## Reading the Comics, April 11, 2018: Obscure Mathematical Terms Edition

I’d like to open today’s installment with a trifle from Thomas K Dye. He’s a friend, and the cartoonist behind the long-running web comic Newshounds, its new spinoff Infinity Refugees, and some other projects.

Dye also has a Patreon, most recently featuring a subscribers-only web comic. And he’s good enough to do the occasional bit of spot art to spruce up my work here.

Henry Scarpelli and Craig Boldman’s Archie rerun for the 9th of April, 2018 is, for me, relatable. I think I’ve read off this anecdote before. The first time I took Real Analysis I was completely lost. Getting me slightly less lost was borrowing a library book on Real Analysis from the mathematics library. The book was in French, a language I can only dimly read. But the different presentation and, probably, the time I had to spend parsing each sentence helped me get a basic understanding of the topic. So maybe trying algebra upside-down isn’t a ridiculous idea.

Lincoln Pierce’s Big Nate rerun for the 9th presents an arithmetic sequence, which is always exciting to work with, if you’re into sequences. I had thought Nate was talking about mathematics quizzes but I see that’s not specified. Could be anything. … And yes, there is something cool in finding a pattern. Much of mathematics is driven by noticing, or looking for, patterns in things and then describing the rules by which new patterns can be made. There’s many easy side questions to be built from this. When would quizzes reach a particular value? When would the total number of points gathered reach some threshold? When would the average quiz score reach some number? What kinds of patterns would match the 70-68-66-64 progression but then do something besides reach 62 next? Or 60 after that? There’s some fun to be had. I promise.

Mike Thompson’s Grand Avenue for the 10th is one of the resisting-the-teacher’s-problem style. The problem’s arithmetic, surely for reasons of space. The joke doesn’t depend on the problem at all.

Dave Whamond’s Reality Check for the 10th similarly doesn’t depend on what the question is. It happens to be arithmetic, but it could as easily be identifying George Washington or picking out the noun in a sentence.

Leigh Rubin’s Rubes for the 10th riffs on randomness. In this case it’s riffing on the unpredictability and arbitrariness of random things. Random variables are very interesting in certain fields of mathematics. What makes them interesting is that any specific value — the next number you generate — is unpredictable. But aggregate information about the values is predictable, often with great precision. For example, consider normal distributions. (A lot of stuff turns out to be normal.) In that case we can be confident that the values that come up most often are going to be close to the arithmetic mean of a bunch of values. And that there’ll be about as many values greater than the mean as there are less than the mean. And this will be only loosely true if you’ve looked at a handful of values, at ten or twenty or even two hundred of them. But if you looked at, oh, a hundred thousand values, these truths would be dead-on. It’s wonderful and it seems to defy intuition. It just works.

John Atkinson’s Wrong Hands for the 10th is the anthropomorphic numerals joke for the week. It’s easy to think of division as just making numbers smaller: 4 divided by 6 is less than either 4 or 6. 1 divided by 4 is less than either 1 or 4. But this is a bad intuition, drawn from looking at the counting numbers that don’t look boring. But 4 divided by 1 isn’t less than either 1 or 4. Same with 6 divided by 1. And then when we look past counting numbers we realize that’s not always so. 6 divided by ½ gives 12, greater than either of those numbers, and I don’t envy the teachers trying to explain this to an understandably confused student. And whether 6 divided by -1 gives you something smaller than 6 or smaller than -1 is probably good for an argument in an arithmetic class.

Zach Weinersmith, Chris Jones and James Ashby’s Snowflakes for the 11th has an argument about predicting humans mathematically. It’s so very tempting to think people can be. Some aspects of people can. In the founding lore of statistics is the astonishment at how one could predict how many people would die, and from what causes, over a time. No person’s death could be forecast, but their aggregations could be. This unsettles people. It should: it seems to defy reason. It seems to me even people who embrace a deterministic universe suppose that while, yes, a sufficiently knowledgeable creature might forecast their actions accurately, mere humans shouldn’t be sufficiently knowledgeable.

No strips are tagged for the first time this essay. Just noticing.

## Reading the Comics, March 21, 2018: Old Mathematics Jokes Edition

For this, the second of my Reading the Comics postings with all the comics images included, I’ve found reason to share some old and traditional mathematicians’ jokes. I’m not sure how this happened, but sometimes it just does.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 18th brings to mind a traditional mathematics joke. A dairy hires a mathematician to improve operations. She tours the place, inspecting the cows and their feeding and the milking machines. She speaks with the workers. She interviews veterinarians. She talks with the truckers who haul out milk. She interviews the clients. Finally she starts to work on a model of better milk production. The first line: “Assume a spherical cow.”

One big field of mathematics is model-building. When doing that you have to think about the thing you model. It’s hard. You have to throw away all the complicating stuff that makes your questions too hard to answer. But you can’t throw away all the complicating stuff or you have a boring question to answer. Depending on what kinds of things you want to know, you’ll need different models. For example, for some atmosphere problems you’ll do fine if you assume the air has no viscosity. For others that’s a stupid assumption. For some you can ignore that the planet rotates and is heated on one side by the sun. For some you don’t dare do that. And so on. The simplifications you can make aren’t always obvious. Sometimes you can ignore big stuff; a satellite’s orbit, for example, can be treated well by pretending that the whole universe except for the Earth doesn’t exist. Depends what you’re looking for. If the universe were homogenous enough, it would all be at the same temperature. Is that useful to your question? That’s the trick.

Mark Anderson’s Andertoons for the 20th is the Mark Anderson’s Andertoons for this essay. It’s just a student trying to distract the issue from fractions. I suppose mathematics was chosen for the blackboard problem because if it were, say, a history or an English or a science question someone would think that was part of the joke and be misled. Fractions, though, those have the signifier of “the thing we’d rather not talk about”.

Daniel Beyer’s Long Story Short for the 21st is a mathematicians-mindset sort of joke. Let me offer another. I went to my love’s college reunion. On the mathematics floor of the new sciences building the dry riser was labelled as “N Bourbaki”. Let me explain why is a correctly-formed and therefore very funny mathematics joke. “Nicolas Bourbaki” was the pseudonym used by the mathematical equivalent of an artist’s commune, in France, through several decades of the mid-20th century. Their goal was setting mathematics on a rigorous and intuition-free basis, the way mathematicians sometimes like to pretend it is. Bourbaki’s influential nonexistence lead to various amusing-for-academia problems and you can see why a fake office is appropriately named so, then. (This is the first time I’ve tagged this strip, looks like.)

Harley Schwadron’s 9 to 5 for the 21st is a name-drop of Einstein’s famous equation as a power tie. I must agree this meets the literal specification of a power tie since, you know, c2 is in it. Probably something more explicitly about powers wouldn’t communicate as well. Possibly Fermat’s Last Theorem, although I’m not sure that would fit and be legible on the tie as drawn.

Mark Pett’s Lucky Cow rerun for the 21st has the generally inept Neil work out a geometry problem in his head. The challenge is having a good intuitive model for what the relationship between the shapes should be. I’m relieved to say that Neil is correct, to the number of decimal places given. I’m relieved because I’ve spent embarrassingly long at this. My trouble was missing, twice over, that the question gave diameters instead of radiuses. Pfaugh. Saving me was just getting answers that were clearly crazy, including at one point 21 1/3.

Zach Weinersmith, Chris Jones and James Ashby’s Snowflakes for the 21st mentions Euler’s Theorem in the first panel. Trouble with saying “Euler’s Theorem” is that Euler had something like 82 trillion theorems. If you ever have to bluff your way through a conversation with a mathematician mention “Euler’s Theorem”. You’ll probably have said something on point, if closer to the basics of the problem than people figured. But the given equation — $e^{\imath \pi} + 1 = 0$ — is a good bet for “the” Euler’s Theorem. It’s a true equation, and it ties together a lot of interesting stuff about complex-valued numbers. It’s the way mathematicians tie together exponentials and simple harmonic motion. It makes so much stuff easier to work with. It would not be one of the things presented in a Distinctly Useless Mathematics text. But it would be mentioned along the way to something fascinating and useless. It turns up everywhere. (This is another strip I’m tagging for the first time.)

Wulff and Morgenthaler’s WuMo for the 21st uses excessively complicated mathematics stuff as a way to signify intelligence. Also to name-drop Massachusetts Institute of Technology as a signifier of intelligence. (My grad school was Rensselaer Polytechnic Institute, which would totally be MIT’s rival school if we had enough self-esteem to stand up to MIT. Well, on a good day we can say snarky stuff about the Rochester Institute of Technology if we don’t think they’re listening.) Putting the “Sigma” in makes the problem literally nonsense, since “Sigma” doesn’t signify any particular number. The rest are particular numbers, though. π/2 times 4 is just 2π, a bit more than 6.28. That’s a weird number of apples to have but it’s perfectly legitimate a number. The square root of the cosine of 68 … ugh. Well, assuming this is 68 as in radians I don’t have any real idea what that would be either. If this is 68 degrees, then I do know, actually; the cosine of 68 degrees is a little smaller than ½. But mathematicians are trained to suspect degrees in trig functions, going instead for radians.

Well, hm. 68 would be between 11 times 2π and 12 times 2π. I think that’s just a little more than 11 times 2π. Oh, maybe it is something like ½. Let me check with an actual calculator. Huh. It is a little more than 0.440. Well, that’s a once-in-a-lifetime shot. Anyway the square root of that is a little more than 0.663. So you’d be left with about five and a half apples. Never mind this Sigma stuff. (A little over 5.619, to be exact.)