Norm Feuti’s **Gil** did not last long enough in syndication. This is a shame. The characters were great, the humor in a mode I like, and young Gil’s fascination with shows about the paranormal was eerily close to my own young self. But it didn’t last; my understanding is newspapers were reluctant to bring in a comic strip starring an impoverished family. This is a many-faceted shame, not least because the eternal tension between Gil’s fantasy life and his reality made it one of the few strips to reproduce the most vital element of **Calvin and Hobbes**. But Feuti decided to resume drawing Sunday strips, and I choose to include that in my Reading the Comics reading, because this is my blog and I can make the rules here, at least.

So here’s Norm Feuti’s **Gil** for the 15th. A couple days ago I saw someone amazed at finally learning where sunflower seeds come from. They’re the black part in the center of a sunflower, the part that makes the big yellow flower stand out in such contrast. People were giving the poster a hard time, asking, where did he *think* they came from? And the answer is just, he hadn’t thought about it. Why would he? It’s quite reasonable to go through life never encountering a sunflower seed except as a snack or as part of bird or squirrel food. Where on the sunflower plant it’d even be just doesn’t come up. If you want to make this a dire commentary on society losing its sense of where things come from, all right, I won’t stop you. But I think it’s more that there are a billion things to notice in the world, and so many things have names that are fanciful or allusive or ironic, that it’s normal not to realize that a phrase might literally represent its content.

So Gil having so associated a quarter with 25 cents, rather than one-fourth of a something, makes sense to me. (Especially given, as noted, that he and his mother are poor, and so he grows up attentive to cash.)

Isaac Asimov, prolific writer of cozy mysteries, had one short story built on the idea that a person might misremember 5:50, seen on a digital clock, as half-past five. I mention this to show how the difference between a quarter of a hundred of things, and the quarter of sixty things, will get mixed together.

Greg Evans’s **Luann Againn** for the 15th sees Luann struggling with algebra. And thinking of ways to at least get the answers. One advantage mathematics instructors have which many other subjects don’t is that you can create more problems easily. If for some reason isn’t usable anymore, you can make it and still be testing the same skills. But if you want to (as is reasonable) stick to what’s in a published text, yeah, you’re vulnerable to this.

And you can’t always just change a problem arbitrarily. For example, the expression in the second panel of the top row — — I notice factors into . I don’t know the objective of Luann’s homework, but it would probably be messed up if the problem were just changed to . Not that this couldn’t be worked, but that the work would involve annoying and complicated expressions instead of nice whole numbers or reasonable fractions.

Paul Trap’s **Thatababy** for the 15th presents Thatabay’s first counting-exponentially book, with the number of rabbits doubling every time. I admire the work Trap put in to drawing — in what we see here — 255 bunnies. I’m trusting there’s 128 in the last bunny panel; I’m not counting. At any rate he drew enough bunnies to not make it obvious to me where he repeats figures.

The traditional ever-increasing bunny spiral is the Fibonacci series. But in that, each panel would on average have only about three-fifths more bunnies than the one before it. That’s good, but it isn’t going to overwhelm as fast as the promise of 256 bunnies on the next page will.

**Eric the Circle** for the 17th, this by Griffenetsabine, has come up here before. That was back in October of 2013, though, so I don’t blame you for forgetting.

The “dual” here is a mathematical term. Many mathematical things have duals. Polyhedrons have a commonly defined dual shape, though. Start with a polyhedron like, oh, the cube. The dual is a new polyhedron. The vertices of the dual are at the centers of the faces of the original polyhedron. And if two faces of the original polyhedron meet at an edge, then there’s an edge connecting the vertices at the centers of those faces. If several faces meet at a vertex in the original polyhedron, then in the dual there’s a face connecting the vertices dual to the original faces. Work all this out and you get, as you might expect, that the shape that’s dual to a cube is the octahedron we’re told just walked into the bar. The dual to the octahedron, meanwhile … well, that is a cube, which is nice and orderly. You might get a bit of a smile working out what the dual to a tetrahedron is.

Duals are useful, generically, because usually if you can prove something about a dual then you can prove it about the original thing. And we may find that something is easier to prove for the dual than for the original. This isn’t guaranteed, especially for geometric shapes like this, where it’s hard to say that either shape is harder to work with than the other. But it’s one of the tools we have to try sliding between the problem we need to do and the problem we can do.

Olivia Jaimes’s **Nancy** for the 17th has claims about the usefulness of arithmetic. And Nancy skeptical of them, as you expect for a kid facing mathematics in a comic strip. I admit I’ve never needed to do much arithmetic when I cooked. The most would be figuring out how to adjust the cooking time when two things need very different temperatures. But I always do that by winging it. Now I’m curious whether there are good references for suggested alternate times.

I expect to have another Reading the Comics post here, on Monday. The A to Z series should pick up on Tuesday And I’m still glad for suggestions for the letters I through N. Thank you for reading.