I’d like to open today’s installment with a trifle from Thomas K Dye. He’s a friend, and the cartoonist behind the long-running web comic Newshounds, its new spinoff Infinity Refugees, and some other projects.
Dye also has a Patreon, most recently featuring a subscribers-only web comic. And he’s good enough to do the occasional bit of spot art to spruce up my work here.
Henry Scarpelli and Craig Boldman’s Archie rerun for the 9th of April, 2018 is, for me, relatable. I think I’ve read off this anecdote before. The first time I took Real Analysis I was completely lost. Getting me slightly less lost was borrowing a library book on Real Analysis from the mathematics library. The book was in French, a language I can only dimly read. But the different presentation and, probably, the time I had to spend parsing each sentence helped me get a basic understanding of the topic. So maybe trying algebra upside-down isn’t a ridiculous idea.

Lincoln Pierce’s Big Nate rerun for the 9th presents an arithmetic sequence, which is always exciting to work with, if you’re into sequences. I had thought Nate was talking about mathematics quizzes but I see that’s not specified. Could be anything. … And yes, there is something cool in finding a pattern. Much of mathematics is driven by noticing, or looking for, patterns in things and then describing the rules by which new patterns can be made. There’s many easy side questions to be built from this. When would quizzes reach a particular value? When would the total number of points gathered reach some threshold? When would the average quiz score reach some number? What kinds of patterns would match the 70-68-66-64 progression but then do something besides reach 62 next? Or 60 after that? There’s some fun to be had. I promise.

Mike Thompson’s Grand Avenue for the 10th is one of the resisting-the-teacher’s-problem style. The problem’s arithmetic, surely for reasons of space. The joke doesn’t depend on the problem at all.
![Teacher: 'Gabby, can you solve the problem?' [ '33 x 22' on the blackboard. ] Gabby: 'No, thank you. You're the adult, so I'll let you solve the problem. Why do you need a kid? Adults are able to solve problems on their own.' [ Gabby sits outside the Principal's office, thinking ] 'Looks like he solved his problem after all.'](https://nebusresearch.files.wordpress.com/2018/04/mike-thompson_grand-avenue_10-april-2018.gif?w=840&h=268)
Dave Whamond’s Reality Check for the 10th similarly doesn’t depend on what the question is. It happens to be arithmetic, but it could as easily be identifying George Washington or picking out the noun in a sentence.

Leigh Rubin’s Rubes for the 10th riffs on randomness. In this case it’s riffing on the unpredictability and arbitrariness of random things. Random variables are very interesting in certain fields of mathematics. What makes them interesting is that any specific value — the next number you generate — is unpredictable. But aggregate information about the values is predictable, often with great precision. For example, consider normal distributions. (A lot of stuff turns out to be normal.) In that case we can be confident that the values that come up most often are going to be close to the arithmetic mean of a bunch of values. And that there’ll be about as many values greater than the mean as there are less than the mean. And this will be only loosely true if you’ve looked at a handful of values, at ten or twenty or even two hundred of them. But if you looked at, oh, a hundred thousand values, these truths would be dead-on. It’s wonderful and it seems to defy intuition. It just works.

John Atkinson’s Wrong Hands for the 10th is the anthropomorphic numerals joke for the week. It’s easy to think of division as just making numbers smaller: 4 divided by 6 is less than either 4 or 6. 1 divided by 4 is less than either 1 or 4. But this is a bad intuition, drawn from looking at the counting numbers that don’t look boring. But 4 divided by 1 isn’t less than either 1 or 4. Same with 6 divided by 1. And then when we look past counting numbers we realize that’s not always so. 6 divided by ½ gives 12, greater than either of those numbers, and I don’t envy the teachers trying to explain this to an understandably confused student. And whether 6 divided by -1 gives you something smaller than 6 or smaller than -1 is probably good for an argument in an arithmetic class.

Zach Weinersmith, Chris Jones and James Ashby’s Snowflakes for the 11th has an argument about predicting humans mathematically. It’s so very tempting to think people can be. Some aspects of people can. In the founding lore of statistics is the astonishment at how one could predict how many people would die, and from what causes, over a time. No person’s death could be forecast, but their aggregations could be. This unsettles people. It should: it seems to defy reason. It seems to me even people who embrace a deterministic universe suppose that while, yes, a sufficiently knowledgeable creature might forecast their actions accurately, mere humans shouldn’t be sufficiently knowledgeable.
![Priti: 'Did you know that all human culture can be represented with GRAPHS?!' Sloan: 'Doubtful. Here. Read Machiavelli, Durkheim, and Montesquieu.' Priti: 'I see a lot of French and a lack of graphs.' Sloan: 'Not everything can be represented graphical [sic]. Plus it's full of CITATIONS! Wonderful, wonderful citations!' Priti: 'So, you don't think your behavior can be predicted mathematically?' Sloan: 'Correct.' Priti: 'Predictable'.](https://nebusresearch.files.wordpress.com/2018/04/zach-weinersmith-chris-jones-james-ashby_snowflakes_11-april-2018.gif?w=840&h=295)
No strips are tagged for the first time this essay. Just noticing.