Reading the Comics, March 10, 2018: I Will Get To Pi Day Edition

There were fewer Pi Day comic strips than I had expected for this year. It’s gotten much more public mention than I had expected a pop-mathematics bit of whimsy might. But I’m still working off last week’s strips; I’ll get to this week’s next week. This makes sense to me, which is as good as making sense at all.

Keith Tutt and Daniel Saunders’s Lard’s World Peace Tips for the 7th is a percentages joke, as applied to hair. Lard doesn’t seem clear whether this would be 10% off the hair by individual strand length or by total volume. Either way, Lard’s right to wonder about the accuracy.

Mark Pett’s Mr Lowe rerun for the 7th is a standardized test joke. Part of the premise of Pett’s strip is that Mister Lowe is a brand-new teacher, which is why he makes mistakes like this problem. (This is touchy to me, as in grad school I hoped to make some spare money selling questions to a standardized testing company. I wasn’t good enough at it, and ultimately didn’t have the time to train up to their needs.) A multiple-choice question needs to clear and concise and to have one clearly best answer. As the given question’s worded, though, I could accept ‘2’ or ’12’ as a correct answer. With a bit of experience Lowe would probably clarify that Tommy and Suzie are getting the same number of apples and that together they should have 20 total.

Then on the 9th Mr Lowe has a joke about cultural bias in standardized tests. It uses an arithmetic problem as the type case. Mathematicians like to think of themselves as working in a universal, culturally independent subject. I suppose it is, but only in ways that aren’t interesting: if you suppose these rules of logic and these axioms and these definitions then these results follow, and it doesn’t matter who does the supposing. But start filtering that by stuff people care about, such as the time it takes for two travelling parties to meet, and you’ve got cultural influence. (Back when this strip was new the idea that a mathematics exam could be culturally biased was a fresh new topic of mockery among people who don’t pay much attention to the problems of teaching but who know what those who do are doing wrong.)

Ralph Hagen’s The Barn for the 8th — a new tag for my comics, by the way — lists a bunch of calculation tools and techniques as “obsolete” items. I’m assuming Rory means that longhand multiplication is obsolete. I’m not sure that it is, but I have an unusual perspective on this.

Thaves’s Frank and Ernest for the 8th is an anthropomorphic-numerals joke. I was annoyed when I first read this because I thought, wait, 97 isn’t a prime number. It is, of course. I have no explanation for my blunder.

Jon Rosenberg’s Scenes from a Multiverse has restarted its run on GoComics. The strip for the 8th is a riff on Venn Diagrams. And, it seems to me, about those logic-bomb problems about sets consisting of sets that don’t contain themselves and the like. You get weird and apparently self-destructive results pondering that stuff. The last time GoComics ran the Scenes from a Multiverse series I did not appreciate right away that there were many continuing stories. There might be follow-ups to this Former Venn Prime Universe story.

Brian Fies’s The Last Mechanical Monster for the 9th has the Mad Scientist, struggling his way into the climax of the story, testing his mind by calculating a Fibonacci Sequence. Whatever keeps you engaged and going. You can build a Fibonacci Sequence from any two starting terms. Each term after the first two is the sum of the previous two. If someone just says “the Fibonacci Sequence” they mean the sequence that starts with 0, 1, or perhaps with 1, 1. (There’s no interesting difference.) Fibonacci Sequences were introduced to the west by Leonardo of Pisa, who did so much to introduce Hindu-Arabic Numerals to a Europe that didn’t know it wanted this stuff. They touch on some fascinating stuff: the probability of not getting two tails in a row of a set number of coin tosses. Chebyshev polynomials. Diophantine equations. They also touch on the Golden Ratio, which isn’t at all important but that people like.

Nicholas Gurewitch’s Perry Bible Fellowship for the 9th just has a blackboard of arithmetic to stand in for schoolwork.


Reading the Comics, January 3, 2018: Explaining Things Edition

There were a good number of mathematically-themed comic strips in the syndicated comics last week. Those from the first part of the week gave me topics I could really sink my rhetorical teeth into, too. So I’m going to lop those off into the first essay for last week and circle around to the other comics later on.

Jef Mallett’s Frazz started a week of calendar talk on the 31st of December. I’ve usually counted that as mathematical enough to mention here. The 1st of January as we know it derives, as best I can figure, from the 1st of January as Julius Caesar established for 45 BCE. This was the first Roman calendar to run basically automatically. Its length was quite close to the solar year’s length. It had leap days added according to a rule that should have been easy enough to understand (one day every fourth year). Before then the Roman calendar year was far enough off the solar year that they had to be kept in synch by interventions. Mostly, by that time, adding a short extra month to put things more nearly right. This had gotten all confusingly messed up and Caesar took the chance to set things right, running 46 BCE to 445 days long.

But why 445 and not, say, 443 or 457? And I find on research that my recollection might not be right. That is, I recall that the plan was to set the 1st of January, Reformed, to the first new moon after the winter solstice. A choice that makes sense only for that one year, but, where to set the 1st is literally arbitrary. While that apparently passes astronomical muster (the new moon as seen from Rome then would be just after midnight the 2nd of January, but hitting the night of 1/2 January is good enough), there’s apparently dispute about whether that was the objective. It might have been to set the winter solstice to the 25th of December. Or it might have been that the extra days matched neatly the length of two intercalated months that by rights should have gone into earlier years. It’s a good reminder of the difficulty of reading motivation.

Brian Fies’s The Last Mechanical Monster for the 1st of January, 2018, continues his story about the mad scientist from the Fleischer studios’ first Superman cartoon, back in 1941. In this panel he’s describing how he realized, over the course of his long prison sentence, that his intelligence was fading with age. He uses the ability to do arithmetic in his head as proof of that. These types never try naming, like, rulers of the Byzantine Empire. Anyway, to calculate the cube root of 50,653 in his head? As he used to be able to do? … guh. It’s not the sort of mental arithmetic that I find fun.

But I could think of a couple ways to do it. The one I’d use is based on a technique called Newton-Raphson iteration that can often be used to find where a function’s value is zero. Raphson here is Joseph Raphson, a late 17th century English mathematician known for the Newton-Raphson method. Newton is that falling-apples fellow. It’s an iterative scheme because you start with a guess about what the answer would be, and do calculations to make the answer better. I don’t say this is the best method, but it’s the one that demands me remember the least stuff to re-generate the algorithm. And it’ll work for any positive number ‘A’ and any root, to the ‘n’-th power.

So you want the n-th root of ‘A’. Start with your current guess about what this root is. (If you have no idea, try ‘1’ or ‘A’.) Call that guess ‘x’. Then work out this number:

\frac{1}{n}\left( (n - 1) \cdot x + \frac{A}{x^{n - 1}} \right)

Ta-da! You have, probably, now a better guess of the n-th root of ‘A’. If you want a better guess yet, take the result you just got and call that ‘x’, and go back calculating that again. Stop when you feel like your answer is good enough. This is going to be tedious but, hey, if you’re serving a prison term of the length of US copyright you’ve got time. (It’s possible with this sort of iterator to get a worse approximation, although I don’t think that happens with n-th root process. Most of the time, a couple more iterations will get you back on track.)

But that’s work. Can we think instead? Now, most n-th roots of whole numbers aren’t going to be whole numbers. Most integers aren’t perfect powers of some other integer. If you think 50,653 is a perfect cube of something, though, you can say some things about it. For one, it’s going to have to be a two-digit number. 103 is 1,000; 1003 is 1,000,000. The second digit has to be a 7. 73 is 343. The cube of any number ending in 7 has to end in 3. There’s not another number from 1 to 9 with a cube that ends in 3. That’s one of those things you learn from playing with arithmetic. (A number ending in 1 cubes to something ending in 1. A number ending in 2 cubes to something ending in 8. And so on.)

So the cube root has to be one of 17, 27, 37, 47, 57, 67, 77, 87, or 97. Again, if 50,653 is a perfect cube. And we can do better than saying it’s merely one of those nine possibilities. 40 times 40 times 40 is 64,000. This means, first, that 47 and up are definitely too large. But it also means that 40 is just a little more than the cube root of 50,653. So, if 50,653 is a perfect cube, then it’s most likely going to be the cube of 37.

Bill Watterson’s Calvin and Hobbes rerun for the 2nd is a great sequence of Hobbes explaining arithmetic to Calvin. There is nothing which could be added to Hobbes’s explanation of 3 + 8 which would make it better. I will modify Hobbes’s explanation of what the numerator. It’s ridiculous to think it’s Latin for “number eighter”. The reality is possibly more ridiculous, as it means “a numberer”. Apparently it derives from “numeratus”, meaning, “to number”. The “denominator” comes from “de nomen”, as in “name”. So, you know, “the thing that’s named”. Which does show the terms mean something. A poet could turn “numerator over denominator” into “the number of parts of the thing we name”, or something near enough that.

Hobbes continues the next day, introducing Calvin to imaginary numbers. The term “imaginary numbers” tells us their history: they looked, when first noticed in formulas for finding roots of third- and fourth-degree polynomials, like obvious nonsense. But if you carry on, following the rules as best you can, that nonsense would often shake out and you’d get back to normal numbers again. And as generations of mathematicians grew up realizing these acted like numbers we started to ask: well, how is an imaginary number any less real than, oh, the square root of six?

Hobbes’s particular examples of imaginary numbers — “eleventenn” and “thirty-twelve” — are great-sounding compositions. They put me in mind, as many of Watterson’s best words do, of a 1960s Peanuts in which Charlie Brown is trying to help Sally practice arithmetic. (I can’t find it online, as that meme with edited text about Sally Brown and the sixty grapefruits confounds my web searches.) She offers suggestions like “eleventy-Q” and asks if she’s close, which Charlie Brown admits is hard to say.

Cherry Trail: 'Good morning, honey! Where's Dad?' Mark Trail: 'He's out on the porch reading the paper!' Cherry: 'Rusty sure is excited about our upcoming trip to Mexico!' Mark: 'Did you get everything worked out with the school?' Cherry: 'Rusty will need to do some math assignments, but he'll get credit for his other subjects since it's an educational trip!'
James Allen’s Mark Trail for the 3rd of January, 2018. James Allen has changed many things about the comic strip since Jack Elrod’s retirement, as I have observed over on the other blog. There are less ruthlessly linear stories. There’s no more odd word balloon placement implying that giant squirrels are talking about the poachers. Mark Trail sometimes has internal thoughts. I’m glad that he does still choose to over-emphasize declarations like “[Your Dad]’s out on the porch reading the paper!” There are some traditions.

And finally, James Allen’s Mark Trail for the 3rd just mentions mathematics as the subject that Rusty Trail is going to have to do some work on instead of allowing the experience of a family trip to Mexico to count. This is of extremely marginal relevance, but it lets me include a picture of a comic strip, and I always like getting to do that.

Reading the Comics, October 4, 2017: Time-Honored Traditions Edition

It was another busy week in mathematically-themed comic strips last week. Busy enough I’m comfortable rating some as too minor to include. So it’s another week where I post two of these Reading the Comics roundups, which is fine, as I’m still recuperating from the Summer 2017 A To Z project. This first half of the week includes a lot of rerun comics, and you’ll see why my choice of title makes sense.

Lincoln Pierce’s Big Nate: First Class for the 1st of October reprints the strip from the 2nd of October, 1993. It’s got a well-formed story problem that, in the time-honored tradition of this setup, is subverted. I admit I kind of miss the days when exams would have problems typed out in monospace like this.

Ashleigh Brilliant’s Pot-Shots for the 1st is a rerun from sometime in 1975. And it’s an example of the time-honored tradition of specifying how many statistics are made up. Here it comes in at 43 percent of statistics being “totally worthless” and I’m curious how the number attached to this form of joke changes over time.

The Joey Alison Sayers Comic for the 2nd uses a blackboard with mathematics — a bit of algebra and a drawing of a sphere — as the designation for genius. That’s all I have to say about this. I remember being set straight about the difference between ponies and horses and it wasn’t by my sister, who’s got a professional interest in the subject.

Mark Pett’s Lucky Cow rerun for the 2nd is a joke about cashiers trying to work out change. As one of the commenters mentions, the probably best way to do this is to count up from the purchase to the amount you have to give change for. That is, work out $12.43 to $12.50 is seven cents, then from $12.50 to $13.00 is fifty more cents (57 cents total), then from $13.00 to $20.00 is seven dollars ($7.57 total) and then from $20 to $50 is thirty dollars ($37.57 total).

It does make me wonder, though: what did Neil enter as the amount tendered, if it wasn’t $50? Maybe he hit “exact change” or whatever the equivalent was. It’s been a long, long time since I worked a cash register job and while I would occasionally type in the wrong amount of money, the kinds of errors I would make would be easy to correct for. (Entering $30 instead of $20 for the tendered amount, that sort of thing.) But the cash register works however Mark Pett decides it works, so who am I to argue?

Keith Robinson’s Making It rerun for the 2nd includes a fair bit of talk about ratios and percentages, and how to inflate percentages. Also about the underpaying of employees by employers.

Mark Anderson’s Andertoons for the 3rd continues the streak of being Mark Anderson Andertoons for this sort of thing. It has the traditional form of the student explaining why the teacher’s wrong to say the answer was wrong.

Brian Fies’s The Last Mechanical Monster for the 4th includes a bit of legitimate physics in the mad scientist’s captioning. Ballistic arcs are about a thing given an initial speed in a particular direction, moving under constant gravity, without any of the complicating problems of the world involved. No air resistance, no curvature of the Earth, level surfaces to land on, and so on. So, if you start from a given height (‘y0‘) and a given speed (‘v’) at a given angle (‘θ’) when the gravity is a given strength (‘g’), how far will you travel? That’s ‘d’. How long will you travel? That’s ‘t’, as worked out here.

(I should maybe explain the story. The mad scientist here is the one from the first, Fleischer Studios, Superman cartoon. In it the mad scientist sends mechanical monsters out to loot the city’s treasures and whatnot. As the cartoon has passed into the public domain, Brian Fies is telling a story of that mad scientist, finally out of jail, salvaging the one remaining usable robot. Here, training the robot to push aside bank tellers has gone awry. Also, the ground in his lair is not level.)

Tom Toles’s Randolph Itch, 2 am rerun for the 4th uses the time-honored tradition of Albert Einstein needing a bit of help for his work.

Zach Weinersmith’s Saturday Morning Breakfast Cereal for the 4th uses the time-honored tradition of little bits of physics equations as designation of many deep thoughts. And then it gets into a bit more pure mathematics along the way. It also reflects the time-honored tradition of people who like mathematics and physics supposing that those are the deepest and most important kinds of thoughts to have. But I suppose we all figure the things we do best are the things it’s important to do best. It’s traditional.

And by the way, if you’d like more of these Reading the Comics posts, I put them all in the category ‘Comic Strips’ and I just now learned the theme I use doesn’t show categories for some reason? This is unsettling and unpleasant. Hm.