly, all the books are 410 pages. If you wanted, say, a 600-page book, though, you could find one book with the first 410 pages and another book with the remaining 190 pages and then some filler. The catch, as explained in the story and in the comic strip, is finding them. And there is the problem of finding a ‘correct’ text. Every possible text of the correct length should be in there. So every possible book that might be titled Mark Twain vs Frankenstein, including ones that include neither Mark Twain nor Frankenstein, is there. Which is the one you want to read?

Over a pizza. Reggie: 'Don't let Jughead near the pizza! He always ends up eating half of it!' Jughead, with the cutter: 'Relax! I've divided it into four equal slices! Check it yourself!' Reggie: 'OK, I guess they do look equal.' Archie: 'Except for one thing! There are only three of us!' (Reggie and Archie each have one slice; Jughead has two.)
Henry Scarpelli and Craig Boldman’s Archie for the 4th of April, 2019. Now this strip I’ve written about as recently as October. That appearance, and other Archie strips, are discussed at this link.

Henry Scarpelli and Craig Boldman’s Archie for the 4th features an equal-divisions problem. In principle, it’s easy to divide a pizza (or anything else) equally; that’s what we have fractions for. Making them practical is a bit harder. I do like Jughead’s quick work, though. It’s got the slight-of-hand you expect from stage magic.

Caterpillars in an algebra classroom. On the back of one caterpillar student is a sign, 'Kick^{10} me'.
Scott Hilburn’s The Argyle Sweater for the 4th of April, 2019. And this strip I’ve written about … wait, can I really have gone since early March without mentioning? Huh. Well, so it appears. Essays discussing The Argyle Sweater appear at this link.

Scott Hilburn’s The Argyle Sweater for the 4th takes place in an algebra class. I’m not sure what algebraic principle 7^4 \times 13^6 demonstrates, but it probably came from somewhere. It’s 4,829,210. The exponentials on the blackboard do cue the reader to the real joke, of the sign reading “kick10 me”. I question whether this is really an exponential kicking situation. It seems more like a simple multiplication to me. But it would be harder to make that joke read clearly.

Tony Cochran’s Agnes for the 5th is part of a sequence investigating how magnets work. Agnes and Trout find just … magnet parts inside. This is fair. It’s even mathematics.

Looking over a pile of debris and a hammer on the table. Agnes: 'OK, we smashed a magnet. What do we see?' Trout: 'Uh. Magnet crumbs.' Agnes: 'Me too. I see magnet crumbs.' Trout: 'No gizmos, no gears, no wires. Just dirty black magnet crumbs.' Agnes: 'So what does this tell us about magnet function?' Trout: 'That it's one of God's many mysteries. Let's go eat.'
Tony Cochran’s Agnes for the 5th of April, 2019. And this strip I quite like, but don’t get to discuss enough. My essays featuring Agnes appears at this link.

Thermodynamics classes teach one of the great mathematical physics models. This is about what makes magnets. Magnets are made of … smaller magnets. This seems like question-begging. Ultimately you get down to individual molecules, each of which is very slightly magnetic. When small magnets are lined up in the right way, they can become a strong magnet. When they’re lined up in another way, they can be a weak magnet. Or no magnet at all.

How do they line up? It depends on things, including how the big magnet is made, and how it’s treated. A bit of energy can free molecules to line up, making a stronger magnet out of a weak one. Or it can break up the alignments, turning a strong magnet into a weak one. I’ve had physics instructors explain that you could, in principle, take an iron rod and magnetize it just by hitting it hard enough on the desk. And then demagnetize it by hitting it again. I have never seen one do this, though.

This is more than just a physics model. The mathematics of it is … well, it can be easy enough. A one-dimensional, nearest-neighbor model, lets us describe how materials might turn into magnets or break apart, depending on their temperature. Two- or three-dimensional models, or models that have each small magnet affected by distant neighbors, are harder.


And then there’s the comic strips that didn’t offer much to write about.
Brian Basset’s Red and Rover for the 3rd,
Liniers’s Macanudo for the 5th, Stephen Bentley’s Herb and Jamaal rerun for the 5th, and Gordon Bess’s Redeye rerun for the 5th all idly mention mathematics class, or things brought up in class.

Doug Savage’s Savage Chickens for the 2nd is another more-than-100-percent strip. Richard Thompson’s Richard’s Poor Almanac for the 3rd is a reprint of his Christmas Tree guide including a fir that “no longer inhabits Euclidean space”.

Mike Baldwin’s Cornered for the 31st depicts a common idiom about numbers. Eric the Circle for the 5th, by Rafoliveira, plays on the ∞ symbol.


