Tagged: Shakespeare Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 6:00 pm on Sunday, 15 January, 2017 Permalink | Reply
    Tags: , Barkeater Lake, combinatorics, , Dinette Set, Dinosaur Comics, Nancy, , Reply All, Shakespeare, Slylock Fox,   

    Reading the Comics, January 14, 2017: Redeye and Reruns Edition 


    So for all I worried about the Gocomics.com redesign it’s not bad. The biggest change is it’s removed a side panel and given the space over to the comics. And while it does show comics you haven’t been reading, it only shows one per day. One week in it apparently sticks with the same comic unless you choose to dismiss that. So I’ve had it showing me The Comic Strip That Has A Finale Every Day as a strip I’m not “reading”. I’m delighted how thisbreaks the logic about what it means to “not read” an “ongoing comic strip”. (That strip was a Super-Fun-Pak Comix offering, as part of Ruben Bolling’s Tom the Dancing Bug. It was turned into a regular Gocomics.com feature by someone who got the joke.)

    Comic Strip Master Command responded to the change by sending out a lot of comic strips. I’m going to have to divide this week’s entry into two pieces. There’s not deep things to say about most of these comics, but I’ll make do, surely.

    Julie Larson’s Dinette Set rerun for the 8th is about one of the great uses of combinatorics. That use is working out how the number of possible things compares to the number of things there are. What’s always staggering is that the number of possible things grows so very very fast. Here one of Larson’s characters claims a science-type show made an assertion about the number of possible ideas a brain could hold. I don’t know if that’s inspired by some actual bit of pop science. I can imagine someone trying to estimate the number of possible states a brain might have.

    And that has to be larger than the number of atoms in the universe. Consider: there’s something less than a googol of atoms in the universe. But a person can certainly have the idea of the number 1, or the idea of the number 2, or the idea of the number 3, or so on. I admit a certain sameness seems to exist between the ideas of the numbers 2,038,412,562,593,604 and 2,038,412,582,593,604. But there is a difference. We can out-number the atoms in the universe even before we consider ideas like rabbits or liberal democracy or jellybeans or board games. The universe never had a chance.

    Or did it? Is it possible for a number to be too big for the human brain to ponder? If there are more digits in the number than there are atoms in the universe we can’t form any discrete representation of it, after all. … Except that we kind of can. For example, “the largest prime number less than one googolplex” is perfectly understandable. We can’t write it out in digits, I think. But you now have thought of that number, and while you may not know what its millionth decimal digit is, you also have no reason to care what that digit is. This is stepping into the troubled waters of algorithmic complexity.

    Shady Shrew is selling fancy bubble-making wands. Shady says the crazy-shaped wands cost more than the ordinary ones because of the crazy-shaped bubbles they create. Even though Slylock Fox has enough money to buy an expensive wand, he bought the cheaper one for Max Mouse. Why?

    Bob Weber Jr’s Slylock Fox and Comics for Kids for the 9th of January, 2017. Not sure why Shady Shrew is selling the circular wands at 50 cents. Sure, I understand wanting a triangle or star or other wand selling at a premium. But then why have the circular wands at such a cheap price? Wouldn’t it be better to put them at like six dollars, so that eight dollars for a fancy wand doesn’t seem that great an extravagance? You have to consider setting an appropriate anchor point for your customer base. But, then, Shady Shrew isn’t supposed to be that smart.

    Bob Weber Jr’s Slylock Fox and Comics for Kids for the 9th is built on soap bubbles. The link between the wand and the soap bubble vanishes quickly once the bubble breaks loose of the wand. But soap films that keep adhered to the wand or mesh can be quite strangely shaped. Soap films are a practical example of a kind of partial differential equations problem. Partial differential equations often appear when we want to talk about shapes and surfaces and materials that tug or deform the material near them. The shape of a soap bubble will be the one that minimizes the torsion stresses of the bubble’s surface. It’s a challenge to solve analytically. It’s still a good challenge to solve numerically. But you can do that most wonderful of things and solve a differential equation experimentally, if you must. It’s old-fashioned. The computer tools to do this have gotten so common it’s hard to justify going to the engineering lab and getting soapy water all over a mathematician’s fingers. But the option is there.

    Gordon Bess’s Redeye rerun from the 28th of August, 1970, is one of a string of confused-student jokes. (The strip had a Generic Comedic Western Indian setting, putting it in the vein of Hagar the Horrible and other comic-anachronism comics.) But I wonder if there are kids baffled by numbers getting made several different ways. Experience with recipes and assembly instructions and the like might train someone to thinking there’s one correct way to make something. That could build a bad intuition about what additions can work.

    'I'm never going to learn anything with Redeye as my teacher! Yesterday he told me that four and one make five! Today he said, *two* and *three* make five!'

    Gordon Bess’s Redeye rerun from the 28th of August, 1970. Reprinted the 9th of January, 2017. What makes the strip work is how it’s tied to the personalities of these kids and couldn’t be transplanted into every other comic strip with two kids in it.

    Corey Pandolph’s Barkeater Lake rerun for the 9th just name-drops algebra. And that as a word that starts with the “alj” sound. So far as I’m aware there’s not a clear etymological link between Algeria and algebra, despite both being modified Arabic words. Algebra comes from “al-jabr”, about reuniting broken things. Algeria comes from Algiers, which Wikipedia says derives from `al-jaza’ir”, “the Islands [of the Mazghanna tribe]”.

