## From my Seventh A-to-Z: Big-O and Little-O Notation

I toss off a mention in this essay, about its book publication. By the time it appeared I was thinking whether I could assemble these A-to-Z’s, or a set of them, into a book. I haven’t had the energy to put that together but it still seems viable.

Mr Wu, author of the Singapore Maths Tuition blog, asked me to explain a technical term today. I thought that would be a fun, quick essay. I don’t learn very fast, do I?

A note on style. I make reference here to “Big-O” and “Little-O”, capitalizing and hyphenating them. This is to give them visual presence as a name. In casual discussion they’re just read, or said, as the two words or word-and-a-letter. Often the Big- or Little- gets dropped and we just talk about O. An O, without further context, in my experience means Big-O.

The part of me that wants smooth consistency in prose urges me to write “Little-o”, as the thing described is represented with a lowercase ‘o’. But Little-o sounds like a midway game or an Eyerly Aircraft Company amusement park ride. And I never achieve consistency in my prose anyway. Maybe for the book publication. Until I’m convinced another is better, though, “Little-O” it is.

# Big-O and Little-O Notation.

When I first went to college I had a campus post office box. I knew my box number. I also knew the length of the sluggish line for the combination lock code. The lock was a dial, lettered A through J. Being a young STEM-class idiot I thought, boy, would it actually be quicker to pick the lock than wait for the line? A three-letter combination, of ten options? That’s 1,000 possibilities. If I could try five a minute that’s, at worst, three hours 20 minutes. Combination might be anywhere in that set; I might get lucky. I could expect to spend 80 minutes picking my lock.

I decided to wait in line instead, and good that I did. I was unaware lock settings might not be a letter, like ‘A’. It could be the midway point between adjacent letters, like ‘AB’. That meant there were eight times as many combinations as I estimated, and I could expect to spend over ten hours. Even the slow line was faster than that. It transpired that my combination had two of these midway letters.

But that’s a little demonstration of algorithmic complexity. Also in cracking passwords by trial-and-error. Doubling the set of possible combination codes octuples the time it takes to break into the set. Making the combination longer would also work; each extra letter would multiply the cracking time by twenty. So you understand why your password should include “special characters” like punctuation, but most of all should be long.

We’re often interested in how long to expect a task to take. Sometimes we’re interested in the typical time it takes. Often we’re interested in the longest it could ever take. If we have a deterministic algorithm, we can say. We can count how many steps it takes. Sometimes this is easy. If we want to add two two-digit numbers together we know: it will be, at most, three single-digit additions plus, maybe, writing down a carry. (To add 98 and 37 is adding 8 + 7 to get 15, to add 9 + 3 to get 12, and to take the carry from the 15, so, 1 + 12 to get 13, so we have 135.) We can get a good quarrel going about what “a single step” is. We can argue whether that carry into the hundreds column is really one more addition. But we can agree that there is some smallest bit of arithmetic work, and proceed from that.

For any algorithm we have something that describes how big a thing we’re working on. It’s often ‘n’. If we need more than one variable to describe how big it is, ‘m’ gets called up next. If we’re estimating how long it takes to work on a number, ‘n’ is the number of digits in the number. If we’re thinking about a square matrix, ‘n’ is the number of rows and columns. If it’s a not-square matrix, then ‘n’ is the number of rows and ‘m’ the number of columns. Or vice-versa; it’s your matrix. If we’re looking for an item in a list, ‘n’ is the number of items in the list. If we’re looking to evaluate a polynomial, ‘n’ is the order of the polynomial.

In normal circumstances we don’t work out how many steps some operation does take. It’s more useful to know that multiplying these two long numbers would take about 900 steps than that it would need only 816. And so this gives us an asymptotic estimate. We get an estimate of how much longer cracking the combination lock will take if there’s more letters to pick from. This allowing that some poor soul will get the combination A-B-C.

There are a couple ways to describe how long this will take. The more common is the Big-O. This is just the letter, like you find between N and P. Since that’s easy, many have taken to using a fancy, vaguely cursive O, one that looks like $\mathcal{O}$. I agree it looks nice. Particularly, though, we write $\mathcal{O}(f(n))$, where f is some function. In practice, we’ll see functions like $\mathcal{O}(n)$ or $\mathcal{O}(n^2 \log(n))$ or $\mathcal{O}(n^3)$. Usually something simple like that. It can be tricky. There’s a scheme for multiplying large numbers together that’s $\mathcal{O}(n \cdot 2^{\sqrt{2 log (n)}} \cdot log(n))$. What you will not see is something like $\mathcal{O}(\sin (n))$, or $\mathcal{O}(n^3 - n^4)$ or such. This comes to what we mean by the Big-O.

It’ll be convenient for me to have a name for the actual number of steps the algorithm takes. Let me call the function describing that g(n). Then g(n) is $\mathcal{O}(f(n))$ if once n gets big enough, g(n) is always less than C times f(n). Here c is some constant number. Could be 1. Could be 1,000,000. Could be 0.00001. Doesn’t matter; it’s some positive number.

There’s some neat tricks to play here. For example, the function ‘$n$‘ is $\mathcal{O}(n)$. It’s also $\mathcal{O}(n^2)$ and $\mathcal{O}(n^9)$ and $\mathcal{O}(e^{n})$. The function ‘$n^2$‘ is also $\mathcal{O}(n^2)$ and those later terms, but it is not $\mathcal{O}(n)$. And you can see why $\mathcal{O}(\sin(n))$ is right out.