And that covers the mathematically-themed comic strips from last week. There are more coming, though. I’ll show them on Sunday. Thanks for reading.

Reading the Comics, March 9, 2019: In Which I Explain Eleven Edition


I thought I had a flood of mathematically-themed comic strips last week. On reflection, many of them were slight enough not to need further context. You’ll see in the paragraph of not-discussed strips at the end of this. What did rate discussion turned out to get more interesting to me the more I wrote about them.

Stephen Beals’s Adult Children for the 6th uses mathematics as icon of things that are indisputably true. Two plus two equals four is a good example of such. If we take the ordinary meanings of ‘two’ and ‘plus’ and ‘equals’ and ‘four’ there’s no disputing it. The result follows from some uncontroversial-seeming axioms and a lot of deduction. By the rules of logic, the conclusion has to be true, whoever makes it. Even, for that matter, if nobody makes it. It’s difficult to imagine a universe in which nobody ever notices two plus two equals four. But we can imagine that there are mathematical truths that will never be noticed by anyone. (Here’s one. There is some largest finite whole number that any human-created project will ever use in any context. Consider the equation represented by “that number plus two equals (even bigger number)”.)

Harvey: 'Everyone ignores facts! Two plus two equals four, you know what I mean?' Friend: 'Yes. In your opinion, two plus two equals four.' Harvey: 'Noooo! Facts aren't opinions! There are no true facts, fake facts, iffy facts ... just facts! Let's judge things based on the facts!' Friend: 'And how do these facts make you feel?' Harvey, clutching his chest. 'Like you're giving me a fact attack.'
Stephen Beals’s Adult Children for the 6th of March, 2019. Essays inspired by something mentioned in Adult Children appear at this link.

But you see cards palmed there. What do we mean by ‘two’? Have we got a good definition? Might there be a different definition that’s more useful? Probably not, for ‘two’ anyway. But a part of mathematics, especially as a field develops, is working out what are the important concepts, and what their definitions should be. What a ‘function’ is, for example, went through a lot of debate and change over the 19th century. There is an elusiveness to facts, even in mathematics, where you’d think epistemology would be simpler.

Lauren's problem: '(x^2 y - 3y^2 + 5xy^2) - (-x^2 y + 3xy^2 - 3y^2). Which of the following is equivalent to the expression above? a. 4x^2 y^2. b. 8xy^2 - 6y^2. c. 2x^2 + 2xy^2. d. 2x^2 y + 8xy^2 - 6y^2.' Next problem: 'If a/b = 2 what's the value of 4b/a? a. 0. b. 1. c. 2. d. 4.' Bob, holding up empty ice trays: 'If a and b are empty because Lauren is selfish and not thinking of Bob, what are the chances he gets to have an iced drink? a. slim, b. none, c. all of the above?'
Frank Page’s Bob the Squirrel for the 6th of March, 2019. When I’m moved to write something based on Bob the Squirrel the essays should be tagged to appear at this link.

Frank Page’s Bob the Squirrel for the 6th continues the SAT prep questions from earlier in the week. There’s two more problems in shuffling around algebraic expressions here. The first one, problem 5, is probably easiest to do by eliminating wrong answers. (x^2 y - 3y^2 + 5xy^2) - (-x^2 y + 3xy^2 - 3y^2) is a tedious mess. But look at just the x^2 y terms: they have to add up to 2x^2 y , so, the answer has to be either c or d. So next look at the 3y^2 terms and oh, that’s nice. They add up to zero. The answer has to be c. If you feel like checking the 5xy^2 terms, go ahead; that’ll offer some reassurance, if you do the addition correctly.

The second one, problem 8, is probably easier to just think out. If \frac{a}{b} = 2 then there’s a lot of places to go. What stands out to me is that 4\frac{b}{a} has the reciprocal of \frac{a}{b} in it. So, the reciprocal of \frac{a}{b} has to equal the reciprocal of 2 . So \frac{a}{b} = \frac{1}{2} . And 4\frac{b}{a} is, well, four times \frac{b}{a} , so, four times one-half, or two. There’s other ways to go about this. In honestly, what I did when I looked at the problem was multiply both sides of \frac{a}{b} = 2 by \frac{b}{a} . But it’s harder to explain why that struck me as an obviously right thing to do. It’s got shortcuts I grew into from being comfortable with the more methodical approach. Someone who does a lot of problems like these will discover shortcuts.

Ruthie on the phone: 'Hello, homework hotline? I have an arithmetic question. Why isn't eleven called oneteen, and twelve called twoteen? ... You don't know? ... May I speak to your supervisor, please?'
Rick Detorie’s One Big Happy for the 6th of March, 2019. This particular strip is several years old, but I can’t pin down its original run more precisely than that. Essays featuring One Big Happy should be at this link.

Rick Detorie’s One Big Happy for the 6th asks one of those questions you need to be a genius or a child to ponder. Why don’t the numbers eleven and twelve follow the pattern of the other teens, or for that matter of twenty-one and thirty-two, and the like? And the short answer is that they kind of do. At least, “eleven” and “twelve”, etymologists agree, derive from the Proto-Germanic “ainlif” and “twalif”. If you squint your mouth you can get from “ain” to “one” (it’s probably easier if you go through the German “ein” along the way). Getting from “twa” to “two” is less hard. If my understanding is correct, etymologists aren’t fully agreed on the “lif” part. But they are settled on it means the part above ten. Like, “ainlif” would be “one left above ten”. So it parses as one-and-ten, putting it in form with the old London-English preference for one-and-twenty or two-and-thirty as word constructions.

It’s not hard to figure how “twalif” might over centuries mutate to “twelve”. We could ask why “thirteen” didn’t stay something more Old Germanic. My suspicion is that it amounts to just, well, it worked out like that. It worked out the same way in German, which switches to “-zehn” endings from 13 on. Lithuanian has all the teens end with “-lika”; Polish, similarly, but with “-ście”. Spanish — not a Germanic language — has “custom” words for the numbers up to 15, and then switches to “diecis-” as a prefix to the numbers 6 through 9. French doesn’t switch to a systematic pattern until 17. (And no I am not going to talk about France’s 80s and 90s.) My supposition is that different peoples came to different conclusions about whether they needed ten, or twelve, or fifteen, or sixteen, unique names for numbers before they had to resort to systemic names.

Here’s some more discussion of the teens, though, including some exploration of the controversy and links to other explanations.

Caption: '4 out of 5 Doctors agree ... ' Four, of five, chickens dressed as doctors: 'We are 80% of the doctors!'
Doug Savage’s Savage Chickens for the 6th of March, 2019. And the occasional essay based on Savage Chickens should be gathered at this link.

Doug Savage’s Savage Chickens for the 6th is a percentages comic. It makes reference to an old series of (American, at least) advertisements in which four out of five dentists would agree that chewing sugarless gum is a good thing. Shifting the four-out-of-five into 80% riffs is not just fun with tautologies. Percentages have this connotation of technical precision; 80% sounds like a more rigorously known number than “four out of five”. It doesn’t sound as scientific as “0.80”, quite. But when applied to populations a percentage seems less bizarre than a decimal.


Oh, now, and what about comic strips I can’t think of anything much to write about?
Ruben Bolling’s Super-Fun-Pak Comix for the 4th featured divisibility, in a panel titled “Fun Facts for the Obsessive-Compulsive”. Olivia James’s Nancy on the 6th was avoiding mathematics homework. Jonathan Mahood’s Bleeker: The Rechargeable Dog for the 7th has Skip avoiding studying for his mathematics test. Bob Scott’s Bear With Me for the 7th has Molly mourning a bad result on her mathematics test. (The comic strip was formerly known as Molly And The Bear, if this seems familiar but the name seems wrong.) These are all different comic strips, I swear. Bill Holbrook’s Kevin and Kell for the 8th has Rudy and Fiona in mathematics class. (The strip originally ran in 2013; Comics Kingdom has started running Holbrook’s web comic, but at several years’ remove.) And, finally, Alex Hallatt’s Human Cull for the 8th talks about “110%” as a phrase. I don’t mind the phrase, but the comic strip has a harder premise.


And that finishes the comic strips from last week. But Pi Day is coming. I’ll be ready for it. Shall see you there.

Reading the Comics, December 5, 2018: December 5, 2018 Edition


And then I noticed there were a bunch of comic strips with some kind of mathematical theme on the same day. Always fun when that happens.

Bill Holbrook’s On The Fastrack uses one of Holbrook’s common motifs. That’s the depicting as literal some common metaphor. in this case it’s “massaging the numbers”, which might seem not strictly mathematics. But while numbers are interesting, they’re also useful. To be useful they must connect to something we want to know. They need context. That context is always something of human judgement. If the context seems inappropriate to the listener, she thinks the presenter is massaging the numbers. If the context seems fine, we trust the numbers as showing something truth.

A man making a report touches a figure 8, reducing it to a wobbly mess. He finally has several wrinkled, flattened numbers dangling over the 'screen' edge. Fi: 'You massage these numbers, didn't you?' Man: 'No! They're naturally relaxed!'
Bill Holbrook’s On The Fastrack for the 5th of December, 2018. Essays inspired by On The Fastrack appear at this link.

Scott Hilburn’s The Argyle Sweater is a seasonal pun that couldn’t wait for a day closer to Christmas. I’m a little curious why not. It would be the same joke with any subject, certainly. The strip did make me wonder if Ebeneezer Scrooge, in-universe, might have taken calculus. This lead me to see that it’s a bit vague what, precisely, Scrooge, or Scrooge-and-Marley, did. The movies are glad to position him as having a warehouse, and importing and exporting things, and making and collecting on loans and whatnot. These are all trades that mathematicians would like to think benefit from knowing advanced mathematics. The logic of making loans implies attention be paid to compounding interest, risks, and expectation values, as well as projecting cash-flow a fair bit into the future. But in the original text he doesn’t make any stated loans, and the only warehouse anyone enters is Fezziwig’s. Well, the Scrooge and Marley sign stands “above the warehouse door”, but we only ever go in to the counting-house. And yes, what Scrooge does besides gather money and misery is irrelevant to the setting of the story.

Caption: 'Young Ebeneezer Scrooge gets a visit from the Ghost of Calculus Passed.' The Ghost holds up a D+ paper, terrifying Scrooge in his bed. The Ghost: 'If you'd only studied you could've gotten a C.'
Scott Hilburn’s The Argyle Sweater for the 5th of December, 2018. Some of the many times I’ve talked about The Argyle Sweater appear at this link.

Teresa Burritt’s Dadaist strip Frog Applause uses knowledge of mathematics as an emblem of intelligence. “Multivariate analysis” is a term of art from statistics. It’s about measuring how one variable changes depending on two or more other variables. The goal is obvious: we know there are many things that influence anything of interest. Can we find what things have the strongest effects? The weakest effects? There are several ways we might mean “strongest” effect, too. It might mean that a small change in the independent variable produces a big change in the dependent one. Or it might mean that there’s very little noise, that a change in the independent variable produces a reliable change in the dependent one. Or we might have several variables that are difficult to measure precisely on their own, but with a combination that’s noticeable. The basic calculations for this look a lot like those for single-variable analysis. But there’s much more calculation. It’s more tedious, at least. My reading suggests that multivariate analysis didn’t develop much until there were computers cheap enough to do the calculations. Might be coincidence, though. Many machine-learning techniques can be described as multivariate analysis problems.

Caption: 'She knew she was smarter than he was, but she married him anyway.' Clip-art woman comforting a seated man; 'Look at it this way. If you don't know what a multivariate analysis is, you probably can't do one.'
Teresa Burritt’s Frog Applause for the 5th of December, 2018. Essays with reason to mention Frog Applause should be at this link.

Greg Evans’s Luann Againn is a Pi Day joke from before the time when Pi Day was a thing. Brad’s magazine flipping like that is an unusual bit of throwaway background humor for the comic strip.

Luann: 'Brad, how much is 'pi'?' Brad: 'A whole one or just a slice?'
Greg Evans’s Luann Againn for the 5th of December, 2018. This originally ran the 5th of December, 1990. Essays which mention Luann, current-day or 1990-vintage rerun, appear at this link.

Doug Savage’s Savage Chickens is a bunch of shape jokes. Since I was talking about tiling the plane so recently the rhombus seemed on-point enough. I’m think the irregular heptagon shown here won’t tile the plane. But given how much it turns out I didn’t know, I wouldn’t want to commit to that.

Title: Ninja Weapons in descending Order of Effectiveness. Ninja Star; Ninja Rhombus; Ninja Irregular Heptagon; Ninja Sturgeon.
Doug Savage’s Savage Chickens for the 5th of December, 2018. Essays that mention Savage Chickens are at this link.

I’m working hard on a latter ‘X’ essay for my Fall 2018 Mathematics A To Z glossary. That should appear on Friday. And there should be another Reading the Comics post later this week, at this link.

Reading the Comics, August 16, 2018: Recursive Edition


This edition of Reading the Comics can be found at this link.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 14th is a fractals joke. Benoit Mandelbrot became the centerpiece of the big fractals boom in pop mathematics in the 80s and 90s. This was thanks to a fascinating property of complex-valued numbers that he discovered and publicized. The Mandelbrot set is a collection of complex-valued numbers. It’s a border, properly, between two kinds of complex-valued numbers. This boundary has this fascinating shape that looks a bit like a couple kidney beans surrounded by lightning. That’s neat enough.

What’s amazing, and makes this joke anything, is what happens if you look closely at this boundary. Anywhere on it. In the bean shapes or in the lightning bolts. You find little replicas of the original shape. Not precisely the original shape. No two of these replicas are precisely identical (except for the “complex conjugate”, that is, something near the number -1 + 1 \imath has a mirror image near -1 - 1 \imath ). None of these look precisely like the original shape. But they look extremely close to one another. They’re smaller, yes, and rotated relative to the original, and to other copies. But go anywhere on this boundary and there it is: the original shape, including miniature imperfect copies, all over again.

Man: 'Oh, dang it. Here comes Mandelbrot.' Woman: 'Why don't you like him?' Man: 'He's always trying to get people to look at his mole.' Mandelbrot: 'Hey guys, wanna see something?' (On his cheek is a tiny replica of his whole face, including a mole that is presumably another tiny head.)
Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 14th of August, 2018. This by the way is an acceptable sketch of Mandelbrot, although at least in the picture Wikipedia has of him in 2010 the only thing that could be dubbed a mole looks more like just a shadow to me.

The Mandelbrot Set itself — well, there are a bunch of ways to think of it. One is in terms of something called the Julia Set, named for Gaston Julia. In 1918 he published a massive paper about the iteration of rational functions. That is, start with some domain and a function rule; what’s the range? Now if we used that range as the domain again, and used the same rule for the function, what’s the range of that range? If we use the range-of-that-range as the domain for the same function rule, what’s the range-of-the-range-of-the-range? The particular function here has one free parameter, a single complex-valued number. Depending on what it is, the range-of-the-range-of-the-range-etc becomes a set that’s either one big blob or a bunch of disconnected blobs. The Mandelbrot Set is the locus of parameters separating the one-big-blob from the many-disconnected-blob outcomes.

By the way, yes, Julia published this in 1918. The work was amazing. It was also forgotten. You can study this stuff analytically, but it’s hard. To visualize it you need to do incredible loads of computation. So this is why so much work lay fallow until the 1970s, when Mandelbrot could let computers do incredible loads of computation, and even draw some basic pictures.

A thousand monkeys at a thousand typewriters ... will eventually write 'Hamlet'. A thousand cats at a thousand typewriters ... will tell you go to write your own danged 'Hamlet'.
Doug Savage’s Savage Chickens for the 14th of August, 2018. I appreciate the one monkey in the first panel who thinks he’s on to something here.

Doug Savage’s Savage Chickens for the 14th is another instance of the monkeys-at-typewriters joke. I’ve written about this and the history of the monkeys-at-typewriters bit recently enough to feel comfortable pointing people there. It’s interesting that monkeys should have a connotation of reliably random typewriting, while cats would be reliably not doing something. But that’s a cultural image that’s a little too far from being mathematics for me to spend 800 words discussing.

Cavemen sitting at a stone table. 'It's a calendar, Blork. Till we invent numbers, it has only 'today', 'yesterday', and 'we'll see', see?'
Thom Bleumel’s Birdbrains for the 15th of August, 2018. I question the plausibility of none of these people tuning out the meeting to read their tablets instead.

Thom Bleumel’s Birdbrains for the 15th is a calendars joke. Numbers come into play since, well, it seems odd to try tracking large numbers of dates without some sense of arithmetic. Also, likely, without some sense of geometry. Calendars are much used to forecast coming events, such as New and Full Moons or the seasons. That takes basic understanding of how to locate things in the sky to do at all. It takes sophisticated understanding of how to locate things in the sky to do well.

A 5, holding hands in front of a 3's eyes: 'Don't look, sweetie!' A 9: 'Get a room!' A 2: 'Disgusting!' An 8: 'There are children watching!' The scandal: 4 and 7 standing on either side of an x. And *smiling*.
Scott Hilburn’s The Argyle Sweater for the 16th of August, 2018. Oh, these people would be at least as scandalized by a ÷ sign.

Scott Hilburn’s The Argyle Sweater for the 16th is the first anthropomorphic-numerals joke around here in like three days. Certainly, the scandalous thing is supposed to be these numbers multiplying out in public where anyone might see them. I wonder if any part of the scandal should be that multiplication like this has to include three partners: the 4, the 7, and the x. In algebra we get used to a convention in which we do without the ‘x’. Just placing one term next to another carries an implicit multiplication: ‘4a’ for ‘4 times a’. But that convention fails disastrously with numerals; what should we make of ’47’? We might write 4(7), or maybe (4)(7), to be clear. Or we might put a little centered dot between the two, 4 \cdot 7 . The ‘x’ by that point is reserved for “some variable whose value isn’t specified”. And it would be weird to write ‘4 times x times 7’. It wouldn’t be wrong; it’d just look weird. It would suggest you were trying to emphasize a point. I’ve probably done it in one of my long derivation-happy posts.


Other essays about comic strips are at this link. When I’ve talked about Saturday Morning Breakfast Cereal I’ve tried to make sure it turns up at this link. Essays in which I’ve discussed Savage Chickens should be at this link. The times I’ve discussed Birdbrains should be at this link. And other essays describing The Argyle Sweater are at this link.

Reading the Comics, March 17, 2018: Pi Day 2018 Edition


So today I am trying out including images for all the mathematically-themed comic strips here. This is because of my discovery that some links even on GoComics.com vanish without warning. I’m curious how long I can keep doing this. Not for legal reasons. Including comics for the purpose of an educational essay about topics raised by the strips is almost the most fair use imaginable. Just because it’s a hassle copying the images and putting them up on WordPress.com and that’s even before I think about how much image space I have there. We’ll see. I might try to figure out a better scheme.

Also in this batch of comics are the various Pi Day strips. There was a healthy number of mathematically-themed comics on the 14th of March. Many of those were just coincidence, though, with no Pi content. I’ll group the Pi Day strips together.

Counselor: 'Come in Funky! What seems to be troubling you?' Funky: 'We're nothing but computer numbers at this school, Mr Fairgood! Nobody cares about us as persons! I'm tired of being just a number! I want a chance to make some of my own decisions!' Counselor: 'Okay! What would you like to be, odd or even?'
Tom Batiuk’s Funky Winkerbean for the 2nd of April, 1972 and rerun the 11th of March, 2018. Maybe I’m just overbalancing for the depression porn that Funky Winkerbean has become, but I find this a funny bordering-on-existential joke.

Tom Batiuk’s Funky Winkerbean for the 2nd of April, 1972 is, I think, the first appearance of Funky Winkerbean around here. Comics Kingdom just started running the strip, as well as Bud Blake’s Tiger and Bill Hoest’s Lockhorns, from the beginning as part of its Vintage Comics roster. And this strip really belonged in Sunday’s essay, but I noticed the vintage comics only after that installment went to press. Anyway, this strip — possibly the first Sunday Funky Winkerbean — plays off a then-contemporary fear of people being reduced to numbers in the face of a computerized society. If you can imagine people ever worrying about something like that. The early 1970s were a time in American society when people first paid attention to the existence of, like, credit reporting agencies. Just what they did and how they did it drew a lot of critical examination. Josh Lauer’s recently published Creditworthy: a History of Consumer Surveillance and Financial Identity in America gets into this.

Bear: 'Can I come in?' Molly: 'Sure.' Bear: 'What happened?' Molly: 'I got an F on my math test.' Bear: 'But you're a genius at math.' Molly: 'I didn't have time to study.' Bear: 'Is it because I distracted you with my troubles yesterday?' Molly: 'No. Well, maybe. Not really. Okay, sure. Yes. I don't know. ARRGHHHH!!!'
Bob Scott’s Bear With Me for the 14th of March, 2018. Every conversation with a high-need, low-self-esteem friend.

Bob Scott’s Bear With Me for the 14th sees Molly struggling with failure on a mathematics test. Could be any subject and the story would go as well, but I suppose mathematics gets a connotation of the subject everybody has to study for, even the geniuses. (The strip used to be called Molly and the Bear. In either name this seems to be the first time I’ve tagged it, although I only started tagging strips by name recently.)

Jeff: 'Next November you and I will have appeared in this comic strip for 45 years!' Mutt: 'Mmm. 45 years! That's 540 months or 2,340 weeks! So, the boss drew us 1,436 times ... one each day of the year! Now, 16,436 until I'm 90 ... ' Jeff: 'What have you been working on?' Mutt: 'Oh, I'm just calculating what we'll be doing during the next 45 years!' (Jeff leaves having clobbered Mutt.) Mutt: 'No! Not this!'
Bud Fisher’s Mutt and Jeff rerun for the 14th of March, 2018. The comic strip ended the 26th of June, 1983 — I remember the announcement of its ending in the (Perth Amboy) News-Tribune, our evening paper, and thinking it seemed illicit that an ancient comic strip like that could end. It was a few months from being 76 years old then.

Bud Fisher’s Mutt and Jeff rerun for the 14th is a rerun from sometime in 1952. I’m tickled by the problem of figuring out how many times Fisher and his uncredited assistants drew Mutt and Jeff. Mutt saying that the boss “drew us 14,436 times” is the number of days in 45 years, so that makes sense if he’s counting the number of strips drawn. The number of times that Mutt and Jeff were drawn is … probably impossible to calculate. There’s so many panels each strip, especially going back to earlier and earlier times. And how many panels don’t have Mutt or don’t have Jeff or don’t have either in them? Jeff didn’t appear in the strip until March of 1908, for example, four months after the comic began. (With a different title, so the comic wasn’t just dangling loose all that while.)

Diagram: Pie Chart, Donut Chart (pie chart with the center missing), Tart Charts (several small pie charts), Shepherd's Pie Chart (multiple-curve plot with different areas colored differently), Tiramisu Chart (multiple-curve plot with all areas colored the same), and Lobster Thermidor Chart (lobster with chunks labelled).
Doug Savage’s Savage Chickens for the 14th of March, 2018. Yeah, William Playfair invented all these too.

Doug Savage’s Savage Chickens for the 14th is a collection of charts. Not all pie charts. And yes, it ran the 14th but avoids the pun it could make. I really like the tart charts, myself.

And now for the Pi Day strips proper.

[PI sces ] Guy at bar talking to Pi: 'Wow, so you were born on March 14th at 1:59, 26 seconds? What're the odds?'
Scott Hilburn’s The Argyle Sweater for the 14th of March, 2018. Also a free probability question, if you’re going to assume that every second of the year is equally likely to be the time of birth.

Scott Hilburn’s The Argyle Sweater for the 14th starts the Pi Day off, of course, with a pun and some extension of what makes 3/14 get its attention. And until Hilburn brought it up I’d never thought about the zodiac sign for someone born the 14th of March, so that’s something.

Pi figure, wearing glasses, reading The Neverending Story.
Mark Parisi’s Off The Mark for the 14th of March, 2018. Really the book seems a little short for that.

Mark Parisi’s Off The Mark for the 14th riffs on one of the interesting features of π, that it’s an irrational number. Well, that its decimal representation goes on forever. Rational numbers do that too, yes, but they all end in the infinite repetition of finitely many digits. And for a lot of them, that digit is ‘0’. Irrational numbers keep going on with more complicated patterns. π sure seems like it’s a normal number. So we could expect that any finite string of digits appears somewhere in its decimal expansion. This would include a string of digits that encodes any story you like, The Neverending Story included. This does not mean we might ever find where that string is.

[ How ancient mathematicians amused themselves, AKA how to celebrate Pi Day today; third annual Pi-Easting Contest. Emcee: 'And HERE he is, our defending champ, that father of conic sections --- ARCHIMEDES!' They're all eating cakes shaped like pi.
Michael Cavna’s Warped for the 14th of March, 2018. Yes, but have you seen Pythagoras and his golden thigh?

Michael Cavna’s Warped for the 14th combines the two major joke threads for Pi Day. Specifically naming Archimedes is a good choice. One of the many things Archimedes is famous for is finding an approximation for π. He’d worked out that π has to be larger than 310/71 but smaller than 3 1/7. Archimedes used an ingenious approach: we might not know the precise area of a circle given only its radius. But we can know the area of a triangle if we know the lengths of its legs. And we can draw a series of triangles that are enclosed by a circle. The area of the circle has to be larger than the sum of the areas of those triangles. We can draw a series of triangles that enclose a circle. The area of the circle has to be less than the sum of the areas of those triangles. If we use a few triangles these bounds are going to be very loose. If we use a lot of triangles these bounds can be tight. In principle, we could make the bounds as close together as we could possibly need. We can see this, now, as a forerunner to calculus. They didn’t see it as such at the time, though. And it’s a demonstration of what amazing results can be found, even without calculus, but with clever specific reasoning. Here’s a run-through of the process.

[ To Stephen Hawking, Thanks for making the Universe a little easier for the rest of us to understand ] Jay: 'I suppose it's only appropriate that he'd go on Pi Day.' Roy: 'Not to mention, Einstein's birthday.' Katherine: 'I'll bet they're off in some far reach of the universe right now playing backgammon.'
John Zakour and Scott Roberts’s Working Daze for the 15th of March, 2018. No, you should never read the comments, but here, really, don’t read the comments.

John Zakour and Scott Roberts’s Working Daze for the 15th is a response to Dr Stephen Hawking’s death. The coincidence that he did die on the 14th of March made for an irresistibly interesting bit of trivia. Zakour and Roberts could get there first, thanks to working on a web comic and being quick on the draw. (I’m curious whether they replaced a strip that was ready to go for the 15th, or whether they normally work one day ahead of publication. It’s an exciting but dangerous way to go.)

Reading the Comics, July 30, 2017: Not Really Mathematics edition


It’s been a busy enough week at Comic Strip Master Command that I’ll need to split the results across two essays. Any other week I’d be glad for this, since, hey, free content. But this week it hits a busy time and shouldn’t I have expected that? The odd thing is that the mathematics mentions have been numerous but not exactly deep. So let’s watch as I make something big out of that.

Mark Tatulli’s Heart of the City closed out its “Math Camp” storyline this week. It didn’t end up having much to do with mathematics and was instead about trust and personal responsibility issues. You know, like stories about kids who aren’t learning to believe in themselves and follow their dreams usually are. Since we never saw any real Math Camp activities we don’t get any idea what they were trying to do to interest kids in mathematics, which is a bit of a shame. My guess would be they’d play a lot of the logic-driven puzzles that are fun but that they never get to do in class. The story established that what I thought was an amusement park was instead a fair, so, that might be anywhere Pennsylvania or a couple of other nearby states.

Rick Kirkman and Jerry Scott’s Baby Blues for the 25th sees Hammie have “another” mathematics worksheet accident. Could be any subject, really, but I suppose it would naturally be the one that hey wait a minute, why is he doing mathematics worksheets in late July? How early does their school district come back from summer vacation, anyway?

Hammie 'accidentally' taps a glass of water on his mathematics paper. Then tears it up. Then chews it. Mom: 'Another math worksheet accident?' Hammie: 'Honest, Mom, I think they're cursed!'
Rick Kirkman and Jerry Scott’s Baby Blues for the 25th of July, 2017 Almost as alarming: Hammie is clearly way behind on his “faking plausible excuses” homework. If he doesn’t develop the skills to make a credible reason why he didn’t do something how is he ever going to dodge texts from people too important not to reply to?

Olivia Walch’s Imogen Quest for the 26th uses a spot of mathematics as the emblem for teaching. In this case it’s a bit of physics. And an important bit of physics, too: it’s the time-dependent Schrödinger Equation. This is the one that describes how, if you know the total energy of the system, and the rules that set its potential and kinetic energies, you can work out the function Ψ that describes it. Ψ is a function, and it’s a powerful one. It contains probability distributions: how likely whatever it is you’re modeling is to have a particle in this region, or in that region. How likely it is to have a particle with this much momentum, versus that much momentum. And so on. Each of these we find by applying a function to the function Ψ. It’s heady stuff, and amazing stuff to me. Ψ somehow contains everything we’d like to know. And different functions work like filters that make clear one aspect of that.

Dan Thompson’s Brevity for the 26th is a joke about Sesame Street‘s Count von Count. Also about how we can take people’s natural aptitudes and delights and turn them into sad, droning unpleasantness in the service of corporate overlords. It’s fun.

Steve Sicula’s Home and Away rerun for the 26th is a misplaced Pi Day joke. It originally ran the 22nd of April, but in 2010, before Pi Day was nearly so much a thing.

Doug Savage’s Savage Chickens for the 26th proves something “scientific” by putting numbers into it. Particularly, by putting statistics into it. Understandable impulse. One of the great trends of the past century has been taking the idea that we only understand things when they are measured. And this implies statistics. Everything is unique. Only statistical measurement lets us understand what groups of similar things are like. Does something work better than the alternative? We have to run tests, and see how the something and the alternative work. Are they so similar that the differences between them could plausibly be chance alone? Are they so different that it strains belief that they’re equally effective? It’s one of science’s tools. It’s not everything which makes for science. But it is stuff easy to communicate in one panel.

Neil Kohney’s The Other End for the 26th is really a finance joke. It’s about the ways the finance industry can turn one thing into a dazzling series of trades and derivative trades. But this is a field that mathematics colonized, or that colonized mathematics, over the past generation. Mathematical finance has done a lot to shape ideas of how we might study risk, and probability, and how we might form strategies to use that risk. It’s also done a lot to shape finance. Pretty much any major financial crisis you’ve encountered since about 1990 has been driven by a brilliant new mathematical concept meant to govern risk crashing up against the fact that humans don’t behave the way some model said they should. Nor could they; models are simplified, abstracted concepts that let hard problems be approximated. Every model has its points of failure. Hopefully we’ll learn enough about them that major financial crises can become as rare as, for example, major bridge collapses or major airplane disasters.