So If You Can’t Win The Clock Game You Should Feel Bad


I have one last important thing to discuss before I finish my months spun off an offhand comment from The Price Is Right. There are a couple minor points I can also follow up on, but I don’t think they’re tied tightly enough to the show to deserve explicit mention or rate getting “tv” included as one of my keywords. Here’s my question: what’s the chance of winning an average pricing game, after one has got an Item Up For Bid won?

At first glance this is several dozen questions, since there are quite a few games, some winnable on pure skill — “Clock Game”, particularly, although contestants this season have been rotten at it, and “Hole In One … Or Two”, since a good miniature golfer could beat it — and some that are just never won — “Temptation” particularly — and some for which partial wins are possible — “Money Game” most obviously. For all, skill in pricing things help. For nearly all, there’s an element of luck.

I’m not going to attempt to estimate the chance of winning each of the dozens of pricing games. What I want is some kind of mean chance of winning, based on how contestants actually do. The tool I’ll use for this is the number of perfect episodes, episodes in which the contestant wins all six pricing games, and I’ll leave it to the definers of perfect such questions as what counts as a win for “Pay The Rent” (in which a prize of $100,000 is theoretically possible, but $10,000 is the most that has yet been paid out) or “Plinko” (theoretically paying up to $50,000, but which hasn’t done so in decades of playing).

Continue reading “So If You Can’t Win The Clock Game You Should Feel Bad”

Proving Something With One Month’s Counting


One week, it seems, isn’t enough to tell the difference conclusively between the first bidder on Contestants Row having a 25 percent chance of winning — winning one out of four times — or a 17 percent chance of winning — winning one out of six times. But we’re not limited to watching just the one week of The Price Is Right, at least in principle. Some more episodes might help us, and we can test how many episodes are needed to be confident that we can tell the difference. I won’t be clever about this. I have a tool — Octave — which makes it very easy to figure out whether it’s plausible for something which happens 1/4 of the time to turn up only 1/6 of the time in a set number of attempts, and I’ll just keep trying larger numbers of attempts until I’m satisfied. Sometimes the easiest way to solve a problem is to keep trying numbers until something works.

In two weeks (or any ten episodes, really, as talked about above), with 60 items up for bids, a 25 percent chance of winning suggests the first bidder should win 15 times. A 17 percent chance of winning would be a touch over 10 wins. The chance of 10 or fewer successes out of 60 attempts, with a 25 percent chance of success each time, is about 8.6 percent, still none too compelling.

Here we might turn to despair: 6,000 episodes — about 35 years of production — weren’t enough to give perfectly unambiguous answers about whether there were fewer clean sweeps than we expected. There were too few at the 5 percent significance level, but not too few at the 1 percent significance level. Do we really expect to do better with only 60 shows?

Continue reading “Proving Something With One Month’s Counting”

What Can One Week Prove?


We have some reason to think the chance of winning an Item Up For Bids, if you’re the first one of the four to place bids — let’s call this the first bidder or first seat so there’s a name for it — is lower than the 25 percent which we’d expect if every contestant in The Price Is Right‘s Contestants Row had an equal shot at it. Based on the assertion that only one time in about six thousand episodes had all six winning bids in one episode come from the same seat, we reasoned that the chance for the first bidder — the same seat as won the previous bid — could be around 17 percent. My next question is how we could test this? The chance for the first bidder to win might be higher than 17 percent — around 1/6, which is near enough and easier to work with — or lower than 25 percent — exactly 1/4 — or conceivably even be outside that range.

The obvious thing to do is test: watch a couple episodes, and see whether it’s nearer to 1/6 or to 1/4 of the winning bids come from the first seat. It’s easy to tally the number of items up for bid and how often the first bidder wins. However, there are only six items up for bid each episode, and there are five episodes per week, for 30 trials in all. I talk about a week’s worth of episodes because it’s a convenient unit, easy to record on the Tivo or an equivalent device, easy to watch at The Price Is Right‘s online site, but it doesn’t have to be a single week. It could be any five episodes. But I’ll say a week just because it’s convenient to do so.

If the first seat has a chance of 25 percent of winning, we expect 30 times 1/4, or seven or eight, first-seat wins per week. If the first seat has a 17 percent chance of winning, we expect 30 times 1/6, or 5, first-seat wins per week. That’s not much difference. What’s the chance we see 5 first-seat wins if the first seat has a 25 percent chance of winning?

Continue reading “What Can One Week Prove?”

Figuring Out The Penalty Of Going First


Let’s accept the conclusion that the small number of clean sweeps of Contestants Row is statistically significant, that all six winning contestants on a single episode of The Price Is Right come from the same seat less often than we would expect from chance alone, and that the reason for this is that whichever seat won the last item up for bids is less likely to win the next. It seems natural to suppose the seat which won last time — and which is therefore bidding first this next time — is at a disadvantage. The irresistible question, to me anyway, is: how big is that disadvantage? If no seats had any advantage, the first, second, third, and fourth bidders would be expected to have a probability of 1/4 of winning any particular item. How much less a chance does the first bidder need to have to get the one clean sweep in 6,000 episodes reported?

Chiaroscuro came to an estimate that the first bidder had a probability of about 17.6 percent of winning the item up for bids, and I agree with that, at least if we make a couple of assumptions which I’m confident we are making together. But it’s worth saying what those assumptions are because if the assumptions do not hold, the answers come out different.

The first assumption was made explicitly in the first paragraph here: that the low number of clean sweeps is because the chance of a clean sweep is less than the 1 in 1000 (or to be exact, 1 in 1024) chance which supposes every seat has an equal probability of winning. After all, the probability that we saw so few clean sweeps for chance alone was only a bit under two percent; that’s unlikely but hardly unthinkable. We’re supposing there is something to explain.

Continue reading “Figuring Out The Penalty Of Going First”

Interpreting Drew Carey


If we’ve decided that at the significance level we find comfortable there are too few clean sweeps of any position in Contestants Row, the natural question is why there are so few. We estimated there should have been six clean sweeps, based on modelling clean-sweep occurrences as a binomial distribution. Something in the model went wrong. Let’s try to reason out what it was.

One assumption for a binomial distribution are that we have some trial, some event, which happens many times. Each episodes is the obvious trial here. The outcome we’re interested in seeing has some probability of happening on each trial; there is indeed some probability of a clean sweep each episode. The binomial distribution assumes that this probability is constant for every trial, that it doesn’t become more or less likely the tenth or hundredth or thousandth time around, and this seems likely to hold for The Price Is Right episodes. Granted there is some chance of a clean sweep in one episode; what could be done to increase or decrease the likelihood from episode to episode?

Continue reading “Interpreting Drew Carey”

Finding, and Starting to Understand, the Answer


If the probability of having one or fewer clean sweep episodes of The Price Is Right out of 6,000 aired shows is a little over one and a half percent — and it is — and we consider outcomes whose probability is less than five percent to be so unlikely that we can rule them out as happening by chance — and, last time, we did — then there are improbably few episodes where all six contestants came from the same seat in Contestants Row, and we can usefully start looking for possible explanations as to why there are so few clean sweeps. At least, that’s the conclusion at our significance level, that five percent.

But there’s no law dictating that we pick that five percent significance level. If we picked a one percent significance level, which is still common enough and not too stringent, then we would say this might be fewer clean sweeps than we expected, but it isn’t so drastically few as to raise our eyebrows yet. And we would be correct to do so. Depending on the significance level, what we saw is either so few clean sweeps as to be suspicious, or it’s not. This is why it’s better form to choose the significance level before we know the outcome; it feels like drawing the bullseye after shooting the arrow the other way around.

Continue reading “Finding, and Starting to Understand, the Answer”

The Significance of the Item Up For Bids


The last important idea missing before we can judge this problem about The Price Is Right clean sweeps of Contestants Row is the significance level. Whenever an experiment is run — whether it’s the classic probability class problems of flipping coins or rolling dice, or whether it’s watching 6,000 episodes of a game show to see whether any seat produces the most winners, or whether it’s counting the number of red traffic lights one gets during the commute — there are some outcomes which are reasonably likely, some which are unlikely, and some which are vanishingly improbable.

We have to decide that some outcomes have such a low probability of happening naturally that they represent something going on, and are not just the result of chance. How low that probability should be is our decision. There are some common dividing lines, but they’re common just because they represent numbers which human beings find to be nice round figures: five percent, one percent, half a percent, one-tenth of a percent. What significance level one picks depends on many factors, including what’s common in the field, how different outcomes are expected to be, even what one can afford. Physicists looking for evidence of new subatomic particles have an extremely high standard before declaring something is definitely a new particle, but, they can run particle detection experiments until they get such clear evidence.

To be fair, we ought to pick our significance level before we’ve worked out the probability of something happening, but this is the earliest I could discuss it with motivation for you to read about it. But if we take the five percent significance level, we see we know already that there’s a little more than a one and a half percent chance of there being as few clean sweeps as observed. The conclusion is obvious: all six winning contestants in an episode should have come from the same seat, over 6,000 episodes, more often than the one time Drew Carey claimed they had. We can start looking for explanations for why there should be this deficiency.

Or …