There is also a Little-O notation. It, too, is an upper bound on the function. But it is a stricter bound, setting tighter restrictions on what g(n) is like. You ask how it is the stricter bound gets the minuscule letter. That is a fine question. I think it’s a quirk of history. Both symbols come to us through number theory. Big-O was developed first, published in 1894 by Paul Bachmann. Little-O was published in 1909 by Edmund Landau. Yes, the one with the short Hilbert-like list of number theory problems. In 1914 G H Hardy and John Edensor Littlewood would work on another measure and they used Ω to express it. (If you see the letter used for Big-O and Little-O as the Greek omicron, then you see why a related concept got called omega.)

What makes the Little-O measure different is its sternness. g(n) is $o(f(n))$ if, for every positive number C, whenever n is large enough g(n) is less than or equal to C times f(n). I know that sounds almost the same. Here’s why it’s not.

If g(n) is $\mathcal{O}(f(n))$, then you can go ahead and pick a C and find that, eventually, $g(n) \le C f(n)$. If g(n) is $o(f(n))$, then I, trying to sabotage you, can go ahead and pick a C, trying my best to spoil your bounds. But I will fail. Even if I pick, like a C of one millionth of a billionth of a trillionth, eventually f(n) will be so big that $g(n) \le C f(n)$. I can’t find a C small enough that f(n) doesn’t eventually outgrow it, and outgrow g(n).

This implies some odd-looking stuff. Like, that the function n is not $o(n)$. But the function n is at least $o(n^2)$, and $o(n^9)$ and those other fun variations. Being Little-O compels you to be Big-O. Big-O is not compelled to be Little-O, although it can happen.

These definitions, for Big-O and Little-O, I’ve laid out from algorithmic complexity. It’s implicitly about functions defined on the counting numbers. But there’s no reason I have to limit the ideas to that. I could define similar ideas for a function g(x), with domain the real numbers, and come up with an idea of being on the order of f(x).

We make some adjustments to this. The important one is that, with algorithmic complexity, we assumed g(n) had to be a positive number. What would it even mean for something to take minus four steps to complete? But a regular old function might be zero or negative or change between negative and positive. So we look at the absolute value of g(x). Is there some value of C so that, when x is big enough, the absolute value of g(x) stays less than C times f(x)? If it does, then g(x) is $\mathcal{O}(f(x))$. Is it the case that for every positive number C it’s true that g(x) is less than C times f(x), once x is big enough? Then g(x) is $o(f(x))$.

Fine, but why bother defining this?

A compelling answer is that it gives us a way to describe how different a function is from an approximation to that function. We are always looking for approximations to functions because most functions are hard. We have a small set of functions we like to work with. Polynomials are great numerically. Exponentials and trig functions are great analytically. That’s about all the functions that are easy to work with. Big-O notation particularly lets us estimate how bad an error we make using the approximation.

For example, the Runge-Kutta method numerically approximates solutions to ordinary differential equations. It does this by taking the information we have about the function at some point x to approximate its value at a point x + h. ‘h’ is some number. The difference between the actual answer and the Runge-Kutta approximation is $\mathcal{O}(h^4)$. We use this knowledge to make sure our error is tolerable. Also, we don’t usually care what the function is at x + h. It’s just what we can calculate. What we want is the function at some point a fair bit away from x, call it x + L. So we use our approximate knowledge of conditions at x + h to approximate the function at x + 2h. And use x + 2h to tell us about x + 3h, and from that x + 4h and so on, until we get to x + L. We’d like to have as few of these uninteresting intermediate points as we can, so look for as big an h as is safe.

That context may be the more common one. We see it, particularly, in Taylor Series and other polynomial approximations. For example, the sine of a number is approximately:

$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \mathcal{O}(x^{11})$

This has consequences. It tells us, for example, that if x is about 0.1, this approximation is probably pretty good. So it is: the sine of 0.1 (radians) is about 0.0998334166468282 and that’s exactly what five terms here gives us. But it also warns that if x is about 10, this approximation may be gibberish. And so it is: the sine of 10.0 is about -0.5440 and the polynomial is about 1448.27.

The connotation in using Big-O notation here is that we look for small h’s, and for $\mathcal{O}(x)$ to be a tiny number. It seems odd to use the same notation with a large independent variable and with a small one. The concept carries over, though, and helps us talk efficiently about this different problem.

## From my Sixth A-to-Z: Taylor Series

By the time of 2019 and my sixth A-to-Z series , I had some standard narrative tricks I could deploy. My insistence that everything is polynomials, for example. Anecdotes from my slight academic career. A prose style that emphasizes what we do with the idea of something rather than instructions. That last comes from the idea that if you wanted to know how to compute a Taylor series you’d just look it up on Mathworld or Wikipedia or whatnot. The thing a pop mathematics blog can do is give some reason that you’d want to know how to compute a Taylor series. I regret talking about functions that break Taylor series, though. I have to treat these essays as introducing the idea of a Taylor series to someone who doesn’t know anything about them. And it’s bad form to teach how stuff doesn’t work too close to teaching how it does work. Readers tend to blur what works and what doesn’t together. Still, $f(x) = \exp(-\frac{1}{x^2})$ is a really neat weird function and it’d be a shame to let it go completely unmentioned.

Today’s A To Z term was nominated by APMA, author of the Everybody Makes DATA blog. It was a topic that delighted me to realize I could explain. Then it started to torment me as I realized there is a lot to explain here, and I had to pick something. So here’s where things ended up.

# Taylor Series.

In the mid-2000s I was teaching at a department being closed down. In its last semester I had to teach Computational Quantum Mechanics. The person who’d normally taught it had transferred to another department. But a few last majors wanted the old department’s version of the course, and this pressed me into the role. Teaching a course you don’t really know is a rush. It’s a semester of learning, and trying to think deeply enough that you can convey something to students. This while all the regular demands of the semester eat your time and working energy. And this in the leap of faith that the syllabus you made up, before you truly knew the subject, will be nearly enough right. And that you have not committed to teaching something you do not understand.

So around mid-course I realized I needed to explain finding the wave function for a hydrogen atom with two electrons. The wave function is this probability distribution. You use it to find things like the probability a particle is in a certain area, or has a certain momentum. Things like that. A proton with one electron is as much as I’d ever done, as a physics major. We treat the proton as the center of the universe, immobile, and the electron hovers around that somewhere. Two electrons, though? A thing repelling your electron, and repelled by your electron, and neither of those having fixed positions? What the mathematics of that must look like terrified me. When I couldn’t procrastinate it farther I accepted my doom and read exactly what it was I should do.

It turned out I had known what I needed for nearly twenty years already. Got it in high school.

Of course I’m discussing Taylor Series. The equations were loaded down with symbols, yes. But at its core, the important stuff, was this old and trusted friend.

The premise behind a Taylor Series is even older than that. It’s universal. If you want to do something complicated, try doing the simplest thing that looks at all like it. And then make that a little bit more like you want. And then a bit more. Keep making these little improvements until you’ve got it as right as you truly need. Put that vaguely, the idea describes Taylor series just as well as it describes making a video game or painting a state portrait. We can make it more specific, though.

A series, in this context, means the sum of a sequence of things. This can be finitely many things. It can be infinitely many things. If the sum makes sense, we say the series converges. If the sum doesn’t, we say the series diverges. When we first learn about series, the sequences are all numbers. $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$, for example, which diverges. (It adds to a number bigger than any finite number.) Or $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$, which converges. (It adds to $\frac{1}{6}\pi^2$.)

In a Taylor Series, the terms are all polynomials. They’re simple polynomials. Let me call the independent variable ‘x’. Sometimes it’s ‘z’, for the reasons you would expect. (‘x’ usually implies we’re looking at real-valued functions. ‘z’ usually implies we’re looking at complex-valued functions. ‘t’ implies it’s a real-valued function with an independent variable that represents time.) Each of these terms is simple. Each term is the distance between x and a reference point, raised to a whole power, and multiplied by some coefficient. The reference point is the same for every term. What makes this potent is that we use, potentially, many terms. Infinitely many terms, if need be.

Call the reference point ‘a’. Or if you prefer, x0. z0 if you want to work with z’s. You see the pattern. This ‘a’ is the “point of expansion”. The coefficients of each term depend on the original function at the point of expansion. The coefficient for the term that has $(x - a)$ is the first derivative of f, evaluated at a. The coefficient for the term that has $(x - a)^2$ is the second derivative of f, evaluated at a (times a number that’s the same for the squared-term for every Taylor Series). The coefficient for the term that has $(x - a)^3$ is the third derivative of f, evaluated at a (times a different number that’s the same for the cubed-term for every Taylor Series).

You’ll never guess what the coefficient for the term with $(x - a)^{122,743}$ is. Nor will you ever care. The only reason you would wish to is to answer an exam question. The instructor will, in that case, have a function that’s either the sine or the cosine of x. The point of expansion will be 0, $\frac{\pi}{2}$, $\pi$, or $\frac{3\pi}{2}$.

Otherwise you will trust that this is one of the terms of $(x - a)^n$, ‘n’ representing some counting number too great to be interesting. All the interesting work will be done with the Taylor series either truncated to a couple terms, or continued on to infinitely many.

What a Taylor series offers is the chance to approximate a function we’re genuinely interested in with a polynomial. This is worth doing, usually, because polynomials are easier to work with. They have nice analytic properties. We can automate taking their derivatives and integrals. We can set a computer to calculate their value at some point, if we need that. We might have no idea how to start calculating the logarithm of 1.3. We certainly have an idea how to start calculating $0.3 - \frac{1}{2}(0.3^2) + \frac{1}{3}(0.3^3)$. (Yes, it’s 0.3. I’m using a Taylor series with a = 1 as the point of expansion.)

The first couple terms tell us interesting things. Especially if we’re looking at a function that represents something physical. The first two terms tell us where an equilibrium might be. The next term tells us whether an equilibrium is stable or not. If it is stable, it tells us how perturbations, points near the equilibrium, behave.

The first couple terms will describe a line, or a quadratic, or a cubic, some simple function like that. Usually adding more terms will make this Taylor series approximation a better fit to the original. There might be a larger region where the polynomial and the original function are close enough. Or the difference between the polynomial and the original function will be closer together on the same old region.

We would really like that region to eventually grow to the whole domain of the original function. We can’t count on that, though. Roughly, the interval of convergence will stretch from ‘a’ to wherever the first weird thing happens. Weird things are, like, discontinuities. Vertical asymptotes. Anything you don’t like dealing with in the original function, the Taylor series will refuse to deal with. Outside that interval, the Taylor series diverges and we just can’t use it for anything meaningful. Which is almost supernaturally weird of them. The Taylor series uses information about the original function, but it’s all derivatives at a single point. Somehow the derivatives of, say, the logarithm of x around x = 1 give a hint that the logarithm of 0 is undefinable. And so they won’t help us calculate the logarithm of 3.

Things can be weirder. There are functions that just break Taylor series altogether. Some are obvious. A function needs lots of derivatives at a point to have a good Taylor series approximation. So, many fractal curves won’t have a Taylor series approximation. These curves are all corners, points where they aren’t continuous or where derivatives don’t exist. Some are obviously designed to break Taylor series approximations. We can make a function that follows different rules if x is rational than if x is irrational. There’s no approximating that, and you’d blame the person who made such a function, not the Taylor series. It can be subtle. The function defined by the rule $f(x) = \exp{-\frac{1}{x^2}}$, with the note that if x is zero then f(x) is 0, seems to satisfy everything we’d look for. It’s a function that’s mostly near 1, that drops down to being near zero around where x = 0. But its Taylor series expansion around a = 0 is a horizontal line always at 0. The interval of convergence can be a single point, challenging our idea of what an interval is.

That’s all right. If we can trust that we’re avoiding weird parts, Taylor series give us an outstanding new tool. Grant that the Taylor series describes a function with the same rule as our original function. The Taylor series is often easier to work with, especially if we’re working on differential equations. We can automate, or at least find formulas for, taking the derivative of a polynomial. Or adding together derivatives of polynomials. Often we can attack a differential equation too hard to solve otherwise by supposing the answer is a polynomial. This is essentially what that quantum mechanics problem used, and why the tool was so familiar when I was in a strange land.

Roughly. What I was actually doing was treating the function I wanted as a power series. This is, like the Taylor series, the sum of a sequence of terms, all of which are $(x - a)^n$ times some coefficient. What makes it not a Taylor series is that the coefficients weren’t the derivatives of any function I knew to start. But the experience of Taylor series trained me to look at functions as things which could be approximated by polynomials.

This gives us the hint to look at other series that approximate interesting functions. We get a host of these, with names like Laurent series and Fourier series and Chebyshev series and such. Laurent series look like Taylor series but we allow powers to be negative integers as well as positive ones. Fourier series do away with polynomials. They instead use trigonometric functions, sines and cosines. Chebyshev series build on polynomials, but not on pure powers. They’ll use orthogonal polynomials. These behave like perpendicular directions do. That orthogonality makes many numerical techniques behave better.

The Taylor series is a great introduction to these tools. Its first several terms have good physical interpretations. Its calculation requires tools we learn early on in calculus. The habits of thought it teaches guides us even in unfamiliar territory.

And I feel very relieved to be done with this. I often have a few false starts to an essay, but those are mostly before I commit words to text editor. This one had about four branches that now sit in my scrap file. I’m glad to have a deadline forcing me to just publish already.

Thank you, though. This and the essays for the Fall 2019 A to Z should be at this link. Next week: the letters U and V. And all past A to Z essays ought to be at this link.

## My All 2020 Mathematics A to Z: Big-O and Little-O Notation

Mr Wu, author of the Singapore Maths Tuition blog, asked me to explain a technical term today. I thought that would be a fun, quick essay. I don’t learn very fast, do I?

A note on style. I make reference here to “Big-O” and “Little-O”, capitalizing and hyphenating them. This is to give them visual presence as a name. In casual discussion they’re just read, or said, as the two words or word-and-a-letter. Often the Big- or Little- gets dropped and we just talk about O. An O, without further context, in my experience means Big-O.

The part of me that wants smooth consistency in prose urges me to write “Little-o”, as the thing described is represented with a lowercase ‘o’. But Little-o sounds like a midway game or an Eyerly Aircraft Company amusement park ride. And I never achieve consistency in my prose anyway. Maybe for the book publication. Until I’m convinced another is better, though, “Little-O” it is.

# Big-O and Little-O Notation.

When I first went to college I had a campus post office box. I knew my box number. I also knew the length of the sluggish line for the combination lock code. The lock was a dial, lettered A through J. Being a young STEM-class idiot I thought, boy, would it actually be quicker to pick the lock than wait for the line? A three-letter combination, of ten options? That’s 1,000 possibilities. If I could try five a minute that’s, at worst, three hours 20 minutes. Combination might be anywhere in that set; I might get lucky. I could expect to spend 80 minutes picking my lock.

I decided to wait in line instead, and good that I did. I was unaware lock settings might not be a letter, like ‘A’. It could be the midway point between adjacent letters, like ‘AB’. That meant there were eight times as many combinations as I estimated, and I could expect to spend over ten hours. Even the slow line was faster than that. It transpired that my combination had two of these midway letters.

But that’s a little demonstration of algorithmic complexity. Also in cracking passwords by trial-and-error. Doubling the set of possible combination codes octuples the time it takes to break into the set. Making the combination longer would also work; each extra letter would multiply the cracking time by twenty. So you understand why your password should include “special characters” like punctuation, but most of all should be long.

We’re often interested in how long to expect a task to take. Sometimes we’re interested in the typical time it takes. Often we’re interested in the longest it could ever take. If we have a deterministic algorithm, we can say. We can count how many steps it takes. Sometimes this is easy. If we want to add two two-digit numbers together we know: it will be, at most, three single-digit additions plus, maybe, writing down a carry. (To add 98 and 37 is adding 8 + 7 to get 15, to add 9 + 3 to get 12, and to take the carry from the 15, so, 1 + 12 to get 13, so we have 135.) We can get a good quarrel going about what “a single step” is. We can argue whether that carry into the hundreds column is really one more addition. But we can agree that there is some smallest bit of arithmetic work, and proceed from that.

For any algorithm we have something that describes how big a thing we’re working on. It’s often ‘n’. If we need more than one variable to describe how big it is, ‘m’ gets called up next. If we’re estimating how long it takes to work on a number, ‘n’ is the number of digits in the number. If we’re thinking about a square matrix, ‘n’ is the number of rows and columns. If it’s a not-square matrix, then ‘n’ is the number of rows and ‘m’ the number of columns. Or vice-versa; it’s your matrix. If we’re looking for an item in a list, ‘n’ is the number of items in the list. If we’re looking to evaluate a polynomial, ‘n’ is the order of the polynomial.

In normal circumstances we don’t work out how many steps some operation does take. It’s more useful to know that multiplying these two long numbers would take about 900 steps than that it would need only 816. And so this gives us an asymptotic estimate. We get an estimate of how much longer cracking the combination lock will take if there’s more letters to pick from. This allowing that some poor soul will get the combination A-B-C.

There are a couple ways to describe how long this will take. The more common is the Big-O. This is just the letter, like you find between N and P. Since that’s easy, many have taken to using a fancy, vaguely cursive O, one that looks like $\mathcal{O}$. I agree it looks nice. Particularly, though, we write $\mathcal{O}(f(n))$, where f is some function. In practice, we’ll see functions like $\mathcal{O}(n)$ or $\mathcal{O}(n^2 \log(n))$ or $\mathcal{O}(n^3)$. Usually something simple like that. It can be tricky. There’s a scheme for multiplying large numbers together that’s $\mathcal{O}(n \cdot 2^{\sqrt{2 log (n)}} \cdot log(n))$. What you will not see is something like $\mathcal{O}(\sin (n))$, or $\mathcal{O}(n^3 - n^4)$ or such. This comes to what we mean by the Big-O.

It’ll be convenient for me to have a name for the actual number of steps the algorithm takes. Let me call the function describing that g(n). Then g(n) is $\mathcal{O}(f(n))$ if once n gets big enough, g(n) is always less than C times f(n). Here c is some constant number. Could be 1. Could be 1,000,000. Could be 0.00001. Doesn’t matter; it’s some positive number.

There’s some neat tricks to play here. For example, the function ‘$n$‘ is $\mathcal{O}(n)$. It’s also $\mathcal{O}(n^2)$ and $\mathcal{O}(n^9)$ and $\mathcal{O}(e^{n})$. The function ‘$n^2$‘ is also $\mathcal{O}(n^2)$ and those later terms, but it is not $\mathcal{O}(n)$. And you can see why $\mathcal{O}(\sin(n))$ is right out.

There is also a Little-O notation. It, too, is an upper bound on the function. But it is a stricter bound, setting tighter restrictions on what g(n) is like. You ask how it is the stricter bound gets the minuscule letter. That is a fine question. I think it’s a quirk of history. Both symbols come to us through number theory. Big-O was developed first, published in 1894 by Paul Bachmann. Little-O was published in 1909 by Edmund Landau. Yes, the one with the short Hilbert-like list of number theory problems. In 1914 G H Hardy and John Edensor Littlewood would work on another measure and they used Ω to express it. (If you see the letter used for Big-O and Little-O as the Greek omicron, then you see why a related concept got called omega.)

What makes the Little-O measure different is its sternness. g(n) is $o(f(n))$ if, for every positive number C, whenever n is large enough g(n) is less than or equal to C times f(n). I know that sounds almost the same. Here’s why it’s not.

If g(n) is $\mathcal{O}(f(n))$, then you can go ahead and pick a C and find that, eventually, $g(n) \le C f(n)$. If g(n) is $o(f(n))$, then I, trying to sabotage you, can go ahead and pick a C, trying my best to spoil your bounds. But I will fail. Even if I pick, like a C of one millionth of a billionth of a trillionth, eventually f(n) will be so big that $g(n) \le C f(n)$. I can’t find a C small enough that f(n) doesn’t eventually outgrow it, and outgrow g(n).

This implies some odd-looking stuff. Like, that the function n is not $o(n)$. But the function n is at least $o(n^2)$, and $o(n^9)$ and those other fun variations. Being Little-O compels you to be Big-O. Big-O is not compelled to be Little-O, although it can happen.

These definitions, for Big-O and Little-O, I’ve laid out from algorithmic complexity. It’s implicitly about functions defined on the counting numbers. But there’s no reason I have to limit the ideas to that. I could define similar ideas for a function g(x), with domain the real numbers, and come up with an idea of being on the order of f(x).

We make some adjustments to this. The important one is that, with algorithmic complexity, we assumed g(n) had to be a positive number. What would it even mean for something to take minus four steps to complete? But a regular old function might be zero or negative or change between negative and positive. So we look at the absolute value of g(x). Is there some value of C so that, when x is big enough, the absolute value of g(x) stays less than C times f(x)? If it does, then g(x) is $\mathcal{O}(f(x))$. Is it the case that for every positive number C it’s true that g(x) is less than C times f(x), once x is big enough? Then g(x) is $o(f(x))$.

Fine, but why bother defining this?

A compelling answer is that it gives us a way to describe how different a function is from an approximation to that function. We are always looking for approximations to functions because most functions are hard. We have a small set of functions we like to work with. Polynomials are great numerically. Exponentials and trig functions are great analytically. That’s about all the functions that are easy to work with. Big-O notation particularly lets us estimate how bad an error we make using the approximation.

For example, the Runge-Kutta method numerically approximates solutions to ordinary differential equations. It does this by taking the information we have about the function at some point x to approximate its value at a point x + h. ‘h’ is some number. The difference between the actual answer and the Runge-Kutta approximation is $\mathcal{O}(h^4)$. We use this knowledge to make sure our error is tolerable. Also, we don’t usually care what the function is at x + h. It’s just what we can calculate. What we want is the function at some point a fair bit away from x, call it x + L. So we use our approximate knowledge of conditions at x + h to approximate the function at x + 2h. And use x + 2h to tell us about x + 3h, and from that x + 4h and so on, until we get to x + L. We’d like to have as few of these uninteresting intermediate points as we can, so look for as big an h as is safe.

That context may be the more common one. We see it, particularly, in Taylor Series and other polynomial approximations. For example, the sine of a number is approximately:

$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} + \mathcal{O}(x^{11})$

This has consequences. It tells us, for example, that if x is about 0.1, this approximation is probably pretty good. So it is: the sine of 0.1 (radians) is about 0.0998334166468282 and that’s exactly what five terms here gives us. But it also warns that if x is about 10, this approximation may be gibberish. And so it is: the sine of 10.0 is about -0.5440 and the polynomial is about 1448.27.

The connotation in using Big-O notation here is that we look for small h’s, and for $\mathcal{O}(x)$ to be a tiny number. It seems odd to use the same notation with a large independent variable and with a small one. The concept carries over, though, and helps us talk efficiently about this different problem.

I hope this week to post the Playful Math Education Blog Carnival for September. Any educational or recreational or fun mathematics sites you know about would be greatly helpful to me and them. Thanks for your help.

Lastly, I am open for mathematics topics starting with P, Q, and R to write about next month. I’ve basically chosen my ‘P’ subject, though I’d be happy to hear alternatives for ‘Q’ and ‘R’ yet.

## My 2019 Mathematics A To Z: Taylor Series

Today’s A To Z term was nominated by APMA, author of the Everybody Makes DATA blog. It was a topic that delighted me to realize I could explain. Then it started to torment me as I realized there is a lot to explain here, and I had to pick something. So here’s where things ended up.

# Taylor Series.

In the mid-2000s I was teaching at a department being closed down. In its last semester I had to teach Computational Quantum Mechanics. The person who’d normally taught it had transferred to another department. But a few last majors wanted the old department’s version of the course, and this pressed me into the role. Teaching a course you don’t really know is a rush. It’s a semester of learning, and trying to think deeply enough that you can convey something to students. This while all the regular demands of the semester eat your time and working energy. And this in the leap of faith that the syllabus you made up, before you truly knew the subject, will be nearly enough right. And that you have not committed to teaching something you do not understand.

So around mid-course I realized I needed to explain finding the wave function for a hydrogen atom with two electrons. The wave function is this probability distribution. You use it to find things like the probability a particle is in a certain area, or has a certain momentum. Things like that. A proton with one electron is as much as I’d ever done, as a physics major. We treat the proton as the center of the universe, immobile, and the electron hovers around that somewhere. Two electrons, though? A thing repelling your electron, and repelled by your electron, and neither of those having fixed positions? What the mathematics of that must look like terrified me. When I couldn’t procrastinate it farther I accepted my doom and read exactly what it was I should do.

It turned out I had known what I needed for nearly twenty years already. Got it in high school.

Of course I’m discussing Taylor Series. The equations were loaded down with symbols, yes. But at its core, the important stuff, was this old and trusted friend.

The premise behind a Taylor Series is even older than that. It’s universal. If you want to do something complicated, try doing the simplest thing that looks at all like it. And then make that a little bit more like you want. And then a bit more. Keep making these little improvements until you’ve got it as right as you truly need. Put that vaguely, the idea describes Taylor series just as well as it describes making a video game or painting a state portrait. We can make it more specific, though.

A series, in this context, means the sum of a sequence of things. This can be finitely many things. It can be infinitely many things. If the sum makes sense, we say the series converges. If the sum doesn’t, we say the series diverges. When we first learn about series, the sequences are all numbers. $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$, for example, which diverges. (It adds to a number bigger than any finite number.) Or $1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots$, which converges. (It adds to $\frac{1}{6}\pi^2$.)

In a Taylor Series, the terms are all polynomials. They’re simple polynomials. Let me call the independent variable ‘x’. Sometimes it’s ‘z’, for the reasons you would expect. (‘x’ usually implies we’re looking at real-valued functions. ‘z’ usually implies we’re looking at complex-valued functions. ‘t’ implies it’s a real-valued function with an independent variable that represents time.) Each of these terms is simple. Each term is the distance between x and a reference point, raised to a whole power, and multiplied by some coefficient. The reference point is the same for every term. What makes this potent is that we use, potentially, many terms. Infinitely many terms, if need be.

Call the reference point ‘a’. Or if you prefer, x0. z0 if you want to work with z’s. You see the pattern. This ‘a’ is the “point of expansion”. The coefficients of each term depend on the original function at the point of expansion. The coefficient for the term that has $(x - a)$ is the first derivative of f, evaluated at a. The coefficient for the term that has $(x - a)^2$ is the second derivative of f, evaluated at a (times a number that’s the same for the squared-term for every Taylor Series). The coefficient for the term that has $(x - a)^3$ is the third derivative of f, evaluated at a (times a different number that’s the same for the cubed-term for every Taylor Series).

You’ll never guess what the coefficient for the term with $(x - a)^{122,743}$ is. Nor will you ever care. The only reason you would wish to is to answer an exam question. The instructor will, in that case, have a function that’s either the sine or the cosine of x. The point of expansion will be 0, $\frac{\pi}{2}$, $\pi$, or $\frac{3\pi}{2}$.

Otherwise you will trust that this is one of the terms of $(x - a)^n$, ‘n’ representing some counting number too great to be interesting. All the interesting work will be done with the Taylor series either truncated to a couple terms, or continued on to infinitely many.

What a Taylor series offers is the chance to approximate a function we’re genuinely interested in with a polynomial. This is worth doing, usually, because polynomials are easier to work with. They have nice analytic properties. We can automate taking their derivatives and integrals. We can set a computer to calculate their value at some point, if we need that. We might have no idea how to start calculating the logarithm of 1.3. We certainly have an idea how to start calculating $0.3 - \frac{1}{2}(0.3^2) + \frac{1}{3}(0.3^3)$. (Yes, it’s 0.3. I’m using a Taylor series with a = 1 as the point of expansion.)

The first couple terms tell us interesting things. Especially if we’re looking at a function that represents something physical. The first two terms tell us where an equilibrium might be. The next term tells us whether an equilibrium is stable or not. If it is stable, it tells us how perturbations, points near the equilibrium, behave.

The first couple terms will describe a line, or a quadratic, or a cubic, some simple function like that. Usually adding more terms will make this Taylor series approximation a better fit to the original. There might be a larger region where the polynomial and the original function are close enough. Or the difference between the polynomial and the original function will be closer together on the same old region.

We would really like that region to eventually grow to the whole domain of the original function. We can’t count on that, though. Roughly, the interval of convergence will stretch from ‘a’ to wherever the first weird thing happens. Weird things are, like, discontinuities. Vertical asymptotes. Anything you don’t like dealing with in the original function, the Taylor series will refuse to deal with. Outside that interval, the Taylor series diverges and we just can’t use it for anything meaningful. Which is almost supernaturally weird of them. The Taylor series uses information about the original function, but it’s all derivatives at a single point. Somehow the derivatives of, say, the logarithm of x around x = 1 give a hint that the logarithm of 0 is undefinable. And so they won’t help us calculate the logarithm of 3.

Things can be weirder. There are functions that just break Taylor series altogether. Some are obvious. A function needs lots of derivatives at a point to have a good Taylor series approximation. So, many fractal curves won’t have a Taylor series approximation. These curves are all corners, points where they aren’t continuous or where derivatives don’t exist. Some are obviously designed to break Taylor series approximations. We can make a function that follows different rules if x is rational than if x is irrational. There’s no approximating that, and you’d blame the person who made such a function, not the Taylor series. It can be subtle. The function defined by the rule $f(x) = \exp{-\frac{1}{x^2}}$, with the note that if x is zero then f(x) is 0, seems to satisfy everything we’d look for. It’s a function that’s mostly near 1, that drops down to being near zero around where x = 0. But its Taylor series expansion around a = 0 is a horizontal line always at 0. The interval of convergence can be a single point, challenging our idea of what an interval is.

That’s all right. If we can trust that we’re avoiding weird parts, Taylor series give us an outstanding new tool. Grant that the Taylor series describes a function with the same rule as our original function. The Taylor series is often easier to work with, especially if we’re working on differential equations. We can automate, or at least find formulas for, taking the derivative of a polynomial. Or adding together derivatives of polynomials. Often we can attack a differential equation too hard to solve otherwise by supposing the answer is a polynomial. This is essentially what that quantum mechanics problem used, and why the tool was so familiar when I was in a strange land.

Roughly. What I was actually doing was treating the function I wanted as a power series. This is, like the Taylor series, the sum of a sequence of terms, all of which are $(x - a)^n$ times some coefficient. What makes it not a Taylor series is that the coefficients weren’t the derivatives of any function I knew to start. But the experience of Taylor series trained me to look at functions as things which could be approximated by polynomials.

This gives us the hint to look at other series that approximate interesting functions. We get a host of these, with names like Laurent series and Fourier series and Chebyshev series and such. Laurent series look like Taylor series but we allow powers to be negative integers as well as positive ones. Fourier series do away with polynomials. They instead use trigonometric functions, sines and cosines. Chebyshev series build on polynomials, but not on pure powers. They’ll use orthogonal polynomials. These behave like perpendicular directions do. That orthogonality makes many numerical techniques behave better.

The Taylor series is a great introduction to these tools. Its first several terms have good physical interpretations. Its calculation requires tools we learn early on in calculus. The habits of thought it teaches guides us even in unfamiliar territory.

And I feel very relieved to be done with this. I often have a few false starts to an essay, but those are mostly before I commit words to text editor. This one had about four branches that now sit in my scrap file. I’m glad to have a deadline forcing me to just publish already.

Thank you, though. This and the essays for the Fall 2019 A to Z should be at this link. Next week: the letters U and V. And all past A to Z essays ought to be at this link.

## Reading the Comics, May 23, 2018: Nice Warm Gymnasium Edition

I haven’t got any good ideas for the title for this collection of mathematically-themed comic strips. But I was reading the Complete Peanuts for 1999-2000 and just ran across one where Rerun talked about consoling his basketball by bringing it to a nice warm gymnasium somewhere. So that’s where that pile of words came from.

Mark Anderson’s Andertoons for the 21st is the Mark Anderson’s Andertoons for this installment. It has Wavehead suggest a name for the subtraction of fractions. It’s not by itself an absurd idea. Many mathematical operations get specialized names, even though we see them as specific cases of some more general operation. This may reflect the accidents of history. We have different names for addition and subtraction, though we eventually come to see them as the same operation.

In calculus we get introduced to Maclaurin Series. These are polynomials that approximate more complicated functions. They’re the best possible approximations for a region around 0 in the domain. They’re special cases of the Taylor Series. Those are polynomials that approximate more complicated functions. But you get to pick where in the domain they should be the best approximation. Maclaurin series are nothing but a Taylor series; we keep the names separate anyway, for the reasons. And slightly baffling ones; James Gregory and Brook Taylor studied Taylor series before Colin Maclaurin did Maclaurin series. But at least Taylor worked on Taylor series, and Maclaurin on Macularin series. So for a wonder mathematicians named these things for appropriate people. (Ignoring that Indian mathematicians were poking around this territory centuries before the Europeans were. I don’t know whether English mathematicians of the 18th century could be expected to know of Indian work in the field, in fairness.)

In numerical calculus, we have a scheme for approximating integrals known as the trapezoid rule. It approximates the areas under curves by approximating a curve as a trapezoid. (Any questions?) But this is one of the Runge-Kutta methods. Nobody calls it that except to show they know neat stuff about Runge-Kutta methods. The special names serve to pick out particularly interesting or useful cases of a more generally used thing. Wavehead’s coinage probably won’t go anywhere, but it doesn’t hurt to ask.

Percy Crosby’s Skippy for the 22nd I admit I don’t quite understand. It mentions arithmetic anyway. I think it’s a joke about a textbook like this being good only if it’s got the questions and the answers. But it’s the rare Skippy that’s as baffling to me as most circa-1930 humor comics are.

Ham’s Life on Earth for the 23rd presents the blackboard full of symbols as an attempt to prove something challenging. In this case, to say something about the existence of God. It’s tempting to suppose that we could say something about the existence or nonexistence of God using nothing but logic. And there are mathematics fields that are very close to pure logic. But our scary friends in the philosophy department have been working on the ontological argument for a long while. They’ve found a lot of arguments that seem good, and that fall short for reasons that seem good. I’ll defer to their experience, and suppose that any mathematics-based proof to have the same problems.

Bill Amend’s FoxTrot Classics for the 23rd deploys a Maclaurin series. If you want to calculate the cosine of an angle, and you know the angle in radians, you can find the value by adding up the terms in an infinitely long series. So if θ is the angle, measured in radians, then its cosine will be:

$\cos\left(\theta\right) = \sum_{k = 0}^{\infty} \left(-1\right)^k \frac{\theta^k}{k!}$

60 degrees is $\frac{\pi}{3}$ in radians and you see from the comic how to turn this series into a thing to calculate. The series does, yes, go on forever. But since the terms alternate in sign — positive then negative then positive then negative — you have a break. Suppose all you want is the answer to within an error margin. Then you can stop adding up terms once you’ve gotten to a term that’s smaller than your error margin. So if you want the answer to within, say, 0.001, you can stop as soon as you find a term with absolute value less than 0.001.

For high school trig, though, this is all overkill. There’s five really interesting angles you’d be expected to know anything about. They’re 0, 30, 45, 60, and 90 degrees. And you need to know about reflections of those across the horizontal and vertical axes. Those give you, like, -30 degrees or 135 degrees. Those reflections don’t change the magnitude of the cosines or sines. They might change the plus-or-minus sign is all. And there’s only three pairs of numbers that turn up for these five interesting angles. There’s 0 and 1. There’s $\frac{1}{2}$ and $\frac{\sqrt{3}}{2}$. There’s $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{2}}$. Three things to memorize, plus a bit of orienteering, to know whether the cosine or the sine should be the larger size and whether they should positive or negative. And then you’ve got them all.

You might get asked for, like, the sine of 15 degrees. But that’s someone testing whether you know the angle-addition or angle-subtraction formulas. Or the half-angle and double-angle formulas. Nobody would expect you to know the cosine of 15 degrees. The cosine of 30 degrees, though? Sure. It’s $\frac{\sqrt{3}}{2}$.

Mike Thompson’s Grand Avenue for the 23rd is your basic confused-student joke. People often have trouble going from percentages to decimals to fractions and back again. Me, I have trouble in going from percentage chances to odds, as in, “two to one odds” or something like that. (Well, “one to one odds” I feel confident in, and “two to one” also. But, say, “seven to five odds” I can’t feel sure I understand, other than that the second choice is a perceived to be a bit more likely than the first.)

… You know, this would have parsed as the Maclaurin Series Edition, wouldn’t it? Well, if only I were able to throw away words I’ve already written and replace them with better words before publishing, huh?