Reading the Comics, March 17, 2020: Random Edition


I thought last week’s comic strips mentioning mathematics in detail were still subjects easy to describe in one or two paragraphs each. I wasn’t quite right. So here’s a half of a week, even if it is a day later than I had wanted to post.

John Zakour and Scott Roberts’s Working Daze for the 15th is a straggler Pi Day joke, built on the nerd couple Roy and Kathy letting the date slip their minds. This is a very slight Pi Day reference but I feel the need to include it for completeness’s sake. It reminds me of the sequence where one year Schroeder forgot Beethoven’s birthday, and was devastated.

Sue: 'So, Roy, what big fun did you and Kathy have for Pi Day this year?' Roy, caught by surprise, freezes, and then turns several colors in succession before he starts to cry. Ed, to Sue: 'Hard to say which is worse for him, that you forgot, or that you remembered.'
John Zakour and Scott Roberts’s Working Daze for the 15th of March, 2020. Essays featuring Working Daze, which often turns up in Pi Day events, are at this link. And generally essays tied to Pi Day are at this link.

Lincoln Peirce’s Big Nate for the 15th is a wordy bit of Nate refusing the story problem. Nate complains about a lack of motivation for the characters in it. But then what we need for a story problem isn’t the characters to do something so much as it is the student to want to solve the problem. That’s hard work. Everyone’s fascinated by some mathematical problems, but it’s hard to think of something that will compel everyone to wonder what the answer could be.

At one point Nate wonders what happens if Todd stops for gas. Here he’s just ignoring the premise of the question: Todd is given as travelling an average 55 mph until he reaches Saint Louis, and that’s that. So this question at least is answered. But he might need advice to see how it’s implied.

Quiz: 'Many lives in Los Angeles. Todd lives in Boston. They plan to meet in St Louis, which is 1,825 miles from Los Angeles and 1,192 miles from Boston. If Mandy takes a train travelling a constant 80 mph and Todd drives a car at a constant 55 mph, which of them will reach St Lous first?' Nate's answer: 'That depends. Who ARE these people? Are they a couple? Is this romance? If it is, wouldn't Todd drive way faster than 55 mph? He'd be all fired up to see Many, right? And wouldn't Mandy take a plane and get to St Louis in like three hours? Especially if she hasn't seen Todd in a while? But we don't know how long since they've been together because you decided not to tell us! Plus anything can happen while they're traveling. What if Todd stops for gas and the cashier is a total smoke show and he's like, Mandy Who? I can't answer until I have some real intel on these people. I can't believe you even asked the question.' Out loud, 'Also, Todd and Mandy are dorky names.' Teacher: 'This isn't what I meant by show your work.'
Lincoln Peirce’s Big Nate for the 15th of March, 2020. Essays with something mentioned by either Big Nate or the 1990s-repeats Big Nate: First Class are gathered at this link.

So this problem is doable by long division: 1825 divided by 80, and 1192 divided by 55, and see what’s larger. Can we avoid dividing by 55 if we’re doing it by hand? I think so. Here’s what I see: 1825 divided by 80 is equal to 1600 divided by 80 plus 225 divided by 80. That first is 20; that second is … eh. It’s a little less than 240 divided by 80, which is 3. So Mandy will need a little under 23 hours.

Is 23 hours enough for Todd to get to Saint Louis? Well, 23 times 55 will be 23 times 50 plus 23 times 5. 23 times 50 is 22 times 50 plus 1 times 50. 22 times 50 is 11 times 100, or 1100. So 23 times 50 is 1150. And 23 times 5 has to be 150. That’s more than 1192. So Todd gets there first. I might want to figure just how much less than 23 hours Mandy needs, to be sure of my calculation, but this is how I do it without putting 55 into an ugly number like 1192.

Cow: 'What're you doing?' Billy: 'I'm devising a system to win the lottery! Plugging in what I know about chaos theory and numerical behavior in nonlinear dynamical systems should give me the winning picks.' (Silent penultimate panel.) Cow: 'You're just writing down a bunch of numbers.' Billy: 'Maybe.'
Mark Leiknes’s Cow and Boy repeat for the 17th of March, 2020. The too-rare appearances of Cow and Boy Reruns in my essays are here.

Mark Leiknes’s Cow and Boy repeat for the 17th sees the Boy, Billy, trying to beat the lottery. He throws at it the terms chaos theory and nonlinear dynamical systems. They’re good and probably relevant systems. A “dynamical system” is what you’d guess from the name: a collection of things whose properties keep changing. They change because of other things in the collection. When “nonlinear” crops up in mathematics it means “oh but such a pain to deal with”. It has a more precise definition, but this is its meaning. More precisely: in a linear system, a change in the initial setup makes a proportional change in the outcome. If Todd drove to Saint Louis on a path two percent longer, he’d need two percent more time to get there. A nonlinear system doesn’t guarantee that; a two percent longer drive might take ten percent longer, or one-quarter the time, or some other weirdness. Nonlinear systems are really good for giving numbers that look random. There’ll be so many little factors that make non-negligible results that they can’t be predicted in any useful time. This is good for drawing number balls for a lottery.

Chaos theory turns up a lot in dynamical systems. Dynamical systems, even nonlinear ones, often have regions that behave in predictable patterns. We may not be able to say what tomorrow’s weather will be exactly, but we can say whether it’ll be hot or freezing. But dynamical systems can have regions where no prediction is possible. Not because they don’t follow predictable rules. But because any perturbation, however small, produces changes that overwhelm the forecast. This includes the difference between any possible real-world measurement and the real quantity.

Obvious question: how is there anything to study in chaos theory, then? Is it all just people looking at complicated systems and saying, yup, we’re done here? Usually the questions turn on problems such as how probable it is we’re in a chaotic region. Or what factors influence whether the system is chaotic, and how much of it is chaotic. Even if we can’t say what will happen, we can usually say something about when we can’t say what will happen, and why. Anyway if Billy does believe the lottery is chaotic, there’s not a lot he can be doing with predicting winning numbers from it. Cow’s skepticism is fair.

T-Rex: 'Dromiceiomimus, pick a number between one and a hundred thousand million.' Dromiceiomimus: '17?' T-Rex: 'Gasp! That's the number I was thinking of!' Dromiceiomimus: 'Great! Do I win something?' T-Rex: 'You just came out on a one in a hundred thousand million chance and you want a prize? It's not enough to spit in the face of probability itself?' Utahraptor: 'It's not THAT unlikely she'd chose your number. We're actually pretty bad at random number generation and if you ask folks to pick a number in a range, some choices show up more often than others. It's not that unlikely you'd both land on the same number!' T-Rex: 'But *I* didn't choose 17 randomly! It's ... the number of times I have thought about ice cream today, I'm not even gonna lie.'
Ryan North’s Dinosaur Comics for the 17th of March, 2020. Essays that mention something brought up in Dinosaur Comics are gathered at this link.

Ryan North’s Dinosaur Comics for the 17th is one about people asked to summon random numbers. Utahraptor is absolutely right. People are terrible at calling out random numbers. We’re more likely to summon odd numbers than we should be. We shy away from generating strings of numbers. We’d feel weird offering, say, 1234, though that’s as good a four-digit number as 1753. And to offer 2222 would feel really weird. Part of this is that there’s not really such a thing as “a” random number; it’s sequences of numbers that are random. We just pick a number from a random sequence. And we’re terrible at producing random sequences. Here’s one study, challenging people to produce digits from 1 through 9. Are their sequences predictable? If the numbers were uniformly distributed from 1 through 9, then any prediction of the next digit in a sequence should have a one chance in nine of being right. It turns out human-generated sequences form patterns that could be forecast, on average, 27% of the time. Individual cases could get forecast 45% of the time.

There are some neat side results from that study too, particularly that they were able to pretty reliably tell the difference between two individuals by their “random” sequences. We may be bad at thinking up random numbers but the details of how we’re bad can be unique.


And I’m not done yet. There’s some more comic strips from last week to discuss and I’ll have that post here soon. Thanks for reading.

Reading the Comics, December 8, 2018: Sam and Son Edition


That there were twelve comic strips making my cut as mention-worthy this week should have let me do three essays of four comics each. But the desire to include all the comics from the same day in one essay leaves me one short here. So be it. Three of the four cartoonists featured here have a name of Sansom or Samson, so, that’s an edition title for you. No, Sam and Silo do not appear here.

Art Sansom and Chip Sansom’s Born Loser for the 6th uses arithmetic as a test of deference. Will someone deny a true thing in order to demonstrate loyalty? Arithmetic is full of things that are inarguably true. If we take the ordinary meanings of one, plus, equals, and three, it can’t be that one plus one equals three. Most fields of human endeavor are vulnerable to personal taste, or can get lost in definitions and technicalities. Or the advance of knowledge: my love and I were talking last night how we remembered hearing, as kids, the trivia that panda bears were not really bears, but a kind of raccoon. (Genetic evidence has us now put giant pandas with the bears, and red pandas as part of the same superfamily as raccoons, but barely.) Or even be subject to sarcasm. Arithmetic has a harder time of that. Mathematical ideas do evolve in time, certainly. But basic arithmetic is pretty stable. Logic is also a reliable source of things we can be confident are true. But arithmetic is more familiar than most logical propositions.

Thornapple: 'You wanted to see me, chief?' Boss: 'Yes, Thornapple. One plus one equals three, am I correct?' Thornapple: 'Yes, sir!' Boss: 'Very good! You may leave.' Thornapple, to audience: 'Every so often, I need to check that the employees are still appropriately subservient.'
Art Sansom and Chip Sansom’s Born Loser for the 6th of December, 2018. Essays about the topics raised by The Born Loser should be at this link. I’m startled to discover this is apparently a new tag, though.

Samson’s Dark Side of the Horse for the 8th is the Roman Numerals joke for the week. It’s also a bit of a wordplay joke, although the music wordplay rather tha mathematics. Me, I still haven’t heard a clear reason why ‘MIC’ wouldn’t be a legitimate Roman numeral representation of 1099. I’m not sure whether ‘MIC’ would step on or augment the final joke, though.

Horace, trying to get to sleep, imagining sheep jumping a fence: MXCVII (1098). MXCIX (1099). MC (1100); it's a rapper sheep with a huge medallion and microphone.
Samson’s Dark Side of the Horse for the 8th of December, 2018. This and other essays mentioning Dark Side Of The Horse are at this link. This is certainly not a new tag.

Pab Sungenis’s New Adventures of Queen Victoria for the 8th has a comedia dell’arte-based structure for its joke. (The strip does that, now and then.) The comic uses a story problem, with the calculated answer rejected for the nonsense it would be. I suppose it must be possible for someone to eat eighty apples over a long enough time that it’s not distressing, and yet another twenty apples wouldn’t spoil. I wouldn’t try it, though.

Funnies dell'Arte. Arlecchino: 'A man has 100 apples. He eats 80. What does he have?' Newton: '20.' Arlecchino: 'No! A stomach ache! Ha ha ha ha ha!' Newton, leaving: 'I'm not surprised.' Arlecchino, calling after: 'Comedy is just something that happens to other people are far as you're concerned, huh?!'
Pab Sungenis’s New Adventures of Queen Victoria for the 8th of December, 2018. Essays based on stuff mentioned in New Adventures of Queen Victoria should be at this link. This also seems to be a new tag, somehow, and that doesn’t make sense to me.

This and my other Reading the Comics posts should all be available at this link.

Reading the Comics, April 19, 2018: Late Because Of Pinball Edition


Hi, all. I apologize for being late in posting this, but my Friday and Saturday were eaten up by pinball competition. Pinball At The Zoo, particularly, in Kalamazoo, Michigan. There, Friday, I stepped up first thing and put in four games on the Classics, pre-1985, tournament bank and based on my entry scores was ranked the second-best player there. And then over the day my scores dwindled lower and lower on the list of what people had entered until, in the last five minutes of qualifying, they dropped off the roster altogether and I was knocked out. Meanwhile in the main tournament, I was never even close to making playoffs. But I did have a fantastic game of Bally/Midway’s World Cup Soccer, a game based on how much the United States went crazy for soccer that time we hosted the World Cup for some reason. The game was interrupted by one of the rubber straps around one of the kickers (the little triangular table just past the flippers that you would think would be called the bumpers) breaking, and then by the drain breaking in a way that later knocked the game entirely out of the competition. So anyway besides that glory I’ve been very busy trying to figure out what’s gone wrong and stepping outside to berate the fox squirrels out back, and that’s why I’m late with all this. I’m sure you relate.

Danielle Rabbit as a lion tamer whipping a 2. Danielle as orchestra conductor leading a 4 playing violin. As a puppet-master holding up an 8 and 3 as marionettes. Juggling the numerals 0 through 9. Nursing a 7. Then reality: Kevin saying, 'Danielle, thanks for doing our taxes.' Danielle: 'Well, you just have to know how to handle numbers.'
Bill Holbrook’s Kevin and Kell rerun for the 15th of April, 2018. The strip is this enormously tall format because at the time it originally ran (in 2012) the strip appeared in print in the Atlanta Journal-Constitution, sharing the page with Wiley Miller’s similarly-formatted Non Sequitur. The strip has since resumed more normal dimensions.

Bill Holbrook’s Kevin and Kell rerun for the 15th is the anthropomorphic numerals strip for the week. Also the first of the anthropomorphic strips for the week. Calculating taxes has always been one of the compelling social needs for mathematics, arithmetic especially. If we consider the topic to be “accounting” then that might be the biggest use of mathematics in society. At least by humans; I’m not sure how to rate the arithmetic that computers do even for not explicitly mathematical tasks like sending messages back and forth. New comic strip tag for around here, too.

Fauna, to her brother Tucker: 'I learned a valuable lesson in trigonometry class today. The next time I sign up for a class, it will have nothing to do with numbers.'
Bill Schorr’s The Grizzwells for the 17th of April, 2018. Yeah, people say that, but then they get into Abstract Algebra and then they see any proof whatsoever that involves ideals of rings.

Bill Schorr’s The Grizzwells for the 17th sees Fauna not liking trigonometry class. I’m sympathetic. I remember it as seeming to be a lot of strange new definitions put to vague purposes. On the bright side, when you get into calculus trigonometry starts solving more problems than it creates. On the dim side, at least when I took it they tried to pass off “trigonometric substitution” as a thing we might need. (OK, it’s come in useful sometimes, but not as often as the presentation made it look.) Also a new comic strip tag.

A two-circle Venn diagram. In one circle: 'Eric's friends'. In the other: 'Eric's enemies'. In the intersection: 'Eric's cat'.
Eric the Circle for the 18th of April, 2018, this one by sdhardie. It’s a rerun, yes, although I don’t know just from when. The copyright date of 2012 suggests I’ve probably already covered this in a Reading the Comics post before. (If I have I can’t find it.)

Eric the Circle for the 18th, this one by sdhardie, is a joke in the Venn Diagram mode. The strip’s a little unusual for not having one of the circles be named Eric. Not a new comic strip tag.

A trophy room. Behind the adult are the heads of an elephant and a tiger . Behind the child are Maths Teacher Year 1 and Maths Teacher Year 2.
Ham’s Life on Earth for the 19th of April, 2018. I suppose that Ham is a pseudonym but I have no information about the cartoonist other than that I guess she’s not American.

Ham’s Life on Earth for the 19th leaves me feeling faintly threatened. Maybe it’s just me. Also not a new comic strip tag, somehow.

Mostly a list of '6 Daydreams That Will Immediately Improve Your Mood'. Relevant is #3, 'Oh hey professor who failed me in college math I'm doing pretty well thanks MATH SLAP.'
Lord Birthday’s Dumbwitch Castle for the 19th of April, 2018. I … I would swear when this comic first started appearing it was by a less absurd pseudonym. I don’t remember, though.

Lord Birthday’s Dumbwitch Castle for the 19th is a small sketch and mostly a list of jokes. This is the normal format for this strip, which tests the idea of what makes something a comic strip. I grant it’s a marginal inclusion, but I am tickled by the idea of a math slap so here you go. This one’s another new comic strip tag.

What I’ve Been Reading, Mid-March 2018


So here’s some of the stuff I’ve noticed while being on the Internet and sometimes noticing interesting mathematical stuff.

Here from the end of January is a bit of oddball news. A story problem for 11-year-olds in one district of China set up a problem that couldn’t be solved. Not exactly, anyway. The question — “if a ship had 26 sheep and 10 goats onboard, how old is the ship’s captain?” — squares nicely with that Gil comic strip I discussed the other day. After seeing 26 (something) and 10 (something else) it’s easy to think of what answers might be wanted: 36 (total animals) or 16 (how many more sheep there are than goats) or maybe 104 (how many hooves there are, if they all have the standard four hooves). That the question doesn’t ask anything that the given numbers matter for barely registers unless you read the question again. I like the principle of reminding people not to calculate until you know what you want to do and why that. And it’s possible to give partial answers: the BBC News report linked above includes a mention from one commenter that allowed a reasonable lower bound to be set on the ship’s captain’s age.

In something for my mathematics majors, here’s A Regiment of Monstrous Functions as assembled by Rob J Low. This is about functions with a domain and a range that are both real numbers. There’s many kinds of these functions. They match nicely to the kinds of curves you can draw on a sheet of paper. So take a sheet of paper and draw a curve. You’ve probably drawn a continuous curve, one that can be drawn without lifting your pencil off the paper. Good chance you drew a differentiable one, one without corners. But most functions aren’t continuous. And aren’t differentiable. Of those few exceptions that are, many of them are continuous or differentiable only in weird cases. Low reviews some of the many kinds of functions out there. Functions discontinuous at a point. Functions continuous only on one point, and why that’s not a crazy thing to say. Functions continuous on irrational numbers but discontinuous on rational numbers. This is where mathematics majors taking real analysis feel overwhelmed. And then there’s stranger stuff out there.

Here’s a neat one. It’s about finding recognizable, particular, interesting pictures in long enough prime numbers. The secret to it is described in the linked paper. The key is that the eye is very forgiving of slightly imperfect images. This fact should reassure people learning to draw, but will not. And there’s a lot of prime numbers out there. If an exactly-correct image doesn’t happen to be a prime number that’s all right. There’s a number close enough to it that will be. That latter point is something that anyone interested in number theory “knows”, in that we know some stuff about the biggest possible gaps between prime numbers. But that fact isn’t the same as seeing it.

And finally there’s something for mathematics majors. Differential equations are big and important. They appear whenever you want to describe something that changes based on its current state. And this is so much stuff. Finding solutions to differential equations is a whole major field of mathematics. The linked PDF is a slideshow of notes about one way to crack these problems: find symmetries. The only trouble is it’s a PDF of a Powerpoint presentation, one of those where each of the items gets added on in sequence. So each slide appears like eight times, each time with one extra line on it. It’s still good, interesting stuff.

Reading the Comics, March 2, 2018: Socks Edition


There were enough comics last week to justify splitting them across two posts. But several of them were on a single theme. So they’re bundled together and you see what the theme is already if you pay attention to the edition titles.

Jeff Mallet’s Frazz on the 26th of February had a joke about a story problem going awry. Properly this should’ve been included in the Sunday update, but the theme was riffed on the next several days, and so I thought moving this made for a better split. In this case the kids resist the problem on the grounds that the cost ($1.50 for a pair of socks) is implausibly low. And now I’m reminded that a couple months ago I wondered if a comic strip (possibly Frazz again) gave a plausible price for apples. And I go to a great farmer’s market nearly every week and look at the apple prices and never think to write them down so I can check.

But the topic, and the attempt to use the price of socks as a joke, continued on the 27th. Here the resistance was on the grounds there might be a sale on. Fair enough, although the students should feel free to ask about sales. And the teacher ought to be able to offer that. Also, it seems to me that “twice $5” is a different problem to “twice $1.50”, at least at this level. An easier one, I’d say, too. If the pair of socks were $4.50 it would preserve what I imagine is the point being tested. I think that’s how to multiply a compound fraction or a number with a decimal. But Frazz’s characters know the objectives better than I do.

The topic gets clarified on the 28th, which doesn’t end the students’ resistance on the grounds of plausibility. This seems to portray the kids as more conscious of clothing prices than I think I was as a kid, but it’s Mallet’s comic strip. He knows what his kids care about. The sequence closes out the 1st of March with a coda that’s the sort of joke every academic department tells about the others.

Julie Larson’s Dinette Set rerun for the 27th is an extended bit of people not understanding two-for-one sales. I’m tickled by it, but I won’t think ill of you if you decide you don’t want to read all those word balloons. There’s some further jokes in the signs and the t-shirts people are wearing, but they’re not part of the main joke. (Larson would often include stray extra jokes like that. It always confuses people who didn’t get the strip’s humor style.)

Dan Thompson’s Brevity for the 1st of March is close enough to the anthropomorphic numerals joke of the week.

Jeffery Lambros’s Domestic Abuse for the 1st is the spare numerical symbols joke for the week, too.

Were Story Problems Ever Any Good?


I have been reading Mapping In Michigan and the Great Lakes Region, edited by David I Macleod, because — look, I understand that I have a problem. I just live with it. The book is about exactly what you might imagine from the title. And it features lots of those charming old maps where, you know, there wasn’t so very much hard data available and everyone did the best with what they had. So you get these maps with spot-on perfect Lake Eries and the eastern shore of Lake Huron looking like you pulled it off of Open Street Maps. And then Michigan looks like a kid’s drawing of a Thanksgiving turkey. Also sometimes they drop a mountain range in the middle of the state because I guess it seemed a little empty without.

The first chapter, by Mary Sponberg Pedley, is a biography and work-history of Louis Charles Karpinski, 1878-1956. Karpinski did a lot to bring scholastic attention to maps of the Great Lakes area. He was a professor of mathematics for the University of Michigan. And he commented a good bit about the problems of teaching mathematics. Pedley quoted this bit that I thought was too good not to share. It’s from Arithmetic For The Farm. It’s about the failure of textbooks to provide examples that actually reflected anything anyone might want to know. I quote here Pedley’s endnote:

Karpinski disparaged the typical “story problems” found in contemporary textbooks, such as the following: “How many sacks, holding 2 bushels, 3 pecks and 2 quarts each can be filled from a bin containing 366 bushels, 3 pecks, 4 quarts of what?” Karpinski comments: “How carefully would you have to fill a sack to make it hold 3 pecks 2 quarts of anything? And who filled the bin so marvelously that the capacity is known with an accuracy of one-25th of 1% of the total?” He recommended an easier, more practical means of doing such problems, noting that a bushel is about 1 & 1/4 or 5/4 cubic feet. Therefore the number of bushels in the bin is the length times width times 4/5; the easiest way to get 4/5 of anything is to take away one-fifth of it.

This does read to me like Pedley jumped a track somewhere. It seems to go from the demolition of the plausibility of one problem’s setup to demolishing the plausibility of how to answer a problem. Still, the core complaint is with us yet. It’s hard to frame problems that might actually come up in ways that clearly test specific mathematical skills.


And on another note. This is the 1,000th mathematical piece that I’ve published since I started in September of 2011. If I’m not misunderstanding this authorship statistic on WordPress, which is never a safe bet. I’m surprised that it has taken as long as this to get to a thousand posts. Also I’m surprised that I should be surprised. I know roughly how many days there are in a year. And I know I need special circumstances to post something more often than every other day. Still, I’m glad to reach this milestone, and gratified that there’s anyone interested in what I have to say. In my next thousand posts I hope to say something.

Reading the Comics, February 7, 2018: Not Taking Algebra Too Seriously Edition


There were nearly a dozen mathematically-themed comic strips among what I’d read, and they almost but not quite split mid-week. Better, they include one of my favorite ever mathematics strips from Charles Schulz’s Peanuts.

Jimmy Halto’s Little Iodine for the 4th of December, 1956 was rerun the 2nd of February. Little Iodine seeks out help with what seems to be story problems. The rate problem — “if it takes one man two hours to plow seven acros, how long will it take five men and a horse to … ” — is a kind I remember being particularly baffling. I think it’s the presence of three numbers at once. It seems easy to go from, say, “if you go two miles in ten minutes, how long will it take to go six miles?” to an answer. To go from “if one person working two hours plows seven acres then how long will five men take to clear fourteen acres” to an answer seems like a different kind of problem altogether. It’s a kind of problem for which it’s even wiser than usual to carefully list everything you need.

Iodone, going into a department store. 'Boy, we got tough homework for tomorrow.' At Information: 'If it takes one man two hours to plow seven acres, how long will it take five men and a horse to --- etc' Clerk: 'Wha? Uh ... let me get a pencil. Will you repeat that, please? ... Cipher ... two o carry ... mmm ... times x ... minus ... mmm ... now let me think ... ' NEXT DAY; Teacher: 'Sharkey Shannon, 92, very good, Sharkey. Shalimar Shultz, 94, excellent, Shalimar. Iodine Tremblechin ... zero ... every problem wrong! Iodine ... I just can't understand it ... not one single answer correct!' Iodine, at the Complaint Department: 'Somebody in this store has to write a hundred times 'I will henceforth study harder'!
Jimmy Halto’s Little Iodine for the 2nd of December, 1956 and rerun the 4th of February, 2018. It’s the rare Little Iodine where she doesn’t get her father fired!

Kieran Meehan’s Pros and Cons for the 5th uses a bit of arithmetic. It looks as if it’s meant to be a reminder about following the conclusions of one’s deductive logic. It’s more common to use 1 + 1 equalling 2, or 2 + 2 equalling 4. Maybe 2 times 2 being 4. But then it takes a little turn into numerology, trying to read more meaning into numbers than is wise. (I understand why people should use numerological reasoning, especially given how much mathematicians like to talk up mathematics as descriptions of reality and how older numeral systems used letters to represent words. And that before you consider how many numbers have connotations.)

Judge: 'Members of the jury, before retiring to consider your verdict, I shall give you my summing-up. 3 + 3 = 6. There are six letters in the word 'guilty'. Coincidence? I don't believe in coincidences.'
Kieran Meehan’s Pros and Cons for the 5th of February, 2018. I grant the art is a bit less sophisticated than in Little Iodine. But the choice of two features to run outside the panels and into the white gutters is an interesting one and I’m not sure what Meehan is going for in choosing one word balloon and the judge’s hand to run into the space like that.

Charles Schulz’s Peanuts for the 5th of February reruns the strip from the 8th of February, 1971. And it is some of the best advice about finding the values of x and y, and about approaching algebra, that I have ever encountered.

Trixie: 'Look at all the birds!! I wonder how many there are! Sic, nine, five, 'leven, eight, fwee, two! Only two! It sure looked like there were more!'
Mort Walker and Dik Browne’s Hi and Lois for the 10th of August, 1960 was rerun the 6th of February, 2018. And I do like Trixie’s look of bafflement in the last panel there; it’s more expressive than seems usual for the comic even in its 1960s design.

Mort Walker and Dik Browne’s Hi and Lois for the 10th of August, 1960 was rerun the 6th of February. It’s a counting joke. Babies do have some number sense. At least babies as old as Trixie do, I believe, in that they’re able to detect that something weird is going on when they’re shown, eg, two balls put into a box and four balls coming out. (Also it turns out that stage magicians get called in to help psychologists study just how infants and toddlers understand the world, which is neat.)

John Zakour and Scott Roberts’s Maria’s Day for the 7th is Ms Payne’s disappointed attempt at motivating mathematics. I imagine she’d try going on if it weren’t a comic strip limited to two panels.

Reading the Comics, January 16, 2017: Better Workflow Edition


So one little secret of my Reading the Comics posts is I haven’t been writing them in a way that makes sense to me. To me, I should take each day’s sufficiently relevant comics, describe them in a paragraph or two, and then have a nice pile of text all ready for the posting Sunday and, if need be, later. I haven’t been doing that. I’ve let links pile up until Friday or Saturday, and then try to process them all, and if you’ve ever wondered why the first comic of the week gets 400 words about some subtlety while the last gets “this is a comic that exists”, there you go. This time around, let me try doing each day’s strips per day and see how that messes things up.

Jef Mallett’s Frazz for the 14th of January is another iteration of the “when will we ever use mathematics” complaint. The answer of “you’ll use it on the test” is unsatisfactory. But somehow, the answer of “you’ll use it to think deeply about something you had never considered before” also doesn’t satisfy. Anyway I’d like to see the idea that education is job-training abolished; I think it should be about making a person conversant with the history of human thought. That can’t be done perfectly, and we might ask whether factoring 32 is that important a piece, but it should certainly be striven for.

Ham’s Life on Earth for the 14th is a Gary Larsonesque riff on that great moment of calculus and physics history, Newton’s supposition that gravity has to follow a universally true law. I’m not sure this would have made my cut if I reviewed a week’s worth of strips at a time. Hm.

Mason Mastroianni’s B.C. for the 15th is a joke about story problem construction, and how the numbers in a story problem might be obvious nonsense. It’s also a cheap shot at animal hoarders, I suppose, but that falls outside my territory here.

Anthony Blades’s Bewley rerun for the 15th riffs on the natural number sense we all have. And we do have a number sense, remarkably. We might not be able to work out 9 times 6 instantly. But asked to pick from a list of possible values, we’re more likely to think that 58 is credible than that 78 or 38 are. It’s quite imprecise, but isn’t it amazing that it’s there at all?

Bill Amend’s FoxTrot Classics for the 15th is a story problem joke, in this case, creating one with a strong motivation for its solution to be found. The strip originally ran the 22nd of January, 1996.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 16th is maybe marginal to include, too. It’s about the kinds of logic puzzles that mathematicians grow up reading and like to pass around. And the way you can fake out someone by presenting a problem with too obvious a solution. It’s not just professors who’ll be stymied by having the answer look too obvious, by the way. Everyone’s similarly vulnerable. To see anything, including an abstract thing like the answer to a puzzle, you need some idea of what you are looking at. If you don’t think the answer could be something that simple, you won’t see it there.

Paw: 'It's four o'clock ... what time are we going to eat?' Maw :'About five.' Paw: 'Good! That gives me two hours to work with Pokey on his arithmeteic.'
Gordon Bess’s Redeye for the 6th of September, 1971. That’s the sort of punch line that really brings out the comically-anachronistic Old West theme.

Gordon Bess’s Redeye for the 6th of September, 1971, was reprinted the 17th. It’s about the fun of teaching a subject you aren’t all that good on yourself. The mathematics is a name-drop here, but the joke wouldn’t make sense if it were about social studies.

Popeye: 'King, they's one thing I wants to know. How much is a pezozee?' King Blozo: 'Why bring that up?' Popeye: 'Yer men hired me to help lick yer emeny at a thousing pezozees a week - tha's why I'd like to know what is a pezozee.' Blozo: 'A pezozee is two pazookas.' Popeye: 'What's a pazooky?' Blozo: 'A pazooka is two pazinkas.' Popeye: 'What's a pazinky?' Blozo: 'A pazinka is two pazoonies.' Popeye: 'What's a pazeenya?' Blozo: 'Phooey! I wish you would quit following me! A pazooney is two pazeenyas.' Popeye: 'what's a pazeenya?' Blozo: 'Two pazimees.' Popeye: 'Hey! What's a pazimee worth?' Blozo: 'Absolutely nothing!' Popeye: 'Blow me down, I'm glad I ain't gettin' paid in pazimees!'
Elzie Segar’s Thimble Theatre for the 10th of August, 1931. Not listed: the rate of exchange for paczki, which reappeared this week.

Elzie Segar’s Thimble Theatre for the 10th of August, 1931, was also reprinted the 17th. It’s an old gag, even back when it was first run. But I suppose there’s some numerical-conversion mathematics to wring out of it. Given the rate of exchange, a pezozee would seem to be 24 pazimees. I’m not sure we need so many units in-between the pazimee and the pezozee, but perhaps King Blozo’s land set its units in a time when fractions were less familiar to the public. The punch line depends on the pazimee being worth nothing and, taken literally, that has sad implications for the pezozee too. If you take the King as speaking roughly, though, sixteen times a small amount is … at least a less small amount. It wouldn’t take many doublings to go from an infinitesimally tiny sum to a respectable one.

And it turns out there were enough comic strips I need to split this into two segments. So I should schedule that to appear. It’s already written and everything.

Reading the Comics, November 11, 2017: Pictured Comics Edition


And now the other half of last week’s comic strips. It was unusually rich in comics that come from Comics Kingdom or Creators.com, which have limited windows of access and therefore make me feel confident I should include the strips so my comments make any sense.

Rick Kirkman and Jerry Scott’s Baby Blues for the 9th mentions mathematics homework as a resolutely rage-inducing topic. It’s mathematics homework, obviously, or else it wouldn’t be mentioned around here. And even more specifically it’s Common Core mathematics homework. So it always is with attempts to teach subjects better. Especially mathematics, given how little confidence people have in their own mastery. I can’t blame parents for supposing any change to be just malice.

Boxing instructor: 'Now focus, Wanda! Think of something that makes you really angry, and take it out on the [punching] bag!' Wanda: 'HARD WATER SPOTS ON THE GLASSWARE!' She punches the bag hard enough to rip it apart. Instructor: 'Okay then ... ' Wanda: 'If I had pictured Common Core math homework, I could've put that sucker through the wall.'
Rick Kirkman and Jerry Scott’s Baby Blues for the 9th of November, 2017. Again I maybe am showing off my lack of domesticity here, but, really, hard water spots? But I admit I’d like to get the tannin stain out of my clear plastic teapot, so I guess we all have our things. I just don’t feel strongly enough to punch about it. I just want something that I can scrub with.

Bill Amend’s FoxTrot Classics for the 9th is about random numbers. As Jason says, it is hard to generate random numbers. Random numbers are a resource. Having a good source of them makes a lot of computation work. But they’re hard to make. It seems to be a contradiction to create random numbers by an algorithm. There’s reasons we accept pseudorandom numbers, or find quasirandom numbers. This strip originally ran the 16th of November, 2006.

A night scene. Lots of stars. Crazy Eddie: 'The number of stars is beyond my comprehension!' Hagar: 'Mine, too! What comes after five?'
Chris Browne’s Hagar the Horrible for the 10th of November, 2017. Before you go getting all smug about Hagar no grasping numbers beyond ‘five’, consider what a dog’s breakfast English has managed historically to make of ‘hundred’. Thank you.

Chris Browne’s Hagar the Horrible for the 10th is about the numerous. There’s different kinds of limits. There’s the greatest number of things we can count in an instant. There’s a limit to how long a string of digits or symbols we can remember. There’s the biggest number of things we can visualize. And “visualize” is a slippery concept. I think I have a pretty good idea what we mean when we say “a thousand” of something. I could calculate how long it took me to do something a thousand times, or to write a thousand of something. I know that it was at about a thousand words that, last A To Z sequence, I got to feeling I should wrap up any particular essay. But did I see any particular difference between word 999 and word 1,000? No; what I really knew was “about enough paragraphs” and maybe “fills just over two screens in my text editor”. So do I know what a thousand is? Anyway, we all have our limits, acknowledge them or not.

Archie: 'Moose, your math answers are all wrong!' Moose: 'I'll try again'. So ... Moose: 'Better?' Archie: 'Sorry, Moose! They're still wrong! And writing 'More or Less' after after each answer doesn't help!'
Henry Scarpelli and Craig Boldman’s Archie rerun for the 17th of November, 2017. It really reminds you how dumb Moose is given that he’s asking Archie for help with his mathematics. C’mon, you know Dilton Doiley. And this strip is surely a rerun from before Dilton would be too busy with his oyPhone or his drones or any other distraction; what’s he have to do except help Moose out?

Henry Scarpelli and Craig Boldman’s Archie rerun for the 17th is about Moose’s struggle with mathematics. Just writing “more or less” doesn’t fix an erroneous answer, true. But error margins, and estimates of where an answer should be, can be good mathematics. (Part of the Common Core that many parents struggle with is making the estimate of an answer the first step, and a refined answer later. Based on what I see crossing social media, this really offends former engineering majors who miss the value in having an expected approximate answer.) It’s part of how we define limits, and derivatives, and integrals, and all of calculus. But it’s in a more precise way than Moose tries to do.

Teacher: 'Quincy, if you put your hand in your pocket and pulled out 65 cents ... and put your hand in the other pocket and pulled out 35 cents ... what would you have?' Quincy: 'Somebody else's pants!'
Ted Shearer’s Quincy for the 18th of September, 1978 and rerun the 11th of November, 2017. I feel like anytime I mention Quincy here I end up doing a caption about Ted Shearer’s art. But, I mean, look at the mathematics teacher in the second panel there. There’s voice in that face.

Ted Shearer’s Quincy for the 18th of September, 1978 is a story-problem joke. Some of these aren’t complicated strips.

Reading the Comics, November 8, 2017: Uses Of Mathematics Edition


Was there an uptick in mathematics-themed comic strips in the syndicated comics this past week? It depends how tight a definition of “theme” you use. I have enough to write about that I’m splitting the week’s load. And I’ve got a follow-up to that Wronski post the other day, so I’m feeling nice and full of content right now. So here goes.

Zach Weinersmith’s Saturday Morning Breakfast Cereal posted the 5th gets my week off to an annoying start. Science and mathematics and engineering people have a tendency to be smug about their subjects. And to see aptitude or interest in their subjects as virtue, or at least intelligence. (If they see a distinction between virtue and intelligence.) To presume that an interest in the field I like is a demonstration of intelligence is a pretty nasty and arrogant move.

And yes, I also dislike the attitude that school should be about training people. Teaching should be about letting people be literate with the great thoughts people have had. Mathematics has a privileged spot here. The field, as we’ve developed it, seems to build on human aptitudes for number and space. It’s easy to find useful sides to it. Doesn’t mean it’s vocational training.

Lincoln Peirce’s Big Nate on the 6th discovered mathematics puzzles. And this gave him the desire to create a new mathematical puzzle that he would use to get rich. Good luck with that. Coming up with interesting enough recreational mathematics puzzles is hard. Presenting it in a way that people will buy is another, possibly greater, challenge. It takes luck and timing and presentation, just as getting a hit song does. Sudoku, for example, spent five years in the Dell Magazine puzzle books before getting a foothold in Japanese newspapers. And then twenty years there before being noticed in the English-speaking puzzle world. Big Nate’s teacher tries to encourage him, although that doesn’t go as Mr Staples might have hoped. (The storyline continues to the 11th. Spoiler: Nate does not invent the next great recreational mathematics puzzle.)

Jef Mallett’s Frazz for the 7th start out in a mathematics class, at least. I suppose the mathematical content doesn’t matter, though. Mallett’s making a point about questions that, I confess, I’m not sure I get. I’ll leave it for wiser heads to understand.

Mike Thompson’s Grand Avenue for the 8th is a subverted word-problem joke. And I suppose a reminder about the need for word problems to parse as things people would do, or might be interested in. I can’t go along with characterizing buying twelve candy bars “gluttonous” though. Not if they’re in a pack of twelve or something like that. I may be unfair to Grand Avenue. Mind, until a few years ago I was large enough my main method of getting around was “being rolled by Oompa-Loompas”, so I could be a poor judge.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 8th does a rounding joke. It’s not much, but I’ve included appearances of this joke before and it seems unfair to skip it this time.

Reading the Comics, October 12, 2017: Busy Saturday Soon Edition


The week was looking ready to be one where I have my five paragraphs about how something shows off a word problem and that’s it. And then Comic Strip Master Command turned up the flow of comics for Saturday. So, here’s my five paragraphs about something being word problems and we’ll pick up the other half of them soon.

Bill Whitehead’s Free Range for the 10th is an Albert Einstein joke. That’s usually been enough. That it mentions curved space, the exotic geometries that make general relativity so interesting, gives it a little more grounding as a mathematical comic. It’s a bit curious, surely, that curved space strikes people as so absurd. Nobody serious argues whether we live on a curved space, though, not when we see globes and think about shapes that cover a big part of the surface of the Earth. But there is something different about thinking of three-dimensional space as curved; it’s hard to imagine curved around what.

Brian Basset’s Red and Rover started some word problems on the 11th, this time with trains travelling in separate directions. The word problem seemed peculiar, since the trains wouldn’t be 246 miles apart at any whole number of hours. But they will be at a reasonable fraction more than a whole number of hours, so I guess Red has gotten to division with fractions.

Red and Rover are back at it the 12th with basically the same problem. This time it’s with airplanes. Also this time it’s a much worse problem. While you can do the problem still, the numbers are uglier. It’ll be just enough over two hours and ten minutes that I wonder if the numbers got rewritten away from some nicer set. For example, if the planes had been flying at 360 and 540 miles per hour, and the question was when they would be 2,100 miles apart, then you’d have a nice two-and-a-third hours.

'Todd, don't be anxious about your fractions homework! I can make it easy to understand! Let's say you have a whole pie!' 'Oooh! Pie!' 'In order to have three-quarters of the pie, how much of the pie will you give to me?' 'NONE! YOU CAN'T HAVE ANY! THE PIE IS MINE! MINE! ALL MINE!' 'The answer is 'don't use pie in your word problems'.'
Patrick Roberts’s Todd the Dinosaur for the 12th of October, 2017. And I for one am totally convinced the first and second panels were independently drawn and weren’t just a copy-pasted panel with some editing on Todd’s mouth and the woman’s arm. Also the last panel isn’t the first two panels copied and slightly edited again.

Patrick Roberts’s Todd the Dinosaur for the 12th is another in the line of jokes about fraction-teaching going wrong by picking a bad example.

John Zakour and Scott Roberts’s Maria’s Day for the 12th uses mathematics as the iconic worst-possible-case for a pop quiz. I suppose spelling might have done too.

The Summer 2017 Mathematics A To Z: X


We come now almost to the end of the Summer 2017 A To Z. Possibly also the end of all these A To Z sequences. Gaurish of, For the love of Mathematics, proposed that I talk about the obvious logical choice. The last promising thing I hadn’t talked about. I have no idea what to do for future A To Z’s, if they’re even possible anymore. But that’s a problem for some later time.

Summer 2017 Mathematics A to Z, featuring a coati (it's kind of the Latin American raccoon) looking over alphabet blocks, with a lot of equations in the background.
Art courtesy of Thomas K Dye, creator of the web comic Newshounds. He has a Patreon for those able to support his work. He’s also open for commissions, starting from US$10.

X.

Some good advice that I don’t always take. When starting a new problem, make a list of all the things that seem likely to be relevant. Problems that are worth doing are usually about things. They’ll be quantities like the radius or volume of some interesting surface. The amount of a quantity under consideration. The speed at which something is moving. The rate at which that speed is changing. The length something has to travel. The number of nodes something must go across. Whatever. This all sounds like stuff from story problems. But most interesting mathematics is from a story problem; we want to know what this property is like. Even if we stick to a purely mathematical problem, there’s usually a couple of things that we’re interested in and that we describe. If we’re attacking the four-color map theorem, we have the number of territories to color. We have, for each territory, the number of territories that touch it.

Next, select a name for each of these quantities. Write it down, in the table, next to the term. The volume of the tank is ‘V’. The radius of the tank is ‘r’. The height of the tank is ‘h’. The fluid is flowing in at a rate ‘r’. The fluid is flowing out at a rate, oh, let’s say ‘s’. And so on. You might take a moment to go through and think out which of these variables are connected to which other ones, and how. Volume, for example, is surely something to do with the radius times something to do with the height. It’s nice to have that stuff written down. You may not know the thing you set out to solve, but you at least know you’ve got this under control.

I recommend this. It’s a good way to organize your thoughts. It establishes what things you expect you could know, or could want to know, about the problem. It gives you some hint how these things relate to each other. It sets you up to think about what kinds of relationships you figure to study when you solve the problem. It gives you a lifeline, when you’re lost in a sea of calculation. It’s reassurance that these symbols do mean something. Better, it shows what those things are.

I don’t always do it. I have my excuses. If I’m doing a problem that’s very like one I’ve already recently done, the things affecting it are probably the same. The names to give these variables are probably going to be about the same. Maybe I’ll make a quick sketch to show how the parts of the problem relate. If it seems like less work to recreate my thoughts than to write them down, I skip writing them down. Not always good practice. I tell myself I can always go back and do things the fully right way if I do get lost. So far that’s been true.

So, the names. Suppose I am interested in, say, the length of the longest rod that will fit around this hallway corridor. Then I am in a freshman calculus book, yes. Fine. Suppose I am interested in whether this pinball machine can be angled up the flight of stairs that has a turn in it Then I will measure things like the width of the pinball machine. And the width of the stairs, and of the landing. I will measure this carefully. Pinball machines are heavy and there are many hilarious sad stories of people wedging them into hallways and stairwells four and a half stories up from the street. But: once I have identified, say, ‘width of pinball machine’ as a quantity of interest, why would I ever refer to it as anything but?

This is no dumb question. It is always dangerous to lose the link between the thing we calculate and the thing we are interested in. Without that link we are less able to notice mistakes in either our calculations or the thing we mean to calculate. Without that link we can’t do a sanity check, that reassurance that it’s not plausible we just might fit something 96 feet long around the corner. Or that we estimated that we could fit something of six square feet around the corner. It is common advice in programming computers to always give variables meaningful names. Don’t write ‘T’ when ‘Total’ or, better, ‘Total_Value_Of_Purchase’ is available. Why do we disregard this in mathematics, and switch to ‘T’ instead?

First reason is, well, try writing this stuff out. Your hand (h) will fall off (foff) in about fifteen minutes, twenty seconds. (15′ 20”). If you’re writing a program, the programming environment you have will auto-complete the variable after one or two letters in. Or you can copy and paste the whole name. It’s still good practice to leave a comment about what the variable should represent, if the name leaves any reasonable ambiguity.

Another reason is that sure, we do specific problems for specific cases. But a mathematician is naturally drawn to thinking of general problems, in abstract cases. We see something in common between the problem “a length and a quarter of the length is fifteen feet; what is the length?” and the problem “a volume plus a quarter of the volume is fifteen gallons; what is the volume?”. That one is about lengths and the other about volumes doesn’t concern us. We see a saving in effort by separating the quantity of a thing from the kind of the thing. This restores danger. We must think, after we are done calculating, about whether the answer could make sense. But we can minimize that, we hope. At the least we can check once we’re done to see if our answer makes sense. Maybe even whether it’s right.

For centuries, as the things we now recognize as algebra developed, we would use words. We would talk about the “thing” or the “quantity” or “it”. Some impersonal name, or convenient pronoun. This would often get shortened because anything you write often you write shorter. “Re”, perhaps. In the late 16th century we start to see the “New Algebra”. Here mathematics starts looking like … you know … mathematics. We start to see stuff like “addition” represented with the + symbol instead of an abbreviation for “addition” or a p with a squiggle over it or some other shorthand. We get equals signs. You start to see decimals and exponents. And we start to see letters used in place of numbers whose value we don’t know.

There are a couple kinds of “numbers whose value we don’t know”. One is the number whose value we don’t know, but hope to learn. This is the classic variable we want to solve for. Another kind is the number whose value we don’t know because we don’t care. I mean, it has some value, and presumably it doesn’t change over the course of our problem. But it’s not like our work will be so different if, say, the tank is two feet high rather than four.

Is there a problem? If we pick our letters to fit a specific problem, no. Presumably all the things we want to describe have some clear name, and some letter that best represents the name. It’s annoying when we have to consider, say, the pinball machine width and the corridor width. But we can work something out.

But what about general problems?

Is m b \cos(e) + b^2 \log(y) = \sqrt{e} an easy problem to solve?

If we want to figure what ‘m’ is, yes. Similarly ‘y’. If we want to know what ‘b’ is, it’s tedious, but we can do that. If we want to know what ‘e’ is? Run and hide, that stuff is crazy. If you have to, do it numerically and accept an estimate. Don’t try figuring what that is.

And so we’ve developed conventions. There are some letters that, except in weird circumstances, are coefficients. They’re numbers whose value we don’t know, but either don’t care about or could look up. And there are some that, by default, are variables. They’re the ones whose value we want to know.

These conventions started forming, as mentioned, in the late 16th century. François Viète here made a name that lasts to mathematics historians at least. His texts described how to do algebra problems in the sort of procedural methods that we would recognize as algebra today. And he had a great idea for these letters. Use the whole alphabet, if needed. Use the consonants to represent the coefficients, the numbers we know but don’t care what they are. Use the vowels to represent the variables, whose values we want to learn. So he would look at that equation and see right away: it’s a terrible mess. (I exaggerate. He doesn’t seem to have known the = sign, and I don’t know offhand when ‘log’ and ‘cos’ became common. But suppose the rest of the equation were translated into his terminology.)

It’s not a bad approach. Besides the mnemonic value of consonant-coefficient, vowel-variable, it’s true that we usually have fewer variables than anything else. The more variables in a problem the harder it is. If someone expects you to solve an equation with ten variables in it, you’re excused for refusing. So five or maybe six or possibly seven choices for variables is plenty.

But it’s not what we settled on. René Descartes had a better idea. He had a lot of them, but here’s one. Use the letters at the end of the alphabet for the unknowns. Use the letters at the start of the alphabet for coefficients. And that is, roughly, what we’ve settled on. In my example nightmare equation, we’d suppose ‘y’ to probably be the variable we want to solve for.

And so, and finally, x. It is almost the variable. It says “mathematics” in only two strokes. Even π takes more writing. Descartes used it. We follow him. It’s way off at the end of the alphabet. It starts few words, very few things, almost nothing we would want to measure. (Xylem … mass? Flow? What thing is the xylem anyway?) Even mathematical dictionaries don’t have much to say about it. The letter transports almost no connotations, no messy specific problems to it. If it suggests anything, it suggests the horizontal coordinate in a Cartesian system. It almost is mathematics. It signifies nothing in itself, but long use has given it an identity as the thing we hope to learn by study.

And pirate treasure maps. I don’t know when ‘X’ became the symbol of where to look for buried treasure. My casual reading suggests “never”. Treasure maps don’t really exist. Maps in general don’t work that way. Or at least didn’t before cartoons. X marking the spot seems to be the work of Robert Louis Stevenson, renowned for creating a fanciful map and then putting together a book to justify publishing it. (I jest. But according to Simon Garfield’s On The Map: A Mind-Expanding Exploration of the Way The World Looks, his map did get lost on the way to the publisher, and he had to re-create it from studying the text of Treasure Island. This delights me to no end.) It makes me wonder if Stevenson was thinking of x’s service in mathematics. But the advantages of x as a symbol are hard to ignore. It highlights a point clearly. It’s fast to write. Its use might be coincidence.

But it is a letter that does a needed job really well.

Reading the Comics, April 29, 2017: The Other Half Of The Week Edition


I’d been splitting Reading the Comics posts between Sunday and Thursday to better space them out. But I’ve got something prepared that I want to post Thursday, so I’ll bump this up. Also I had it ready to go anyway so don’t gain anything putting it off another two days.

Bill Amend’s FoxTrot Classics for the 27th reruns the strip for the 4th of May, 2006. It’s another probability problem, in its way. Assume Jason is honest in reporting whether Paige has picked his number correctly. Assume that Jason picked a whole number. (This is, I think, the weakest assumption. I know Jason Fox’s type and he’s just the sort who’d pick an obscure transcendental number. They’re all obscure after π and e.) Assume that Jason is equally likely to pick any of the whole numbers from 1 to one billion. Then, knowing nothing about what numbers Jason is likely to pick, Paige would have one chance in a billion of picking his number too. Might as well call it certainty that she’ll pay a dollar to play the game. How much would she have to get, in case of getting the number right, to come out even or ahead? … And now we know why Paige is still getting help on probability problems in the 2017 strips.

Jeff Stahler’s Moderately Confused for the 27th gives me a bit of a break by just being a snarky word problem joke. The student doesn’t even have to resist it any.

The Venn Diagram of Maintenance. 12 days after cut and color, color still rresh, bluntness of cut relaxed. Same-day mani-pedi, no chips in polish. Ten days after eyebrow tint, faded to look normal. After two weeks of religiously following salt-free diet, bloating at minimum. One day after gym workout, fresh-faced vitality from exercise. The intersection the one perfect day where it all comes together.
Sandra Bell-Lundy’s Between Friends for the 29th of April, 2017. And while it’s not a Venn Diagram I’m not sure of a better way to visually represent that the cartoonist is going for. I suppose the intended meaning comes across cleanly enough and that’s the most important thing. It’s a strange state of affairs is all.

Sandra Bell-Lundy’s Between Friends for the 29th also gives me a bit of a break by just being a Venn Diagram-based joke. At least it’s using the shape of a Venn Diagram to deliver the joke. It’s not really got the right content.

Harley Schwadron’s 9 to 5 for the 29th is this week’s joke about arithmetic versus propaganda. It’s a joke we’re never really going to be without again.

Reading the Comics, April 18, 2017: Give Me Some Word Problems Edition


I have my reasons for this installment’s title. They involve my deductions from a comic strip. Give me a few paragraphs.

Mark Anderson’s Andertoons for the 16th asks for attention from whatever optician-written blog reads the comics for the eye jokes. And meets both the Venn Diagram and the Mark Anderson’s Andertoons content requirements for this week. Good job! Starts the week off strong.

Lincoln Pierce’s Big Nate: First Class for the 16th, rerunning the strip from 1993, is about impossibly low-probability events. We can read the comic as a joke about extrapolating a sequence from a couple examples. Properly speaking we can’t; any couple of terms can be extended in absolutely any way. But we often suppose a sequence follows some simple pattern, as many real-world things do. I’m going to pretend we can read Jenny’s estimates of the chance she’ll go out with him as at all meaningful. If Jenny’s estimate of the chance she’d go out with Nate rose from one in a trillion to one in a billion over the course of a week, this could be a good thing. If she’s a thousand times more likely each week to date him — if her interest is rising geometrically — this suggests good things for Nate’s ego in three weeks. If she’s only getting 999 trillionths more likely each week — if her interest is rising arithmetically — then Nate has a touch longer to wait before a date becomes likely.

(I forget whether she has agreed to a date in the 24 years since this strip first appeared. He has had some dates with kids in his class, anyway, and some from the next grade too.)

J C Duffy’s Lug Nuts for the 16th is a Pi Day joke that ran late.

Jef Mallett’s Frazz for the 17th starts a little thread about obsolete references in story problems. It’s continued on the 18th. I’m sympathetic in principle to both sides of the story problem debate.

Is the point of the first problem, Farmer Joe’s apples, to see whether a student can do a not-quite-long division? Or is it to see whether the student can extract a price-per-quantity for something, and apply that to find the quantity to fit a given price? If it’s the latter then the numbers don’t make a difference. One would want to avoid marking down a student who knows what to do, and could divide 15 cents by three, but would freeze up if a more plausible price of, say, $2.25 per pound had to be divided by three.

But then the second problem, Mr Schad driving from Belmont to Cadillac, got me wondering. It is about 84 miles between the two Michigan cities (and there is a Reed City along the way). The time it takes to get from one city to another is a fair enough problem. But these numbers don’t make sense. At 55 miles per hour the trip takes an awful 1.5273 hours. Who asks elementary school kids to divide 84 by 55? On purpose? But at the state highway speed limit (for cars) of 70 miles per hour, the travel time is 1.2 hours. 84 divided by 70 is a quite reasonable thing to ask elementary school kids to do.

And then I thought of this: you could say Belmont and Cadillac are about 88 miles apart. Google Maps puts the distance as 86.8 miles, along US 131; but there’s surely some point in the one town that’s exactly 88 miles from some point in the other, just as there’s surely some point exactly 84 miles from some point in the other town. 88 divided by 55 would be another reasonable problem for an elementary school student; 1.6 hours is a reasonable answer. The (let’s call it) 1980s version of the question ought to see the car travel 88 miles at 55 miles per hour. The contemporary version ought to see the car travel 84 miles at 70 miles per hour. No reasonable version would make it 84 miles at 55 miles per hour.

So did Mallett take a story problem that could actually have been on an era-appropriate test and ancient it up?

Before anyone reports me to Comic Strip Master Command let me clarify what I’m wondering about. I don’t care if the details of the joke don’t make perfect sense. They’re jokes, not instruction. All the story problem needs to set up the joke is the obsolete speed limit; everything else is fluff. And I enjoyed working out variation of the problem that did make sense, so I’m happy Mallett gave me that to ponder.

Here’s what I do wonder about. I’m curious if story problems are getting an unfair reputation. I’m not an elementary school teacher, or parent of a kid in school. I would like to know what the story problems look like. Do you, the reader, have recent experience with the stuff farmers, drivers, and people weighing things are doing in these little stories? Are they measuring things that people would plausibly care about today, and using values that make sense for the present day? I’d like to know what the state of story problems is.

Lee: 'I'm developing a new theory about avocado intelligence.' Joules: 'You can't be serious.' Lee: 'Avocado, what is the square root of 8,649?' Avocado: 'That's easy. It's 92?' Lee: 'Wrong. It's 93.' Joules: 'See? It's just a dumb piece of fruit.' Lee: 'I honestly thought I was on to something.'
John Hambrock’s The Brilliant Mind of Edison Lee for the 18th of April, 2017. Before you ask what exactly the old theory of avocado intelligence was remember that Edison Lee’s lab partner there is a talking rat. Just saying.

John Hambrock’s The Brilliant Mind of Edison Lee for the 18th uses mental arithmetic as the gauge of intelligence. Pretty harsly, too. I wouldn’t have known the square root of 8649 off the top of my head either, although it’s easy to tell that 92 can’t be right: the last digit of 92 squared has to be 4. It’s also easy to tell that 92 has to be about right, though, as 90 times 90 will be about 8100. Given this information, if you knew that 8,649 was a perfect square, you’d be hard-pressed to think of a better guess for its value than 93. But since most whole numbers are not perfect squares, “a little over 90” is the best I’d expect to do.

Reading the Comics, April 15, 2017: Extended Week Edition


It turns out last Saturday only had the one comic strip that was even remotely on point for me. And it wasn’t very on point either, but since it’s one of the Creators.com strips I’ve got the strip to show. That’s enough for me.

Henry Scarpelli and Craig Boldman’s Archie for the 8th is just about how algebra hurts. Some days I agree.

'Ugh! Achey head! All blocked up! Throbbing! Completely stuffed!' 'Sounds like sinuses!' 'No. Too much algebra!'
Henry Scarpelli and Craig Boldman’s Archie for the 8th of April, 2017. Do you suppose Archie knew that Dilton was listening there, or was he just emoting his fatigue to himself?

Ruben Bolling’s Super-Fun-Pak Comix for the 8th is an installation of They Came From The Third Dimension. “Dimension” is one of those oft-used words that’s come loose of any technical definition. We use it in mathematics all the time, at least once we get into Introduction to Linear Algebra. That’s the course that talks about how blocks of space can be stretched and squashed and twisted into each other. You’d expect this to be a warmup act to geometry, and I guess it’s relevant. But where it really pays off is in studying differential equations and how systems of stuff changes over time. When you get introduced to dimensions in linear algebra they describe degrees of freedom, or how much information you need about a problem to pin down exactly one solution.

It does give mathematicians cause to talk about “dimensions of space”, though, and these are intuitively at least like the two- and three-dimensional spaces that, you know, stuff moves in. That there could be more dimensions of space, ordinarily inaccessible, is an old enough idea we don’t really notice it. Perhaps it’s hidden somewhere too.

Amanda El-Dweek’s Amanda the Great of the 9th started a story with the adult Becky needing to take a mathematics qualification exam. It seems to be prerequisite to enrolling in some new classes. It’s a typical set of mathematics anxiety jokes in the service of a story comic. One might tsk Becky for going through university without ever having a proper mathematics class, but then, I got through university without ever taking a philosophy class that really challenged me. Not that I didn’t take the classes seriously, but that I took stuff like Intro to Logic that I was already conversant in. We all cut corners. It’s a shame not to use chances like that, but there’s always so much to do.

Mark Anderson’s Andertoons for the 10th relieves the worry that Mark Anderson’s Andertoons might not have got in an appearance this week. It’s your common kid at the chalkboard sort of problem, this one a kid with no idea where to put the decimal. As always happens I’m sympathetic. The rules about where to move decimals in this kind of multiplication come out really weird if the last digit, or worse, digits in the product are zeroes.

Mel Henze’s Gentle Creatures is in reruns. The strip from the 10th is part of a story I’m so sure I’ve featured here before that I’m not even going to look up when it aired. But it uses your standard story problem to stand in for science-fiction gadget mathematics calculation.

Dave Blazek’s Loose Parts for the 12th is the natural extension of sleep numbers. Yes, I’m relieved to see Dave Blazek’s Loose Parts around here again too. Feels weird when it’s not.

Bill Watterson’s Calvin and Hobbes rerun for the 13th is a resisting-the-story-problem joke. But Calvin resists so very well.

John Deering’s Strange Brew for the 13th is a “math club” joke featuring horses. Oh, it’s a big silly one, but who doesn’t like those too?

Dan Thompson’s Brevity for the 14th is one of the small set of punning jokes you can make using mathematician names. Good for the wall of a mathematics teacher’s classroom.

Shaenon K Garrity and Jefferey C Wells’s Skin Horse for the 14th is set inside a virtual reality game. (This is why there’s talk about duplicating objects.) Within the game, the characters are playing that game where you start with a set number (in this case 20) tokens and take turn removing a couple of them. The “rigged” part of it is that the house can, by perfect play, force a win every time. It’s a bit of game theory that creeps into recreational mathematics books and that I imagine is imprinted in the minds of people who grow up to design games.

Reading the Comics, September 10, 2016: Finishing The First Week Of School Edition


I understand in places in the United States last week wasn’t the first week of school. It was the second or third or even worse. These places are crazy, in that they do things differently from the way my elementary school did it. So, now, here’s the other half of last week’s comics.

Zach Weinersmith’s Saturday Morning Breakfast Cereal presented the 8th is a little freak-out about existence. Mathematicians rely on the word “exists”. We suppose things to exist. We draw conclusions about other things that do exist or do not exist. And these things that exist are not things that exist. It’s a bit heady to realize nobody can point to, or trap in a box, or even draw a line around “3”. We can at best talk about stuff that expresses some property of three-ness. We talk about things like “triangles” and we even draw and use representations of them. But those drawings we make aren’t Triangles, the thing mathematicians mean by the concept. They’re at best cartoons, little training wheels to help us get the idea down. Here I regret that as an undergraudate I didn’t take philosophy courses that challenged me. It seems certain to me mathematicians are using some notion of the Platonic Ideal when we speak of things “existing”. But what does that mean, to a mathematician, to a philosopher, and to the person who needs an attractive tile pattern on the floor?

Cathy Thorne’s Everyday People Cartoons for the 9th is about another bit of the philosophy of mathematics. What are the chances of something that did happen? What does it mean to talk about the chance of something happening? When introducing probability mathematicians like to set it up as “imagine this experiment, which has a bunch of possible outcomes. One of them will happen and the other possibilities will not” and we go on to define a probability from that. That seems reasonable, perhaps because we’re accepting ignorance. We may know (say) that a coin toss is, in principle, perfectly deterministic. If we knew exactly how the coin is made. If we knew exactly how it is tossed. If we knew exactly how the air currents would move during its fall. If we knew exactly what the surface it might bounce off before coming to rest is like. Instead we pretend all this knowable stuff is not, and call the result unpredictability.

But about events in the past? We can imagine them coming out differently. But the imagination crashes hard when we try to say why they would. If we gave the exact same coin the exact same toss in the exact same circumstances how could it land on anything but the exact same face? In which case how can there have been any outcome other than what did happen? Yes, I know, someone wants to rush in and say “Quantum!” Say back to that person, “waveform collapse” and wait for a clear explanation of what exactly that is. There are things we understand poorly about the transition between the future and the past. The language of probability is a reminder of this.

Hilary Price’s Rhymes With Orange for the 10th uses the classic story-problem setup of a train leaving the station. It does make me wonder how far back this story setup goes, and what they did before trains were common. Horse-drawn carriages leaving stations, I suppose, or maybe ships at sea. I quite like the teaser joke in the first panel more.

Caption: Lorraine felt like God was always testing her. She's in a car. God's voice calls, 'A train leaves the station travelling east at 70 mph. At the same time ...' The intro panel, 'The Journey', features Lorraine thinking, 'Shouldn't you be busy rooting for some pro athlete?'
Hilary Price’s Rhymes With Orange for the 10th of September, 2016. 70 mph? Why not some nice easy number like 60 mph instead? God must really be testing.

Dan Collins’s Looks Good on Paper for the 10th is the first Möbius Strip joke we’ve had in a while. I’m amused and I do like how much incidental stuff there is. The joke would read just fine without the opossum family crossing the road, but it’s a better strip for having it. Somebody in the comments complained that as drawn it isn’t a Möbius Strip proper; there should be (from our perspective) another half-twist in the road. I’m willing to grant it’s there and just obscured by the crossing-over where the car is, because — as Collins points out — it’s really hard to draw a M&oum;bius Strip recognizably. You try it, and then try making it read cleanly while there’s, at minimum, a road and a car on the strip. That said, I can’t see that the road sign in the lower-left, by the opossums, is facing the right direction. Maybe for as narrow as the road is it’s still on a two-lane road.

Tom Toles’s Randolph Itch, 2 am rerun for the 10th is an Einstein The Genius comic. It felt familiar to me, but I don’t seem to have included it in previous Reading The Comics posts. Perhaps I noticed it some week that I figured a mere appearance of Einstein didn’t rate inclusion. Randolph certainly fell asleep while reading about mathematics, though.

It’s popular to tell tales of Einstein not being a very good student, and of not being that good in mathematics. It’s easy to see why. We’d all like to feel a little more like a superlative mind such as that. And Einstein worked hard to develop an image of being accessible and personable. It fits with the charming absent-minded professor image everybody but forgetful professors loves. It feels dramatically right that Einstein should struggle with arithmetic like so many of us do. It’s nonsense, though. When Einstein struggled with mathematics, it was on the edge of known mathematics. He needed advice and consultations for the non-Euclidean geometries core to general relativity? Who doesn’t? I can barely make my way through the basic notation.

Anyway, it’s pleasant to see Toles holding up Einstein for his amazing mathematical prowess. It was a true thing.

%d bloggers like this: