Reading the Comics, April 22, 2017: Thought There’d Be Some More Last Week Edition


Allison Barrows’s PreTeena rerun for the 18th is a classic syllogism put into the comic strip’s terms. The thing about these sorts of deductive-logic syllogisms is that whether the argument is valid depends only on the shape of the argument. It has nothing to do with whether the thing being discussed makes any sense. This can be disorienting. It’s hard to ignore the everyday meaning of words when you hear a string of sentences. But it’s also hard to parse a string of sentences if the words don’t make sense in them. This is probably part of why on the mathematics side of things logic courses will skimp on syllogisms, using them to give an antique flavor and sense of style to the introduction of courses. It’s easier to use symbolic representations for logic instead.

Randy Glasbergen’s Glasbergen Cartoons rerun for the 20th is the old joke about arithmetic being different between school, government, and corporate work. I haven’t looked at the comments — the GoComics redesign, whatever else it does, makes it very easy to skip the comments — but I’m guessing by the second one someone’s said the Common Core method means getting the most wrong answer.

Dolly, coming home: 'Rithmetic would be a lot easier if it didn't have all those different numbers.'
Bil Keane and Jeff Keane’s Family Circus for the 21st of April, 2017. In fairness, there aren’t a lot of things we need all of 6, 7, and 8 for and you can just use whatever one of those you’re good at for any calculations with the others. Promise.

Bil Keane and Jeff Keane’s Family Circus for the 21st I don’t know is a rerun. But a lot of them are these days. Anyway, it looks like a silly joke about how nice mathematics would be without numbers; Dolly has no idea. I can sympathize with being intimidated by numerals. At the risk of being all New Math-y, I wonder if she wouldn’t like arithmetic more if it were presented as a game. Like, here’s a couple symbols — let’s say * and | for a start, and then some rules. * and * makes *, but * and | makes |. Also | and * makes |. But | and | makes |*. And so on. This is binary arithmetic, disguised, but I wonder if making it look like something inconsequential would make it more pleasant to learn, and if that would transfer over to arithmetic with 1’s and 0’s. Normal, useful arithmetic would be harder to play like this. You’d need ten symbols that are easy to write that aren’t already numbers, letters, or common symbols. But I wonder if it’d be worth it.

Tom Thaves’s Frank and Ernest for the 22nd is provided for mathematics teachers who need something to tape to their door. You’re welcome.

Getting This Existence Thing Straight


Midway through “What Lewis Carroll Says Exists That I Don’t” I put forth an example of claiming a property belongs to something which clearly doesn’t exist. The problem — and Carroll was writing this bit, in Symbolic Logic, at a time when it hadn’t reached the current conclusion — is about logical propositions. If you assert it to be true that, “All (something) have (a given property)”, are you making the assertion that the thing exists? Carroll gave the example of “All the sovereigns in that purse are made of gold” and “all the sovereigns in that purse are my property”, leading to the conclusion, “some of my property is made of gold”, and pointing out that if you put that syllogism up to anyone and asked if she thought you were asserting there were sovereigns in that purse, she’d say of course. Carroll has got the way normal people talk in normal conversations on his side here. Put that syllogism before anyone and point out that nowhere is it asserted that there are any coins in the purse and you’ll get a vaguely annoyed response, like when the last chapter of a murder cozy legalistically parses all the alibis until nothing makes sense.

Continue reading “Getting This Existence Thing Straight”

What I Call Some Impossible Logic Problems


I’m sorry to go another day without following up the essay I meant to follow up, but it’s been a frantically busy week on a frantically busy month and something has to give somewhere. But before I return the Symbolic Logic book to the library — Project Gutenberg has the first part of it, but the second is soundly in copyright, I would expect (its first publication in a recognizable form was in the 1970s) — I wanted to pick some more stuff out of the second part.

Continue reading “What I Call Some Impossible Logic Problems”

When To Run For The Train


I mean to return to the subject brought up Monday, about the properties of things that don’t exist, since as BunnyHugger noted I cheated in talking briefly about what properties they have or don’t have. But I wanted to bring up a nice syllogism whose analysis I’d alluded to a couple weeks back, and which it turns out I’d remembered wrong, in details but not in substance.

Continue reading “When To Run For The Train”