    Guy Gilchrist’s Nancy for the 9th is another mathematics-cameo strip. But it was also the first strip I ran across this week that mentioned mathematics and wasn’t a rerun. I’ll take it.

    Donna A Lewis’s Reply All for the 9th has Lizzie accuse her boyfriend of cheating by using mathematics in Scrabble. He seems to just be counting tiles, though. I think Lizzie suspects something like Blackjack card-counting is going on. Since there are only so many of each letter available knowing just how many tiles remain could maybe offer some guidance how to play? But I don’t see how. In Blackjack a player gets to decide whether to take more cards or not. Counting cards can suggest whether it’s more likely or less likely that another card will make the player or dealer bust. Scrabble doesn’t offer that choice. One has to refill up to seven tiles until the tile bag hasn’t got enough left. Perhaps I’m overlooking something; I haven’t played much Scrabble since I was a kid.

    Perhaps we can take the strip as portraying the folk belief that mathematicians get to know secret, barely-explainable advantages on ordinary folks. That itself reflects a folk belief that experts of any kind are endowed with vaguely cheating knowledge. I’ll admit being able to go up to a blackboard and write with confidence a bunch of integrals feels a bit like magic. This doesn’t help with Scrabble.

    'Want me to teach you how to add and subtract, Pokey?' 'Sure!' 'Okay ... if you had four cookies and I asked you for two, how many would you have left?' 'I'd still have four!'

    Gordon Bess’s Redeye rerun from the 29th of August, 1970. Reprinted the 10th of January, 2017. To be less snarky, I do like the simply-expressed weariness on the girl’s face. It’s hard to communicate feelings with few pen strokes.

    Gordon Bess’s Redeye continued the confused-student thread on the 29th of August, 1970. This one’s a much older joke about resisting word problems.

    Ryan North’s Dinosaur Comics rerun for the 10th talks about multiverses. If we allow there to be infinitely many possible universes that would suggest infinitely many different Shakespeares writing enormously many variations of everything. It’s an interesting variant on the monkeys-at-typewriters problem. I noticed how T-Rex put Shakespeare at typewriters too. That’ll have many of the same practical problems as monkeys-at-typewriters do, though. There’ll be a lot of variations that are just a few words or a trivial scene different from what we have, for example. Or there’ll be variants that are completely uninteresting, or so different we can barely recognize them as relevant. And that’s if it’s actually possible for there to be an alternate universe with Shakespeare writing his plays differently. That seems like it should be possible, but we lack evidence that it is.

     
  • Joseph Nebus 6:00 pm on Sunday, 13 November, 2016 Permalink | Reply
    Tags: , , complexity, , , , , Shakespeare,   

    Reading the Comics, November 12, 2016: Frazz and Monkeys Edition 


    Two things made repeat appearances in the mathematically-themed comics this week. They’re the comic strip Frazz and the idea of having infinitely many monkeys typing. Well, silly answers to word problems also turned up, but that’s hard to say many different things about. Here’s what I make the week in comics out to be.

    'An infinite number of monkeys sitting at an infinite number of typewriters will eventually reproduce the works of Shakespeare. ... Justy sayin' ... a four digit pin number is statistically sooo much better.'

    Sandra Bell-Lundy’s Between Friends for the 6th of November, 2016. I’m surprised Bell-Lundy used the broader space of a Sunday strip for a joke that doesn’t need that much illustration, but I understand sometimes you just have to go with the joke that you have. And it isn’t as though Sunday comics get that much space anymore either. Anyway, I suppose we have all been there, although for me that’s more often because I used to have a six-digit pin, and a six-digit library card pin, and those were just close enough to each other that I could never convince myself I was remembering the right one in context, so I would guess wrong.

    Sandra Bell-Lundy’s Between Friends for the 6th introduces the infinite monkeys problem. I wonder sometimes why the monkeys-on-typewriters thing has so caught the public imagination. And then I remember it encourages us to stare directly into infinity and its intuition-destroying nature from the comfortable furniture of the mundane — typewriters, or keyboards, for goodness’ sake — with that childish comic dose of monkeys. Given that it’s a wonder we ever talk about anything else, really.

    Monkeys writing Shakespeare has for over a century stood as a marker for what’s possible but incredibly improbable. I haven’t seen it compared to finding a four-digit PIN. It has got me wondering about the chance that four randomly picked letters will be a legitimate English word. I’m sure the chance is more than the one-in-a-thousand chance someone would guess a randomly drawn PIN correctly on one try. More than one in a hundred? I’m less sure. The easy-to-imagine thing to do is set a computer to try out all 456,976 possible sets of four letters and check them against a dictionary. The number of hits divided by the number of possibilities would be the chance of drawing a legitimate word. If I had a less capable computer, or were checking even longer words, I might instead draw some set number of words, never minding that I didn’t get every possibility. The fraction of successful words in my sample would be something close to the chance of drawing any legitimate word.

    If I thought a little deeper about the problem, though, I’d just count how many four-letter words are already in my dictionary and divide that into 456,976. It’s always a mistake to start programming before you’ve thought the problem out. The trouble is not being able to tell when that thinking-out is done.

    Richard Thompson’s Poor Richard’s Almanac for the 7th is the other comic strip to mention infinite monkeys. Well, chimpanzees in this case. But for the mathematical problem they’re not different. I’ve featured this particular strip before. But I’m a Thompson fan. And goodness but look at the face on the T S Eliot fan in the lower left corner there.

    Jeff Mallet’s Frazz for the 6th gives Caulfield one of those flashes of insight that seems like it should be something but doesn’t mean much. He’s had several of these lately, as mentioned here last week. As before this is a fun discovery about Roman Numerals, but it doesn’t seem like it leads to much. Perhaps a discussion of how the subtractive principle — that you can write “four” as “IV” instead of “IIII” — evolved over time. But then there isn’t much point to learning Roman Numerals at all. It’s got some value in showing how much mathematics depends on culture. Not just that stuff can be expressed in different ways, but that those different expressions make different things easier or harder to do. But I suspect that isn’t the objective of lessons about Roman Numerals.

    Frazz got my attention again the 12th. This time it just uses arithmetic, and a real bear of an arithmetic problem, as signifier for “a big pile of hard work”. This particular problem would be — well, I have to call it tedious, rather than hard. doing it is just a long string of adding together two numbers. But to do that over and over, by my count, at least 47 times for this one problem? Hardly any point to doing that much for one result.

    Patrick Roberts’s Todd the Dinosaur for the 7th calls out fractions, and arithmetic generally, as the stuff that ruins a child’s dreams. (Well, a dinosaur child’s dreams.) Still, it’s nice to see someone reminding mathematicians that a lot of their field is mostly used by accountants. Actuaries we know about; mathematics departments like to point out that majors can get jobs as actuaries. I don’t know of anyone I went to school with who chose to become one or expressed a desire to be an actuary. But I admit not asking either.

    Todd declares that after hearing one speak to his class he wants to be an accountant when he grows up. Trent, Todd's caretaker, says that's great but he'll need to do stuff that involves 'carrying the one and probably some fractions.' Todd panics. 'AAAGH! Not 'carrying the one' and that other word you said!'

    Patrick Roberts’s Todd the Dinosaur for the 7th of November, 2016. I don’t remember being talked to by classmates’ parents about what they where, but that might just be that it’s been a long time since I was in elementary school and everybody had the normal sorts of jobs that kids don’t understand. I guess we talked about what our parents did but that should make a weaker impression.

    Mike Thompson’s Grand Avenue started off a week of students-resisting-the-test-question jokes on the 7th. Most of them are hoary old word problem jokes. But, hey, I signed up to talk about it when a comic strip touches a mathematics topic and word problems do count.

    Zach Weinersmith’s Saturday Morning Breakfast Cereal reprinted the 7th is a higher level of mathematical joke. It’s from the genre of nonsense calculation. This one starts off with what’s almost a cliche, at least for mathematics and physics majors. The equation it starts with, e^{i Pi} = -1 , is true. And famous. It should be. It links exponentiation, imaginary numbers, π, and negative numbers. Nobody would have seen it coming. And from there is the sort of typical gibberish reasoning, like writing “Pi” instead of π so that it can be thought of as “P times i”, to draw to the silly conclusion that P = 0. That much work is legitimate.

    From there it sidelines into “P = NP”, which is another equation famous to mathematicians and computer scientists. It’s a shorthand expression of a problem about how long it takes to find solutions. That is, how many steps it takes. How much time it would take a computer to solve a problem. You can see why it’s important to have some study of how long it takes to do a problem. It would be poor form to tie up your computer on a problem that won’t be finished before the computer dies of old age. Or just take too long to be practical.

    Most problems have some sense of size. You can look for a solution in a small problem or in a big one. You expect searching for the solution in a big problem to take longer. The question is how much longer? Some methods of solving problems take a length of time that grows only slowly as the size of the problem grows. Some take a length of time that grows crazy fast as the size of the problem grows. And there are different kinds of time growth. One kind is called Polynomial, because everything is polynomials. But there’s a polynomial in the problem’s size that describes how long it takes to solve. We call this kind of problem P. Another is called Non-Deterministic Polynomial, for problems that … can’t. We assume. We don’t know. But we know some problems that look like they should be NP (“NP Complete”, to be exact).

    It’s an open question whether P and NP are the same thing. It’s possible that everything we think might be NP actually can be solved by a P-class algorithm we just haven’t thought of yet. It would be a revolution in our understanding of how to find solutions if it were. Most people who study algorithms think P is not NP. But that’s mostly (as I understand it) because it seems like if P were NP then we’d have some leads on proving that by now. You see how this falls short of being rigorous. But it is part of expertise to get a feel for what seems to make sense in light of everything else we know. We may be surprised. But it would be inhuman not to have any expectations of a problem like this.

    Mark Anderson’s Andertoons for the 8th gives us the Andertoons content for the week. It’s a fair question why a right triangle might have three sides, three angles, three vertices, and just the one hypotenuse. The word’s origin, from Greek, meaning “stretching under” or “stretching between”. It’s unobjectionable that we might say this is the stretch from one leg of the right triangle to another. But that leaves unanswered why there’s just the one hypothenuse, since the other two legs also stretch from the end of one leg to another. Dr Sarah on The Math Forum suggests we need to think of circles. Draw a circle and a diameter line on it. Now pick any point on the circle other than where the diameter cuts it. Draw a line from one end of the diameter to your point. And from your point to the other end of the diameter. You have a right triangle! And the hypothenuse is the leg stretching under the other two. Yes, I’m assuming you picked a point above the diameter. You did, though, didn’t you? Humans do that sort of thing.

    I don’t know if Dr Sarah’s explanation is right. It sounds plausible and sensible. But those are weak pins to hang an etymology on. But I have no reason to think she’s mistaken. And the explanation might help people accept there is the one hypothenuse and there’s something interesting about it.

    The first (and as I write this only) commenter, Kristiaan, has a good if cheap joke there.

     
    • davekingsbury 10:38 pm on Monday, 14 November, 2016 Permalink | Reply

      I reckon it was Bob Newhart’s sketch about it that made the monkey idea so popular. Best bit, something like, hey one of them has something over here er to be or not to be that is the … gezoinebplatf!

      Like

      • Joseph Nebus 3:35 am on Sunday, 20 November, 2016 Permalink | Reply

        I like to think that helped. I fear that that particular routine’s been forgotten, though. I was surprised back in the 90s when I was getting his albums and ran across that bit, as I’d never heard it before. But it might’ve been important in feeding the idea to other funny people. There’s probably a good essay to be written tracing the monkeys at typewriters through pop culture.

        Liked by 1 person

  • Joseph Nebus 1:22 am on Sunday, 8 March, 2015 Permalink | Reply
    Tags: , double-talk, , nonsense, People's Almanac, Pleiades, Shakespeare, Straight Dope   

    When 2 plus 2 Equals 5, plus Another Unsettling Equation 


    I just wanted to note for folks who don’t read The Straight Dope — the first two books of which were unimaginably important to the teenage me, hundreds of pages of neat stuff to know delivered in a powerful style, that overwhelmed even The People’s Almanac 2 if you can imagine — that the Straight Dope Science Advisory board tried to take on the question of Does 2 + 2 equal 5 for very large values of 2?

    Straight Dope Staffer Dex takes the question a bit more literally than I have ever interpreted the joke to be. I’ve basically read it as just justifying a nonsense result with a nonsense explanation, fitting in the spectrum of comic answers somewhere between King Lear’s understanding of why there are seven stars in the Pleiades and classic 1940s style double-talk. But Dex uses the equation to point out how rounding and estimation, essential steps in translating between the real world and the mathematical representation of the world, can produce results which are correct at every step but wrong in the whole, which is worth considering.


    Also, in a bit of reading I’m doing and which I might rip off^W^W use as inspiration for some posts around here the (British) author dropped in an equation meant to be unsettling and, yeah, this unsettles me. Let me know what you think:

    3 \mbox{ feet } + 2 \mbox{ tons } = 36 \mbox{ inches } + 2440 \mbox{ pounds }

    I should say it’s not like I’m going to have nightmares about that, but it feels off anyway.

     
    • abyssbrain 1:42 am on Sunday, 8 March, 2015 Permalink | Reply

      Then there’s also the classic of Abbott and Castello “proving” that 13 x 7 = 28 :)

      Like

      • Joseph Nebus 11:37 pm on Monday, 9 March, 2015 Permalink | Reply

        You know, I’m not familiar with that sketch offhand.

        Like

        • abyssbrain 12:24 am on Tuesday, 10 March, 2015 Permalink | Reply

          Actually, it’s a part of a film.

          Like

          • Joseph Nebus 7:50 pm on Thursday, 12 March, 2015 Permalink | Reply

            Oh, that’s a great routine, and I hadn’t seen it before. Thank you. (It’s surely from their TV show, though?)

            Liked by 1 person

            • abyssbrain 1:07 am on Friday, 13 March, 2015 Permalink | Reply

              If I remembered correctly, that particular video was from one of their films, but they had also done this sketch once on their tv show.

              Like

              • Joseph Nebus 3:25 am on Saturday, 14 March, 2015 Permalink | Reply

                That makes sense. It’d be uncharacteristic for them to use a good bit only the once, especially since it could be years between anyone in the audience seeing a movie, a radio program where they did it, and a TV show using the same bit.

                Liked by 1 person

    • Matthew Wright 1:55 am on Sunday, 8 March, 2015 Permalink | Reply

      To me British Imperial measures like the long ton (which is only half a smoot longer than a short ton) pretty much sum up the problem the British also have making reliable cars. And landing things on Mars, when one half of the team is using Imperial and the other half metric.

      Like

      • Joseph Nebus 11:48 pm on Monday, 9 March, 2015 Permalink | Reply

        As best I can tell the short ton is an invention of the Americans, so the British aren’t directly at fault for the long ton/short ton divide. Granted that 2240 pounds is a superficially weird number of pounds to put into any unit, but that is at least a nice convenient twenty hundredweights, which admittedly moves the problem back to why a hundredweight is a hundred pounds. In that case it’s because a hundredweight was a nice convenient eight stone, which had been twelve and a half pounds avoirdupois, until King Edward III yielded to the convenience of the wool trade and increase the stone to fourteen pounds (making a sack of cloth, 28 stone, more conveniently measured without cheating on available scales and also a nice (nearly) round 500 Florentian libbrae, and the rest followed from there.) Which is to admit that it’s daft, but every step made sense at the time, which is the best we can ever hope for.

        Now, the Imperial/Metric problem with the space probe is interesting because while the difference in units is the proximate cause of the vehicle’s loss, it’s not the real cause. There were hints, from earlier maneuvers, that something was wrong in the way thrusts were being calculated or executed, but those weren’t followed up on. Had they been, a correction would’ve been straightforward. It’s a lesson in the importance of having good project management, and that project management has to include people signaling clearly when they suspect there’s problems and exploring adequately whether these suspicions are well-founded.

        Like

    • elkement 2:55 pm on Sunday, 8 March, 2015 Permalink | Reply

      It was not until recently that I learned how ‘ton’ is used in engineering (related to air conditioning). I learned a lot of – maybe a ton of – new units when trying to respond to questions in the comments section on my blog :-)

      Like

      • Joseph Nebus 11:54 pm on Monday, 9 March, 2015 Permalink | Reply

        I did not know there were custom uses of the ‘ton’ for engineering purposes until just now, and I’m fascinated to see how many different “big mass of the thing we’re measuring” get called tons, now. (Panama Canal Net Ton? Who ordered that?)

        Liked by 1 person

        • elkement 10:57 am on Tuesday, 10 March, 2015 Permalink | Reply

          I hope I understood it correctly finally – but I was baffled about “ton” being used as a unit for (heating or cooling) *power*, rather than weight.

          Like

          • Joseph Nebus 7:55 pm on Thursday, 12 March, 2015 Permalink | Reply

            Yeah, thinking of ton as a unit of power is weird, although I suppose it’s not inherently stranger than describing a distance by the amount of time it’d take to get there. It’s just less familiar.

            Liked by 1 person

  • Joseph Nebus 10:06 pm on Thursday, 29 January, 2015 Permalink | Reply
    Tags: , blackjack, , , , Shakespeare, ,   

    Reading the Comics, January 29, 2015: Returned Motifs Edition 


    I do occasionally worry that my little blog is going to become nothing but a review of mathematics-themed comic strips, especially when Comic Strip Master Command sends out abundant crops like it has the past few weeks. This week’s offerings bring out the return of a lot of familiar motifs, like fighting with word problems and anthropomorphized numbers; and there’s one strip that suggests a pair of articles I wrote a while back might be useful yet.

    Bill Amend’s FoxTrot (January 25, and not a rerun) puts out a little word problem, about what grade one needs to get a B in this class, in the sort of passive-aggressive sniping teachers long to get away with. As Paige notes, it really isn’t a geometry problem, although I wonder if there’s a sensible way to represent it as a geometry problem.

    Ruben Bolling’s Super-Fun-Pax Comix superstar Chaos Butterfly appears not just in the January 25th installment but also gets a passing mention in Mark Heath’sSpot the Frog (January 29, rerun). Chaos Butterfly in all its forms seems to be popping up a lot lately; I wonder if it’s something in the air.

    (More …)

     
    • Carrie Rubin 5:22 pm on Friday, 30 January, 2015 Permalink | Reply

      Love the Break of Day one, but you’re right, March 14th would have been the perfect day to publish it.

      Like

    • ivasallay 8:23 am on Saturday, 31 January, 2015 Permalink | Reply

      Long ago I learned to read with the Dick and Jane books.
      My favorite comics this time were Baldo and Break of the Day.

      Like

    • ioanaiuliana 9:28 pm on Friday, 6 February, 2015 Permalink | Reply

      I love ‘Break of Day’, but I find it really nice now, especially because it also works for Valentine’s Day (14th Feb) :))) Sooo gooooood! :)

      Like

  • Joseph Nebus 9:19 pm on Friday, 6 June, 2014 Permalink | Reply
    Tags: autocorrect, , , Shakespeare, , , , tea   

    Autocorrected Monkeys and Pulled Tea 


    The Twop Twips account on Twitter — I’m not sure how to characterize what it is exactly, but friends retweet it often enough — had the above advice about the infinite monkeys problem, and what seems to me correct advice that turning on autocorrect will get them to write the works of Shakespeare more quickly. And then John Kovaleski’s monkey-featuring comic strip Bo Nanas featured the infinite monkey problem today, so obviously I have to spend more time thinking of it.

    It seems fair that monkeys with autocorrect will be more likely to hit a word than a monkey without will be. Let’s try something simpler than Shakespeare and just consider the chance of typing the word “the”, and to keep the numbers friendly let’s imagine that the keyboard has just the letters and a space bar. We’ll not care about punctuation or numbers; that’s what copy editors would be for, if anyone had been employed as a copy editor since 1996, when someone in the budgeting office discovered there was autocorrect.

    Anyway, there’s 27 characters on this truncated keyboard, and if the monkeys were equally likely to hit any one of them, then, there’d be 27 times 27 times 27 — that is, 19,683 — different three-character strings they might hit. Exactly one of them is the desired word “the”. So, roughly, we would expect the monkey to get the word right one time in each 19,683 attempts at a three-character string. (We wouldn’t have to wait quite so long if we’ll accept the monkey as writing continuously and pluck out three characters in a row wherever they appear, but that’s more work than I feel like doing, and I doubt it would significantly change the qualitative results, of how much faster it’d be if autocorrect were on.)

    But how many tries would be needed to hit a word that gets autocorrected to “the”? And here we get into the mysteries of the English language. I’d be surprised by a spell checker that couldn’t figure out “teh” probably means “the”. Similarly “hte” should get back to “the”. So we can suppose the five other permutations of the letters in “the” will be autocorrected. So there’s six different strings of the 19,683 possibilities that will get fixed to “the”. The monkey has one chance in 3280.5 of getting one of them and so, on average, the monkey can be expected to be right once in every 3281 attempts.

    But there’s other typos possible: “thw” is probably just my finger slipping, and “ghe” isn’t too implausible either. At least my spell checker recognizes both as most likely meant to be “the”. Let’s suppose that a spell checker can get to the right word if any one letter is mistaken. This means that there are some 78 other three-character strings that would get fixed to “the”, for a total of 84 possible three-character strings which are either “the” or would get autocorrected to “the”. With that many, there’s one chance in a touch more than 234 that a three-character string will get corrected to “the”, and we have to wait, considering, not very long at all.

    It gets better if two-character errors are allowed, but I can’t make myself believe that the spell check will turn “yje” into “the”, and that’s something which might be typed if you just had the right hand on the wrong keys. My checker hasn’t got any idea what “yje” is supposed to be anyway, so, one wrong letter is probably the limit.

    Except. “tie” is one character wrong for “the” and no spell checker will protest “tie”. Similarly “she” and “thy” and a couple of other words. And it’d be a bit much to expect “t e” or “ he” to be turned back into “the” even though both are just the one keystroke off. And a spell checker would probably suppose that “tht” is a typo for “that”. It’s hard to guess how many of the one-character-off words will not actually be caught. Let’s say that maybe half the one-character-off words will be corrected to “the”; that’s still a pretty good 39 one-character misspellings, plus five permutations, plus the correct spelling or 45 candidate three-character strings for autocorrect to get. So our monkey has something like one chance in 450 of getting “the” in banging on the keyboard three times.

    For four-letter words there are many more combinations — 531,441, if we just list the strings of our 27 allowed characters — but then there are more strings which would get autocorrected. Let’s say we want the string “thus”; there are 23 ways to arrange those letters in addition to the correct one. And there are 104 one-character-off strings; supposing that half of them will get us to “thus”, then, there’s 76 strings that get one to the desired “thus”. That’s a pretty dismal one chance in about 7,000 of typing one of them, unfortunately. Things get a little better if we suppose that some two-character errors are going to be corrected, although I can’t find one which my spell checker will accept right now, and if a single error and a transposition are viable.

    With longer words yet there’s more chances for spell checker forgiveness: you can get pretty far off “accommodate” or “aneurysm” and still be saved by the spell checker, which is good for me as I last spelled “accommodate” correctly sometime in 1992, and I thought it looked wrong then.

    So the conclusion has to be: you’ll get a bit of an improvement in speed by turning on autocorrect, for the obvious reason that you’re more likely to get one right out of 450 than you are to get one right out of 19,000. But it’s not going to help you very much; the number of ways to spell things so completely wrong that not even spell check can find you just grows far too rapidly to be helped. If I get a little bored I might work out the chance of getting a permutation-or-one-off for strings of different lengths.

    And your monkey might be ill-served by autocorrect anyway. When I lived in Singapore I’d occasionally have teh tarik (“pulled tea”), black tea with sugar and milk tossed back and forth until it’s nice and frothy. It’s a fine drink but hard to write back home about because even if you get past the spell checker, the reader assumes the “teh” is a typo and mentally corrects for it. When this came up I’d include a ritual emphasis that I actually meant what I wrote, but you see the problem. Fortunately Shakespeare wrote relatively little about southeast Asian teas, but if you wanted to expand the infinite monkey problem to the problem of guiding tourists through Singapore, you’d have to turn the autocorrect off to have any hope of success.

     
    • ivasallay 5:39 am on Saturday, 7 June, 2014 Permalink | Reply

      I didn’t know so many people thought about monkeys, typewriters, and Shakespeare until I started reading your blog. I always enjoy the comics you share on this topic, and I really liked your probability explanation.

      Like

      • Joseph Nebus 6:02 am on Sunday, 8 June, 2014 Permalink | Reply

        I didn’t suspect how common the monkeys-at-typewriters image was, or how popular it was with cartoonists, until I started keeping track of them for the blog here. I guess I understand why — it’s an easy thing to imagine and, hey, monkeys are usually funny — but it’s surprising how common it is, considering that it’s about a pretty abstract point of probability.

        Like

  • Joseph Nebus 12:07 am on Wednesday, 2 April, 2014 Permalink | Reply
    Tags: , , , , , , Shakespeare   

    Reading the Comics, April 1, 2014: Name-Dropping Monkeys Edition 


    There’s been a little rash of comics that bring up mathematical themes, now, which is ordinarily pretty good news. But when I went back to look at my notes I realized most of them are pretty much name-drops, mentioning stuff that’s mathematical without giving me much to expand upon. The exceptions are what might well be the greatest gift which early 20th century probability could give humor writers. That’s enough for me.

    Mark Anderson’s Andertoons (March 27) plays on the double meaning of “fifth” as representing a term in a sequence and as representing a reciprocal fraction. It also makes me realize that I hadn’t paid attention to the fact that English (at least) lets you get away with using the ordinal number for the part fraction, at least apart from “first” and “second”. I can make some guesses about why English allows that, but would like to avoid unnecessarily creating folk etymologies.

    Hector D Cantu and Carlos Castellanos’s Baldo (March 27) has Baldo not do as well as he expected in predictive analytics, which I suppose doesn’t explicitly require mathematics, but would be rather hard to do without. Making predictions is one of mathematics’s great applications, and drives much mathematical work, in the extrapolation of curves and the solving of differential equations most obviously.

    Dave Whamond’s Reality Check (March 27) name-drops the New Math, in the service of the increasingly popular sayings that suggest Baby Boomers aren’t quite as old as they actually are.

    Rick Stromoski’s Soup To Nutz (March 29) name-drops the metric system, as Royboy notices his ten fingers and ten toes and concludes that he is indeed metric. The metric system is built around base ten, of course, and the idea that changing units should be as easy as multiplying and dividing by powers of ten, and powers of ten are easy to multiply and divide by because we use base ten for ordinary calculations. And why do we use base ten? Almost certainly because most people have ten fingers and ten toes, and it’s so easy to make the connection between counting fingers, counting objects, and then to the abstract idea of counting. There are cultures that used other numerical bases; for example, the Maya used base 20, but it’s hard not to notice that that’s just using fingers and toes together.

    Greg Cravens’s The Buckets (March 30) brings out a perennial mathematics topic, the infinite monkeys. Here Toby figures he could be the greatest playwright by simply getting infinite monkeys and typewriters to match, letting them work, and harvesting the best results. He hopes that he doesn’t have to buy many of them, to spoil the joke, but the remarkable thing about the infinite monkeys problem is that you don’t actually need that many monkeys. You’ll get the same result — that, eventually, all the works of Shakespeare will be typed — with one monkey or with a million or with infinitely many monkeys; with fewer monkeys you just have to wait longer to expect success. Tim Rickard’s Brewster Rockit (April 1) manages with a mere hundred monkeys, although he doesn’t reach Shakespearean levels.

    But making do with fewer monkeys is a surprisingly common tradeoff in random processes. You can often get the same results with many agents running for a shorter while, or a few agents running for a longer while. Processes that allow you to do this are called “ergodic”, and being able to prove that a process is ergodic is good news because it means a complicated system can be represented with a simple one. Unfortunately it’s often difficult to prove that something is ergodic, so you might instead just warn that you are assuming the ergodic hypothesis or ergodicity, and if nothing else you can probably get a good fight going about the validity of “ergodicity” next time you play Scrabble or Boggle.

     
  • Joseph Nebus 2:48 am on Sunday, 2 March, 2014 Permalink | Reply
    Tags: , , , , , , Shakespeare   

    Reading the Comics, March 1, 2014: Isn’t It One-Half X Squared Plus C? Edition 


    So the subject line references here a mathematics joke that I never have heard anybody ever tell, and only encounter in lists of mathematics jokes. It goes like this: a couple professors are arguing at lunch about whether normal people actually learn anything about calculus. One of them says he’s so sure normal people learn calculus that even their waiter would be able to answer a basic calc question, and they make a bet on that. He goes back and finds their waiter and says, when she comes with the check he’s going to ask her if she knows what the integral of x is, and she should just say, “why, it’s one-half x squared, of course”. She agrees. He goes back and asks her what the integral of x is, and she says of course it’s one-half x squared, and he wins the bet. As he’s paid off, she says, “But excuse me, professor, isn’t it one-half x squared plus C?”

    Let me explain why this is an accurately structured joke construct and must therefore be classified as funny. “The integral of x”, as the question puts it, has not just one correct answer but rather a whole collection of correct answers, which are different from one another only by the addition of a constant whole number, by convention denoted C, and the inclusion of that “plus C” denotes that whole collection. The professor was being sloppy in referring to just a single example from that collection instead of the whole set, as the waiter knew to do. You’ll see why this is relevant to today’s collection of mathematics-themed comics.

    Jef Mallet’s Frazz (February 22) points out one of the grand things about mathematics, that if you follow the proper steps in a mathematical problem you get to be right, and to be extraordinarily confident in that rightness. And that’s true, although, at least to me a good part of what’s fun in mathematics is working out what the proper steps are: figuring out what the important parts of something you want to study should be, and what follows from your representation of them, and — particularly if you’re trying to represent a complicated real-world phenomenon with a model — whether you’re representing the things you find interesting in the real-world phenomenon well. So, while following the proper steps gets you an answer that is correct within the limits of whatever it is you’re doing, you still get to work out whether you’re working on the right problem, which is the real fun.

    Mark Pett’s Lucky Cow (February 23, rerun) uses that ambiguous place between mathematics and physics to represent extreme smartness. The equation the physicist brings to Neil is the (time-dependent) Schrödinger Equation, describing how probability evolves in time, and the answer is correct. If Neil’s coworkers at Lucky Cow were smarter they’d realize the scam, though: while the equation is impressively scary-looking to people not in the know, a particle physicist would have about as much chance of forgetting this as of forgetting the end of “E equals m c … ”.

    Hilary Price’s Rhymes With Orange (February 24) builds on the familiar infinite-monkeys metaphor, but misses an important point. Price is right that yes, an infinite number of monkeys already did create the works of Shakespeare, as a result of evolving into a species that could have a Shakespeare. But the infinite monkeys problem is about selecting letters at random, uniformly: the letter following “th” is as likely to be “q” as it is to be “e”. An evolutionary system, however, encourages the more successful combinations in each generation, and discourages the less successful: after writing “th” Shakespeare would be far more likely to put “e” and never “q”, which makes calculating the probability rather less obvious. And Shakespeare was writing with awareness that the words mean things and they must be strings of words which make reasonable sense in context, which the monkeys on typewriters would not. Shakespeare could have followed the line “to be or not to be” with many things, but one of the possibilities would never be “carport licking hammer worbnoggle mrxl 2038 donkey donkey donkey donkey donkey donkey donkey”. The typewriter monkeys are not so selective.

    Dan Thompson’s Brevity (February 26) is a cute joke about a number’s fashion sense.

    Mark Pett’s Lucky Cow turns up again (February 28, rerun) for the Rubik’s Cube. The tolerably fun puzzle and astoundingly bad Saturday morning cartoon of the 80s can be used to introduce abstract algebra. When you rotate the nine little cubes on the edge of a Rubik’s cube, you’re doing something which is kind of like addition. Think of what you can do with the top row of cubes: you can leave it alone, unchanged; you can rotate it one quarter-turn clockwise; you can rotate it one quarter-turn counterclockwise; you can rotate it two quarter-turns clockwise; you can rotate it two quarter-turns counterclockwise (which will result in something suspiciously similar to the two quarter-turns clockwise); you can rotate it three quarter-turns clockwise; you can rotate it three quarter-turns counterclockwise.

    If you rotate the top row one quarter-turn clockwise, and then another one quarter-turn clockwise, you’ve done something equivalent to two quarter-turns clockwise. If you rotate the top row two quarter-turns clockwise, and then one quarter-turn counterclockwise, you’ve done the same as if you’d just turned it one quarter-turn clockwise and walked away. You’re doing something that looks a lot like addition, without being exactly like it. Something odd happens when you get to four quarter-turns either clockwise or counterclockwise, particularly, but it all follows clear rules that become pretty familiar when you notice how much it’s like saying four hours after 10:00 will be 2:00.

    Abstract algebra marks one of the things you have to learn as a mathematics major that really changes the way you start looking at mathematics, as it really stops being about trying to solve equations of any kind. You instead start looking at how structures are put together — rotations are seen a lot, probably because they’re familiar enough you still have some physical intuition, while still having significant new aspects — and, following this trail can get for example to the parts of particle physics where you predict some exotic new subatomic particle has to exist because there’s this structure that makes sense if it does.

    Jenny Campbell’s Flo and Friends (March 1) is set off with the sort of abstract question that comes to mind when you aren’t thinking about mathematics: how many five-card combinations are there in a deck of (52) cards? Ruthie offers an answer, although — as the commenters get to disputing — whether she’s right depends on what exactly you mean by a “five-card combination”. Would you say that a hand of “2 of hearts, 3 of hearts, 4 of clubs, Jack of diamonds, Queen of diamonds” is a different one to “3 of hearts, Jack of diamonds, 4 of clubs, Queen of diamonds, 2 of hearts”? If you’re playing a game in which the order of the deal doesn’t matter, you probably wouldn’t; but, what if the order does matter? (I admit I don’t offhand know a card game where you’d get five cards and the order would be important, but I don’t know many card games.)

    For that matter, if you accept those two hands as the same, would you accept “2 of clubs, 3 of clubs, 4 of diamonds, Jack of spades, Queen of spades” as a different hand? The suits are different, yes, but they’re not differently structured: you’re still three cards away from a flush, and two away from a straight. Granted there are some games in which one suit is worth more than another, in which case it matters whether you had two diamonds or two spades; but if you got the two-of-clubs hand just after getting the two-of-hearts hand you’d probably be struck by how weird it was you got the same hand twice in a row. You can’t give a correct answer to the question until you’ve thought about exactly what you mean when you say two hands of cards are different.

     
    • ivasallay 5:28 am on Sunday, 2 March, 2014 Permalink | Reply

      In one of my teacher education classes, the instructor said, “You can teach ANYTHING with a picture book.” Picture books can help us recall prior knowledge and give the instructor something to build upon. I think the same thing can be said about comics. I enjoyed reading all of the comics you put in this post, and I learned something new about mathematics because of several of your explanations. Thank you!

      Like

      • Joseph Nebus 6:32 pm on Monday, 3 March, 2014 Permalink | Reply

        Aw, my, thank you.

        I’ve thought about including the comics themselves as graphics in these posts. I’m fairly confident that it would qualify as fair use, but something still has me shy away from that.

        Like

    • elkement 10:53 am on Wednesday, 12 March, 2014 Permalink | Reply

      Of course I love the Schrödinger equation joke. I thought the funny thing was that knowing a complete different equation is not knowing the particular solution. I often think about this when a “formula” is presented in movies – I guess most people think that “formulas” in physics are like Ohm’s law … just plug in some numbers.

      Like

      • Joseph Nebus 4:28 am on Saturday, 15 March, 2014 Permalink | Reply

        You’re right; it is a funny part of the strip that the solution really can’t solve any particular problem that anyone has. I wonder if there is a specific quantum mechanics problem that could fit the comic strip’s need — it’s got to be stated in one or two panels, and answered in one, and the answer has to be something that Neil could plausibly memorize and recite without an error. That kind of suggests either a free particle or a particle in an infinite well.

        Really, though, I’m invariably delighted when a cartoonist gets the equations correct. The structure of the joke would be the same if a bunch of gibberish were put up, but I appreciate the craftsmanship that goes into getting right the things that don’t need to be.

        Like

    • LucyJartz 1:41 pm on Wednesday, 23 July, 2014 Permalink | Reply

      I thought it was funny that math geniuses grew up to be waiters who went home thrilled to finally use calculus in “real life”.

      Like

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: