Tagged: sports Toggle Comment Threads | Keyboard Shortcuts

  • Joseph Nebus 9:10 pm on Monday, 16 June, 2014 Permalink | Reply
    Tags: , , , , , sports,   

    Reading the Comics, June 16, 2014: Cleaning Out Before Summer, I Guess, Edition 


    I had thought the folks at Comic Strip Master Command got most of their mathematics-themed comics cleaned out ahead of the end of the school year (United States time zones) by last week, and then over the course of the weekend they went and published about a hundred million of them, so let me try catching up on that before the long dry spell of summer sets in. (And yet none of them mentioned monkeys writing Shakespeare; go figure.) I’m kind of expecting an all-mathematics-strips series tomorrow morning.

    Jason Chatfield’s Ginger Meggs (June 12) puns a bit on negative numbers as also meaning downbeat or pessimistic ones. Negative numbers tend to make people uneasy, when they’re first encountered. It took western mathematics several centuries to be quite fully comfortable with them and that even with the good example of debts serving as a mental model of what negative numbers might mean. Descartes, for example, apparently used four separate quadrants, giving points their positions to the right and up, to the left and up, to the left and down, or to the right and down, from the origin point, rather than deal with negative numbers; and the Fahrenheit temperature scale was pretty much designed around the constraint that Daniel Fahrenheit shouldn’t have to deal with negative numbers in measuring the temperature in his hometown of the Netherlands. I have seen references to Immanuel Kant writing about the theoretical foundation of negative numbers, but not a clear explanation of just what he did, alas. And skepticism of exotic number constructs would last; they’re not called imaginary numbers because people appreciated the imaginative leaps that working with the square roots of negative numbers inspired.

    Steve Breen and Mike Thompson’s Grand Avenue (June 12) served notice that, just like last summer, Grandma is going to make sure the kids experience mathematics as a series of chores they have to endure through an otherwise pleasant summer break.

    Mike Twohy’s That’s Life (June 12) might be a marginal inclusion here, but it does refer to a lab mouse that’s gone from merely counting food pellets to cost-averaging them. The mathematics abilities of animals are pretty amazing things, certainly, and I’d also be impressed by an animal that was so skilled in abstract mathematics that it was aware “how much does a thing cost?” is a pretty tricky question when you look hard at it.

    Jim Scancarelli’s Gasoline Alley (June 13) features a punch line that’s familiar to me — it’s what you get by putting a parrot and the subject of geometry together — although the setup seems clumsy to me. I think that’s because the kid has to bring up geometry out of nowhere in the first panel. Usually the setup as I see it is more along the lines of “what geometric figure is drawn by a parrot that then leaves the room”, which I suppose also brings geometry up out of nowhere to start off, really. I guess the setup feels clumsy to me because I’m trying to imagine the dialogue as following right after the previous day’s, so the flow of the conversation feels odd.

    Eric the Circle (June 14), this one signed “andel”, riffs on the popular bit of mathematics trivia that in a randomly selected group of 22 people there’s about a fifty percent chance that some pair of them will share a birthday; that there’s a coincidental use for 22 in estimating π is, believe it or not, something I hadn’t noticed before.

    Pab Sungenis’s New Adventures of Queen Victoria (June 14) plays with infinities, and whether the phrase “forever and a day” could actually mean anything, or at least anything more than “forever” does. This requires having a clear idea what you mean by “forever” and, for that matter, by “more”. Normally we compare infinitely large sets by working out whether it’s possible to form pairs which match one element of the first set to one element of the second, and seeing whether elements from either set have to be left out. That sort of work lets us realize that there are just as many prime numbers as there are counting numbers, and just as many counting numbers as there are rational numbers (positive and negative), but that there are more irrational numbers than there are rational numbers. And, yes, “forever and a day” would be the same length of time as “forever”, but I suppose the Innamorati (I tried to find his character’s name, but I can’t, so, Pab Sungenis can come in and correct me) wouldn’t do very well if he promised love for the “power set of forever”, which would be a bigger infinity than “forever”.

    Mark Anderson’s Andertoons (June 15) is actually roughly the same joke as the Ginger Meggs from the 12th, students mourning their grades with what’s really a correct and appropriate use of mathematics-mentioning terminology.

    Keith Knight’s The Knight Life (June 16) introduces a “personal statistician”, which is probably inspired by the measuring of just everything possible that modern sports has gotten around to doing. But the notion of keeping track of just what one is doing, and how effectively, is old and, at least in principle, sensible. It’s implicit in budgeting (time, money, or other resources) that you are going to study what you do, and what you want to do, and what’s required by what you want to do, and what you can do. And careful tracking of what one’s doing leads to what’s got to be a version of the paradox of Achilles and the tortoise, in which the time (and money) spent on recording the fact of one’s recordings starts to spin out of control. I’m looking forward to that. Don’t read the comments.

    Max Garcia’s Sunny Street (June 16) shows what happens when anthropomorphized numerals don’t appear in Scott Hilburn’s The Argyle Sweater for too long a time.

     
    • elkement 7:16 pm on Tuesday, 17 June, 2014 Permalink | Reply

      So cartoons are aligned with the academic year? I wouldn’t have guessed that!!

      I like the Personal Statistician – as there are these so-called modern “life-hackers” and their obsession with tools that collect all kinds of metrics (pulse, steps you take…) or document your life with Google Glass. For them the idea of documenting and analyzing _everything_ in your life is probably not a joke.

      Like

      • Joseph Nebus 3:04 am on Thursday, 19 June, 2014 Permalink | Reply

        I don’t actually know that they’re aligned with the academic year, at least more than roughly. I have to imagine they’d notice if they were doing a kid-stuck-in-school strip that was scheduled to be published in mid-July, for instance. But I have seen some comics accidentally run one for the week between Christmas and New Year’s, which is a holiday week everywhere I’ve heard of.

        I’m also a little surprised that I’ve avoided the statistics-of-my-whole-life thing. I’m very aware I have all the risk factors for getting into the over-documentation of my life, by which I mean, I took photos of my car’s odometer and where I was when it rolled over 1,000 and 5,000 and a bunch of other appealing numbers, until the highway patrol noticed and gave me a warning about driving distracted with a camera in my hand like that.

        Like

    • ivasallay 2:20 pm on Wednesday, 18 June, 2014 Permalink | Reply

      Knight Life’s personal statistician made me laugh the loudest. Gasoline Alley’s parrot joke seemed fine to me and could always be used wherever geometry is taught. My favorite is the Eric the Circle 22/7 comic – especially after your explanation. By the way I rarely read the comments to the comics unless you specifically tell me NOT to read them. Yeah, they weren’t comments worth reading.

      Like

      • Joseph Nebus 2:58 am on Thursday, 19 June, 2014 Permalink | Reply

        The personal statistician idea seems like the most comically fruitful one to me, though that’s probably just because it suggests a story by itself.

        Sorry to tease you into reading comments. I try not reading them myself but now and then I just know the original strip is going to inspire a bad thread, and then I look, and I’m right altogether too often for my tastes.

        Like

    • ivasallay 3:58 pm on Wednesday, 18 June, 2014 Permalink | Reply

      • Joseph Nebus 2:55 am on Thursday, 19 June, 2014 Permalink | Reply

        Oh, yes, that’s right. 22 is the maximum number of people you can have without quite a 50 percent chance of someone sharing a birthday. Well, at least I was close.

        Like

  • Joseph Nebus 10:04 pm on Tuesday, 15 April, 2014 Permalink | Reply
    Tags: , , New Jersey Devils, sports,   

    The Most Unlikely NHL Playoff Upsets of the Last Five Years 


    Nick Emptage, writing for puckprediction.com, has the sort of post which I can’t resist: it’s built on the application of statistics to sports. In this case it’s National Hockey League playoffs, and itself builds on an earlier post about the conditional probabilities of the home-team-advantaged winning a best-of-seven series, to look at the most unlikely playoff wins of the last several years. Since I’m from New Jersey I feel a little irrational pride at the New Jersey Devils being two of the most improbable winners, not least because I remember the Devils in the 1980s when the could lose as many as 200 games per eighty-game season, so seeing them in the playoffs at all is a wondrous thing.

     
  • Joseph Nebus 12:08 am on Tuesday, 1 April, 2014 Permalink | Reply
    Tags: , , cricket, , sports, ,   

    The Math Blog Statistics, March 2014 


    It’s the start of a fresh month, so let me carry on my blog statistics reporting. In February 2014, apparently, there were a mere 423 pages viewed around here, with 209 unique visitors. That’s increased a bit, to 453 views from 257 visitors, my second-highest number of views since last June and second-highest number of visitors since last April. I can make that depressing, though: it means views per visitor dropped from 2.02 to 1.76, but then, they were at 1.76 in January anyway. And I reached my 14,000th page view, which is fun, but I’d need an extraordinary bit of luck to get to 15,000 this month.

    March’s most popular articles were a mix of the evergreens — trapezoids and comics — with a bit of talk about March Madness serving as obviously successful clickbait:

    1. How Many Trapezoids I Can Draw, and again, nobody’s found one I overlooked.
    2. Calculating March Madness, and the tricky problem of figuring out the chance of getting a perfect bracket.
    3. Reading The Comics, March 1, 2014: Isn’t It One-Half X Squared Plus C? Edition, showing how well an alleged joke will make comic strips popular.
    4. Reading The Comics, March 26, 2014: Kitchen Science Department, showing that maybe it’s just naming the comics installments that matters.
    5. What Are The Chances Of An Upset, which introduces some of the interesting quirks of the bracket and seed system of playoffs, such as the apparent advantage an eleventh seed has over an eighth seed.

    There’s a familiar set of countries sending me the most readers: as ever the United States up top (277), with Denmark in second (26) and Canada in third (17). That’s almost a tie, though, as the United Kingdom (16), Austria (15), and the Philippines (13) could have taken third easily. I don’t want to explicitly encourage international rivalries to drive up my page count here, I’m just pointing it out. Singapore is in range too. The single-visitor countries this past month were the Bahamas, Belgium, Brazil, Colombia, Hungary, Mexico, Peru, Rwanda, Saudi Arabia, Spain, Sri Lanka, Sweden, Syria, and Taiwan. Hungary, Peru, and Saudi Arabia are the only repeat visitors from February, and nobody’s got a three-month streak going.

    There wasn’t any good search-term poetry this month; mostly it was questions about trapezoids, but there were a couple interesting ones:

    So, that’s where things stand: I need to get back to writing about trapezoids and comic strips.

     
  • Joseph Nebus 2:49 pm on Sunday, 23 March, 2014 Permalink | Reply
    Tags: , , , , sports, upsets   

    What Are The Chances Of An Upset? 


    I’d wondered idly the other day if a number-16 seed had ever lost to a number-one seed in the NCAA Men’s Basketball tournament. This finally made me go and actually try looking it up; a page on statistics.about.com has what it claims are the first-round results from 1985 (when the current 64-team format was adopted) to 2012. This lets us work out roughly the probability of, for example, the number-three seed beating the number-14, at least by what’s termed the “frequentist” interpretation of probability. In that interpretation, the probability of something happening is roughly how many times the thing you’re interested in happens for the number of times it could happen. From 1985 to 2012 each of the various first-round possibilites was played 112 times (28 tournaments with four divisions each); if we make some plausible assumptions about games being independent events (how one seed did last year doesn’t affect how it does this year), we should have a decent rough idea of the probability of each seed winning.

    According to its statistics, and remarkable to me, is that apparently the number-one seed has never been beaten by the number-16. I’m surprised; I’d have guessed the bottom team had at least a one percent chance of victory. I’m also surprised that the Internet seems to have only the one page that’s gathered explicitly how often the first rounds go to the various seeds, although perhaps I’m just not searching for the right terms.

    From http://bracketodds.cs.illinois.edu I learn that Dr Sheldon Jacobson and Dr Douglas M King of the University of Illinois (Urbana) published an interesting paper “Seeding In The NCAA Men’s Basketball Tournament: When is A Higher Seed Better?” which runs a variety of statistical tests on the outcomes of March Madness tournaments and finds that the seeding does seem to correspond to the stronger team in the first few rounds, but that after the Elite Eight round there’s not the evidence that a higher seed is more likely to win than the lower; effectively, after the first few rounds you might as well make a random pick.

    Jacobson and King, along with Dr Alexander Nikolaev at SUNY/Buffalo and Dr Adrian J Lee, Central Illinois Technology and Education Research Institute, also wrote “Seed Distributions for the NCAA Men’s Basketball Tournament” which tries to model the tournament’s outcomes as random variables, and compares how these random-variable projections compare to what actually happened between 1985 and 2010. This includes some interesting projections about how often we might expect the various seeds to appear in the Sweet Sixteen, Elite Eight, or Final Four. It brings out some surprises — which make sense when you look back at the brackets — such as that the number-eight or number-nine seed has a worse chance of getting to the Sweet Sixteen than the eleventh- or twelfth-seed does.

    (The eighth or ninth seed, if they win, have to play whoever wins the sixteen-versus-one contest, which will be the number-one seed. The eleventh seed has to beat first the number-six seed, and then either the number-three or the number-14 seed, either one of which is more likely.)

    Meanwhile, it turns out that in my brackets I had picked Connecticut to beat Villanova, which has me doing well in my group — we get bonus points for calling upsets — apart from the accusations of witchcraft.

     
  • Joseph Nebus 8:49 pm on Thursday, 20 March, 2014 Permalink | Reply
    Tags: Albany, , , Michigan State, Ohio State, , sports   

    Calculating March Madness 


    I did join a little group of people competing to try calling the various NCAA basketball tournament brackets. It’s a silly pastime and way to commiserate with other people about how badly we’re doing forecasting the outcome of the 63 games in the match. We’re competing just for points and the glory of doing a little better than our friends, but there’s some actual betting pools out there, and some contests that offer, for perfect brackets, a billion dollars (Warren Buffet, if I have that right), or maybe even a new car (WLNS-TV, channel 6, Lansing).

    Working out what the odds are of getting all 63 games right is more interesting than it might seem at first. The natural (it seems to me) first guess at working out the odds is to say, well, there are 63 games, and whatever team you pick has a 50 percent chance of winning that game, so the chance of getting all 63 games right is \left(\frac{1}{2}\right)^{63} , or one chance in 9,223,372,036,854,775,808.

    But it’s not quite so, and the reason is buried in the assumption that every team has a 50 percent chance of winning any given game. And that’s just not so: it’s plausible (as of this writing) to think that the final game will be Michigan State playing the University of Michigan. It’s just ridiculous to think that the final game will be SUNY/Albany (16th seeded) playing Wofford (15th).

    The thing is that not all the matches are equally likely to be won by either team. The contest starts out with the number one seed playing the number 16, the number two seed playing the number 15, and so on. The seeding order roughly approximates the order of how good the teams are. It doesn’t take any great stretch to imagine the number ten seed beating the number nine seed; but, has a number 16 seed ever beaten the number one?

    To really work out the probability of getting all the brackets right turns into a fairly involved problem. We can probably assume that the chance of, say, number-one seed Virginia beating number-16 seed Coastal Carolina is close to how frequently number-one seeds have beaten number-16 seeds in the past, and similarly that number-four seed Michigan State’s chances over number-13 Delaware is close to that historical average. But there are some 9,223,372,036,854,775,808 possible ways that the tournament could, in principle, go, and they’ve all got different probabilities of happening.

    So there isn’t a unique answer to what is the chance that you’ve picked a perfect bracket set. It’s higher if you’ve picked a lot of higher-ranking seeds, certainly, at least assuming that this year’s tournament is much like previous years’, and that seeds do somewhat well reflect how likely teams are to win. At some point it starts to be easier to accept “one chance in 9,223,372,036,854,775,808” as close enough. Me, I’ll be gloating for the whole tournament thanks to my guess that Ohio State would lose to Dayton.

    [Edit: first paragraph originally read “games in the match”, which doesn’t quite parse.]

     
  • Joseph Nebus 3:05 pm on Wednesday, 19 March, 2014 Permalink | Reply
    Tags: , , , , , sports   

    Reading The Comics, March 17, 2014: After The Ides Edition 


    Rather than wait to read today’s comics I’m just going to put in a fresh entry going over mathematical points raised in the funny pages. This one turned out to include a massive diversion into the wonders of the ancient Roman calendar, which is a mathematical topic, really, although there’s no calculations involved in it just here.

    Bill Hinds’s Cleats (March 7, rerun) calls on one of the common cultural references to percentages, the idea of athletes giving 100 percent efforts. (Edith is feeling more like an 80 percent effort, or less than that.) The idea of giving 100 percent in a sport is one that invites the question, 100 percent of what; granting that there is some standard expectable effort made, then, even the sports reporting cliche of giving 110 percent is meaningful.
    Cleats continued on the theme the next day, as Edith was thinking more of giving about 79 percent of 80 percent, and it’s not actually that hard to work out in your head what percent that is, if you know anything about doing arithmetic in your head.

    Jef Mallet’s Frazz (March 14) was not actually the only comic strip among the roster I normally read to make a Pi Day reference, but I think it suffices as the example for the whole breed. I admit that I feel a bit curmudgeonly that I don’t actually care about Pi Day. I suppose that as a chance for people to promote the idea of learning mathematics, and maybe attach it to some of the many interesting things to be said about mathematics using Pi as the introductory note the idea is fine, but just naming a thing isn’t by itself a joke. I’m told that Facebook (I’m not on it) was thick with people posting photographs of pies, which is probably more fun when you think of it than when you notice everybody else thought of it too. Anyway, organized Pi Day events are still pretty new as Internet Pop Holidays go. Perhaps next year’s comics will be sharper.

    Jenny Campbell’s Flo and Friends (March 15) comes back to useful mental arithmetic work, in this case in working out a reasonable tip. A twenty-percent tip is, mercifully, pretty easy to remember just as what’s-her-name specifies. (I can’t think of the kid’s name and there’s no meet-our-cast page on the web site. None of the commenters mention her name either, although they do make room to insult health care reform and letting students use calculators to do arithmetic, so, I’m sorry I read that far down too.) But as ever you need to make sure the process is explained clearly and understood, and Tina needed to run a sanity check on the result. Sanity checks, as suggested, won’t show that your answer is right, but they will rule out some of the wrong ones. (A fifteen percent tip is a bit annoying to calculate exactly, but dividing the original amount by six will give you a sixteen-and-two-thirds percent tip, which is surely close enough, especially if you round off to a quarter-dollar.)

    Steve Breen and Mike Thompson’s Grand Avenue (March 15) has the kids wonder what are the ides of March; besides that they’re the 15th of the month and they’re used for some memorable writing about Julius Caesar it’s a fair thing not to know. They derive from calendar-keeping, one of the oldest useful applications of mathematics and astronomy. The ancient Roman scheme set three special dates in the month: the kalends, which seem to have started as the day of the new moon as observed in Rome; the nones, when the moon was at its first quarter; and the ides, when the moon was full.

    But by the time of Numa Pompilius, the second (traditional) King of Rome, who reformed the calendar around 713 BC, the lunar link was snapped, partly so that the calendar year could more nearly fit the length of the time it takes to go from one spring to another. (Among other things the pre-Numa calendar had only ten months, with the days between December and March not belonging to any month; since Romans were rather agricultural at the time and there wasn’t much happening in winter, this wasn’t really absurd, even if I find it hard to imagine living by this sort of standard. After Numa there were only about eleven days of the year unaccounted for, with the time made up, when it needed to be, by inserting an extra month, Mercedonius, in the middle of February.) Months then had, February excepted, either 29 or 31 days, with the ides being on the fifteenth day of the 31-day months (March, May, July, and October) and the thirteenth day of the 29-day months.

    For reasons that surely made sense if you were an ancient Roman the day was specified as the number of days until the next kalend, none, or ide; so, for example, while the 13th of March would be the 2nd day before the ides of March, II Id Mar, the 19th of March would be recorded as the the the 14th day before the kalend of April, or, XIV Kal Apr. I admit I could probably warm up to counting down to the next month event, but the idea of having half the month of March written down on the calendar as a date with “April” in it leaves me deeply unsettled. And that’s before we even get into how an extra month might get slipped into the middle of February (between the 23rd and the 24th of the month, the trace of which can still be observed in the dominical letters of February in leap years, on Roman Catholic and Anglican calendars, and in the obscure term “bissextile year” for leap year). But now that you see that, you know why (a) the ancient Romans had so much trouble getting their database software to do dates correctly and (b) you get to be all smugly superior to anyone who tries making a crack about the United States Federal Income Tax deadline being on the Ides of April, since they never are.

    (Warning: absolutely no one ever will be impressed by your knowledge of the Ides of April and their inapplicability to discussions of the United States Federal Income Tax. However, you might use this as a way to appear like you’re making friendly small talk while actually encouraging people to leave you alone.)

    Tom Horacek’s Foolish Mortals (March 17), an erratically-published panel strip, calls on the legend of how mathematicians “usually” peak in their twenties. It’s certainly said of mathematicians that they do their most important work while young — note that the Fields Medal is explicitly given to mathematicians for work done when they were under forty years old — although I’m not aware of anyone who’s actually studied this, and the number of great mathematicians who insist on doing brilliant work into their old age is pretty impressive.

    Certainly, for example, Newton began work on calculus (and optics and gravitation) when he was about 23, but he didn’t publish until he was about fifty. (Leibniz, meanwhile, started publishing calculus his way at about age 38.) It’s probably impossible to say what Leonhard Euler’s most important work was, but (for example) his equations describing inviscid fluids — which would be the masterpiece for anybody not Euler — he published when he was fifty. Carl Friedrich Gauss didn’t start serious work in electromagnetism until he was about 55 years old, too. The law of electric flux which Gauss worked out for that — which, again, would have been the career achievement if Gauss weren’t overflowing with them — he published when he was 58.

    I guess that I’m saying is that great minds, at least, don’t necessarily peak in their twenties, or at least they have some impressive peaks afterwards too.

     
  • Joseph Nebus 3:16 am on Monday, 22 July, 2013 Permalink | Reply
    Tags: , , sports,   

    Distribution of the batting order slot that ends a baseball game 


    The God Plays Dice blog has a nice piece attempting to model a baseball question. Baseball is wonderful for all kinds of mathematics questions, partly because the game has since its creation kept data about the plays made, partly because the game breaks its action neatly into discrete units with well-defined outcomes.

    Here, Dr Michael Lugo ponders whether games are more likely to end at any particular spot in the batting order. Lugo points out that certainly we could just count where games actually end, since baseball records are enough to make an estimate from that route possible. But that’s tedious, and it’s easier to work out a simple model and see what that suggests. Lupo also uses the number of perfect games as a test of whether the model is remotely plausible, and a test like this — a simple check to whether the scheme could possibly tell us something meaningful — is worth doing whenever one builds a model of something interesting.

    Like

    God plays dice

    Tom Tango, while writing about lineup construction in baseball, pointed out that batters batting closer to the top of the batting order have a greater chance of setting records that are based on counting something – for example, Chris Davis’ chase for 62 home runs. (It’s interesting that enough people see Roger Maris’ 61 as the “real” record that 62 is a big deal.) He observes that over a 162-game season, each slot further down in the batting order (of 9) means 18 fewer plate appearances.

    Implicitly this means that every slot in the batting order is equally likely to end the game — that is, that the number of plate appearances for a team in a game, mod 9, is uniformly distributed over {0, 1, …, 8}.

    Can we check this? There are two ways to check it:

    • 1. find the number of plate appearances in every game…

    View original post 652 more words

     
  • Joseph Nebus 12:37 am on Tuesday, 29 January, 2013 Permalink | Reply
    Tags: , , NBA, , sports   

    Reblog: Lawler’s Log 


    I don’t intend to transform my writings here into a low-key sports mathematics blog. I just happen to have run across a couple of interesting problems and, after all, sports do offer a lot of neat questions about probability and statistics.

    benperreira here makes mention of “Lawler’s Law”, something I had not previously noticed. The “Law” is the observation that the first basketball team to make it to 100 points wins the game just about 90 percent of the time. It was apparently first observed by Los Angeles Clippers announcer Ralph Lawler and has been supported by a review of the statistics of NBA teams over the decades.

    benperreira is unimpressed with the law, regarding it as just a restatement of the principle that a team that scores more than the league average number of points per game will tend to have a winning record in an unduly wise-sounding phrasing. I’m inclined to agree the Law doesn’t seem to be particularly much, though I was caught by the implication that the team which lets the other get to 100 points first still pulls out a victory one time out of ten.

    To underscore his point benperreira includes a diagram purporting to show the likelihood of victory to points scored, although it’s pretty obviously meant to be a quick joke extrapolating from the data that both teams start with a 50 percent chance of victory and zero points, and apparently 100 points gives a nearly 90 percent chance of victory. I am curious about a more precise chart — showing how often the first team to make 10, or 25, or 50, or so points goes on to victory, but I certainly haven’t got time to compile that data.

    Well, perhaps I do, but my reading in baseball history and brushes up against people with SABR connections makes it very clear I have every possible risk factor for getting lost in the world of sports statistics so I want to stay far from the meat of actual games.

    Still, there are good probability questions to be asked about things like how big a lead is effectively unbeatable, and I’ll leave this post and reblog as a way to nag myself in the future to maybe thinking about it later.

    Like

    Ben Perreira

    Lawler’s Law states that the NBA team that reaches 100 points first will win the game. It is based on Lawler’s observations and confirmed by looking back at NBA statistics that show it is true over 90% of the time.

    Its brilliance lies in its uselessness. Like NyQuil helps us sleep but does little to help our immune systems make us well, Lawler’s Law soothes us by making us think it means something more than it does.

    Why is it so useless, one may venture to ask?

    Lawler2

    This is a graphical representation of Lawler’s Law. Point A represents the beginning of a game. This team (which ultimately wins this game) has roughly a 50% chance of winning at that point. As the game goes on, and more points are scored, the team depicted here increases its chance of victory based on the number of points it has scored. Point B…

    View original post 142 more words

     
  • Joseph Nebus 5:08 am on Sunday, 27 January, 2013 Permalink | Reply
    Tags: , baseball game, , pigeon hole principle, , sports,   

    Trivial Little Baseball Puzzle 


    I’ve been reading a book about the innovations of baseball so that’s probably why it’s on my mind. And this isn’t important and I don’t expect it to go anywhere, but it did cross my mind, so, why not give it 200 words where they won’t do any harm?

    Imagine one half-inning in a baseball game; imagine that there’s no substitutions or injuries or anything requiring the replacement of a batter. Also suppose there are none of those freak events like when a batter hits out of order and the other team doesn’t notice (or pretends not to notice), the sort of things which launch one into the wonderful and strange world of stuff baseball does because they did it that way in 1835 when everyone playing was striving to be a Gentleman.

    What’s the maximum number of runs that could be scored while still having at least one player not get a run?

    (More …)

     
    • Rocket the Pony (@Blue_Pony) 3:44 am on Monday, 28 January, 2013 Permalink | Reply

      I’m not certain enough of the rules to be sure this would work, but… What if 24 runs had been scored, and the bases were loaded, with the unlucky #9 batter on third base. The batter at the plate gets a hit that bounces all over the place, staying fair, and the outfielders stumble all over themselves trying to retrieve it, kind of like when we play on Spindizzy. The unlucky #9 batter fails to tag home plate, but thinks that he has, trotting off to the dugout. Meanwhile, the other three runners score before the defending team can get the ball to home plate to tag #9 out. Would that work?

      Like

      • Joseph Nebus 8:56 pm on Monday, 28 January, 2013 Permalink | Reply

        I’m not sure. I think that it goes against the spirit of “no freak events”, since a runner missing a base is a fairly abnormal event. But allowing it as the sort of glitch that does happen often enough not to send people running to the rulebooks to find out whether it even is a rule …

        I don’t know. I’m fairly confident that this would put the unlucky runner out, but whether the runs that came in after he missed home plate count or whether they’re voided I’m not sure. I could certainly see a trivia book or column a la Ripley’s claiming there were 27 runs scored in that fateful inning even if the last three were annulled, though.

        Like

      • Joseph Nebus 6:11 am on Tuesday, 29 January, 2013 Permalink | Reply

        OK, per D F Manno in alt.fan.cecil-adams, if Unlucky #9 fails to touch home plate, then, he’d be out and neither his run nor the ones after him would count.

        However, it is not an automatic thing: per rule 7.10(d), the defending team would have to tag home plate and appeal to the umpire before the next pitch is thrown or any play (or attempted play) made. (See my comments about stuff being done as if it were still 1835.)

        If the defending team doesn’t tag the plate, or doesn’t appeal the play in time, or the umpire doesn’t agree the runner missed the base, though, then the run counts, which does spoil the setup about Unlucky #9 not getting a run.

        Like

c
Compose new post
j
Next post/Next comment
k
Previous post/Previous comment
r
Reply
e
Edit
o
Show/Hide comments
t
Go to top
l
Go to login
h
Show/Hide help
shift + esc
Cancel
%d bloggers like this: