(I apologize if the formatting is messed up. For some reason preview is not working, and I will not be trying the new page for entering posts if I can at all help it. I will fix when I can, if it needs fixing.)
As it’s the start of the month I want to try understanding the readership of my blogs, as WordPress gives me statistics. It’s been a more confusing month than usual, though. One thing is easy to say: the number of pages read was 1,047, an all-time high around these parts for a single month. It’s up from 1,022 in March, and 859 in February. And it’s the second month in a row there’ve been more than a thousand readers. That part’s easy.
The number of visitors has dropped. It was down to 389 in April, from a record 468 in March and still-higher 407 in April. This is, if WordPress doesn’t lead me awry, my fifth-highest number of viewers. This does mean the number of views per visitor was my highest since June of 2013. The blog had 2.69 views per visitor, compared to 2.18 in March and 2.11 in February. It’s one of my highest views-per-visitor on record anyway. Perhaps people quite like what they see and are archive-binging. I approve of this. I’m curious why the number of readers dropped so, though, particularly when I look at my humor blog statistics (to be posted later).
I’m confident the readers are there, though. The number of likes on my mathematics blog was 297, up from March’s 265 and February’s 179. It’s the highest on record far as WordPress will tell me. So readers are more engaged, or else they’re clicking like from the WordPress Reader or an RSS feed. Neither gets counted as a page view or a visitor. That’s another easy part. The number of comments is down to 64, from March’s record 93, but March seems to have been an exceptional month. February had 56 comments so I’m not particularly baffled by April’s drop.
May starts out with 23,884 total views, and 472 people following specifically through WordPress.
It’s a truism that my most popular posts are the trapezoids one and the Reading The Comics posts, but for April that was incredibly true. Most popular the past thirty days were:
I am relieved that I started giving all these Comics posts their own individual “Edition” titles. Otherwise there’d be no way to tell them apart.
The nations sending me the most readers were, as ever, the United States (662), Canada (82), and the United Kingdom (47), with Slovenia once again strikingly high (36). Hong Kong came in with 24 readers, Italy 23, and Austria a mere 18. Elke Stangl’s had a busy month, I know.
This month’s single-reader countries were Czech Republic, Morocco, the Netherlands, Puerto Rico, Romania, Taiwan, and Vietnam. Romania’s the only one that sent me a single reader last month. India bounced back from five readers to six.
Among the search terms bringing people to me were no poems. Among the interesting phrases were:
what point is driving the area difference between two triangles (A good question!)
how do you say 1,898,600,000,000,000,000,000,000,000 (I almost never do.)
is julie larson still drawing the dinette set (Yes, to the best of my knowledge.)
jpe fast is earth spinning? (About once per day, although the answer can be surprisingly difficult to say! But also figure about 465 times the cosine of your latitude meters per second, roughly.)
origin is the gateway to your entire gaming universe. (Again, I don’t know what this means, and I’m a little scared to find out.)
i hate maths 2015 photos (Well, that just hurts.)
getting old teacher jokes (Again, that hurts, even if it’s not near my birthday.)
two trapezoids make a (This could be a poem, actually.)
how to draw 2 trapezoids (I’d never thought about that one. Shall have to consider writing it.)
I don’t know quite what it all means, other than that I need to write about comic strips and trapezoids more somehow.
And now for my monthly review of publication statistics. This is a good month to do it with, since it was a record month: I had 1,022 pages viewed around these parts, the first time (according to WordPress) that I’ve had more than a thousand in a month. In January I’d had 944, and in February a mere 859, which I was willing to blame on the shortness of that month. March’s is a clean record, though, more views per day than either of those months.
The total number of visitors was up, too, to 468. That’s compared to 438 in January and 407 in short February, although it happens it’s not a record; that’s still held by January 2013 and its 473 visitors. The number of views per visitor keeps holding about steady: from 2.16 in January to 2.11 in February to 2.18 in March. It appears that I’m getting a little better at finding people who like to read what I like to write, but haven’t caught that thrilling transition from linear to exponential growth.
The new WordPress statistics tell me I had a record 265 likes in March, up from January’s 196 and February’s 179. The number of comments rose from January’s 51 and February’s 56 to a full 93 for March. I take all this as supporting evidence that I’m better at reaching people lately. (Although I do wonder if it counts backlinks from one of my articles to another as a comment.)
The mathematics blog starts the month at 22,837 total views, and with 454 WordPress followers.
The most popular articles in March, though, were the set you might have guessed without actually reading things around here:
Calculating Pi Terribly, my semi-ironic contribution to the Pi Day Of The Century. I’ve actually got a couple follow-ups to that to post when I have the time to write them.
I admit I thought the “how interesting is a basketball tournament?” thing would be more popular, but it’s hampered by having started out in the middle of the month. I might want to start looking at the most popular articles of the past 30 days in the middle of the month too.
The countries sending me the greatest number of readers were the usual set: the United States at 658 in first place, and Canada in second at 66. The United Kingdom was a strong third at 57, and Austria in fourth place at 30.
Sending me a single reader each were Belgium, Ecuador, Israel, Japan, Lebanon, Mexico, Nepal, Norway, Portugal, Romania, Samoa, Saudi Arabia, Slovakia, Thailand, the United Arab Emirates, Uruguay, and Venezuela. The repeats from February were Japan, Mexico, Romania, and Venezuela. Japan is on a three-month streak, while Mexico has sent me a solitary reader four months in a row. India’s declined slightly in reading me, from 6 to 5. Ah well.
Among the interesting search terms were:
right trapezoid 5 (I loved this anime as a kid)
a short comic strip on reminding people on how to order decimals correctly (I hope they found what they were looking for)
are there other ways to draw a trapezoid (try with food dye on the back of your pet rabbit!)
motto of ideal gas (veni vidi v = nRT/P ?)
rectangular states (the majority of United States states are pretty rectangular, when you get down to it)
what is the definition of rerun (I don’t think this has come up before)
what are the chances of consecutive friday the 13th’s in a year (I make it out at 3/28, or a touch under 11 percent; anyone have another opinion?)
Well, with luck, I should have a fresh comic strips post soon and some more writing in the curious mix between information theory and college basketball.
I have a guest post that I mean to put up shortly which is a spinoff of the talk last month about calculating logarithms. There are several ways to define a logarithm but one of the most popular is to define it as an integral. That has the advantages of allowing the logarithm to be studied using a lot of powerful analytic tools already built up for calculus, and allow it to be calculated numerically because there are a lot of methods for calculating logarithms out there. I wanted to precede that post with a discussion of a couple of the ways to do these numerical integrations.
A great way to interpret integrating a function is to imagine drawing a plot of function; the integral is the net area between the x-axis and the plot of that function. That may be pretty hard to do, though, so we fall back on a standard mathematician’s trick that they never tell you about in grade school, probably for good reason: don’t bother doing the problem you actually have, and instead do a problem that looks kind of like it but that you are able to do.
Normally, for what’s called a definite integral, we’re interested in the area underneath a curve and across an “interval”, that is, between some minimum and some maximum value on the x-axis. Definite integrals are the kind we can approximate numerically. An indefinite integral gives a function that would tell us what the definite integral on any interval would be, but that takes symbolic mathematics to work out and that’s way beyond this article’s scope.
While we may have no idea what the area underneath a complicated squiggle on some interval is, we do know what the area inside a rectangle is. So if we pretend we’re interested in the area of the rectangle instead of the original area, good. Take my little drawing of a generic function here, the wavey red curve. The integral of it from wherever that left vertical green line is to the right is the area between the x-axis, the horizontal black line, and the red curve.
If we use the “Rectangle Rule”, we draw a horizontal line based on the value of the function somewhere from the left line to the right. The yellow line up top is based on the value at the left endpoint. The blue line is based on the value the function has at the right endpoint. We can use any point, although the most popular ones are the left endpoint, the right endpoint, and the midpoint, because those are nice, easy picks to make. (And if we’re trying to integrate a function whose definition we don’t know, for example because it’s the data we got from an experiment, these will often be the only data points we have.) The area under the curve is going to be something like the area of the rectangle bounded by the green lines, the horizontal black line, and the blue horizontal line or the yellow horizontal line.
Drawn this way you might complain this approximation is rubbish: the area of the blue-topped rectangle is obviously way too low, and that of the yellow-topped rectangle is way too high. The mathematician’s answer to this is: oh, hush. We were looking for easy, not good. The area is the width of the interval times the value of the function at the chosen point; how much easier can you get?
(It also happens that the blue rectangle obviously gives too low an area, while the yellow gives too high an area. This is a coincidence, caused by my not thinking to make my function wiggle up and down quite enough. Generally speaking neither the left- nor the right-endpoints are maximum or minimum values for the function. It can be useful analytically to select the points that are “where the function is its highest” and “where the function is its lowest” — this lets you find the upper and lower bounds for the area — but that’s generally too hard to use computationally.)
But we can turn into a good approximation. What makes the blue or the yellow lines lousy approximations is that the function changes a lot in the distance between the green lines. If we were to chop up the strip into a bunch of smaller ones, and use the rectangle rule on each of those pieces, the function would change less in each of those smaller pieces, and so we’d get an area total that’s closer to the actual area. We find the distance between a pair of adjacent vertical green lines, multiply that by the height of the function at the chosen point, and add that to the running total. This is properly called the “Composite Rectangle Rule”, although it’s really only textbooks introducing the idea that make a fuss about including the “composite”. It just makes so much sense to break the interval up that we do that all the time and forget to explicitly say that except in the class where we introduce this.
(And, notice, in my drawings that in some of the regions behind vertical green lines the left-endpoint and the right-endpoint are not where the function gets its highest, or lowest, value. They can just be points.)
There’s nothing special about the Rectangle Rule that makes it uniquely suited for composition. It’s just easier to draw that way. Any numerical integration rule lets you do the same trick. Also, it’s very common to make all the smaller rectangles — called the subintervals — the same width, but that’s not because the method needs that to work. It’s easier to calculate if all the subintervals are the same width, because then you don’t have to remember how wide each different subinterval is.
Rectangles are probably the easiest shape of all to deal with, but they’re not the only easy shapes. Trapezoids, or trapeziums if you prefer, are hardly a challenge to find the area for. This gives me the next really popular integration rule, the “Trapezoid Rule” or “Trapezium Rule” as your dialect favors. We take the function and approximate its area by working out the area of the trapezoid formed by the left green edge, the bottom black edge, the right green edge, and the sloping blue line that goes from where the red function touches the left end to where the function touches the right end. This is a little harder than the Rectangle Rule: we have to multiply the width of the interval between the green lines by the arithmetic mean of the function’s value at the left and at the right endpoints. That means, evaluate the function at the left endpoint and at the right endpoint, add those two values together, and divide by two. Not much harder and it’s pleasantly more accurate than the Rectangle Rule.
If that’s not good enough for you, you can break the interval up into a bunch of subintervals, just as with the Composite Rectangle Rule, and find the areas of all the trapezoids created there. This is properly called the “Composite Trapezoid Rule”, but again, after your Numerical Methods I class you won’t see the word “composite” prefixed to the name again.
And yet we can do better still. We’ll remember this when we pause a moment and think about what we’re really trying to do. When we do a numerical integration like this we want to find, instead of the area underneath our original curve, the area underneath a curve that looks like it but that’s easier to deal with. (Yes, we’re calling the straight lines of the Rectangle and Trapezoid Rules “curves”. Hush.) We can use any curve that we know how to deal with. Parabolas — the curving arc that you see if, say, you shoot the water from a garden hose into the air — may not seem terribly easy to deal with, but it turns out it’s not hard to figure out the area underneath a slice of one of them. This gives us the integration technique called “Simpson’s Rule”.
The Simpson here is Thomas Simpson, 1710 – 1761, who in accord with Mathematics Law did not discover or invent the rule named for him. Johannes Kepler knew the rule a century before Simpson got into the game, at minimum, and both Galileo’s student Bonaventura Cavalieri (who introduced logarithms to Italy, and was one of those people creeping up on infinitesimal calculus ahead of Newton) and the English mathematician/physicist James Gregory (who discovered diffraction grating, and seems to be the first person to have published a proof of the Fundamental Theorem of Calculus) were in on it too. But Simpson wrote a number of long-lived textbooks about calculus, which probably is why his name got tied to this method.
In Simpson’s Rule, you need the value of the function at the left endpoint, the midpoint, and the right endpoint of the interval. You can draw the parabola which connects those points — it’s the blue curve in my drawing — and find the area underneath that parabola. The formula may sound a little funny but it isn’t hard: the area underneath the parabola is one-third the width of the interval times the sum of the value at the left endpoint, the value at the right endpoint, and four times the value at the midpoint. It’s a bit more work but it’s a lot more accurate than the Trapezoid Rule.
There are literally infinitely many more rules you could use, with such names as “Simpson’s Three-Eighths Rule” (also called “Simpson’s Second Rule”) or “Boole’s Rule”^{[1]}, but they’re based on similar tricks of making a function that looks like the one you’re interested in but whose area you know how to calculate exactly. For the Simpson’s Three-Eighth Rule, for example, you make a cubic polynomial instead of a parabola. If you’re good at finding the areas underneath wedges of circles or underneath hyperbolas or underneath sinusoidal functions, go ahead and use those. You can find the balance of ease of use and accuracy of result that you like.
^{[1]}: Boole’s Rule is also known as Bode’s Rule, because of a typo in the 1972 edition of the Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, or as everyone ever has always referred to this definitive mathematical reference, Abromowitz and Stegun. (Milton Abromowitz and Irene Stegun were the reference’s editors.)
Since it’s the start of a new month it’s time to review statistics for the previous month, which gives me the chance to list a bunch of countries, which is strangely popular with readers. I don’t pretend to understand this, I just accept the inevitable.
In total views I haven’t seen much change the last several months: September 2014 looks to be closing out with about 558 pages viewed, not a substantial change from August’s 561, and triflingly fewer than July’s 589. The number of unique visitors has been growing steadily, though: 286 visitors in September, compared to 255 the month before, and 231 the month before that. One can choose to read this as the views per visitor dropping to 1.95, its lowest figure since March, but I’ll take it as more people finding things that interest them, at least.
As to what those things are — well, mostly it’s comic strip posts, which I suppose makes sense given that they’re quite accessible and often contain jokes people understand. The most popular articles for September 2014 were:
Something Neat About Triangles, which is from a biography of Donald Coxeter, and really is this neat little theorem with a punch line I bet you won’t see coming, unless you read it already.
Machines That Give You Logarithms, part of my popular “calculating logarithms” series of posts, and this one showing how to calculate most logarithms with as little calculation as possible.
As usual the country sending me the greatest number of readers was the United States (347), with Canada (29), Austria (27), the United Kingdom (26), and Puerto Rico and Turkey (20 each) coming up close behind. My single-reader countries for September were Bahrain, Brazil, Costa Rica, Czech Republic, Estonia, Finland, Germany, Iceland, Jamaica, Kazakhstan, Malaysia, the Netherlands, Pakistan, Saudi Arabia, Slovenia, and Sweden. Finland, Germany, and Sweden were single-reader countries in August, too, but at least none of them were single-reader countries in July as well.
Among the search terms bringing people here the past month have been:
what is the most common answer on jeopardy (“What Is Australia”; it’s also the response with the highest expectation value)
I got to my 17,882nd reader this month, a little short of that tolerably nice and round 18,000 readers. If I don’t come down with sudden-onset boringness, though, I’ll reach that in the next week or so, especially if I have a couple more days of twenty or thirty readers.
And on to the tracking of how my little mathematics blog is doing. As readership goes, things are looking good — my highest number of page views since January 2013, and third-highest ever, and also my highest number of unique viewers since January 2013 (unique viewer counts aren’t provided for before December 2012, so who knows what happened before that). The total number of page views rose from 565 in April to 751, and the number of unique visitors rose from 238 to 315. This is a remarkably steady number of views per visitor, though — 2.37 rising to 2.38, as if that were a significant difference. I passed visitor number 15,000 somewhere around the 5th of May, and at number 15,682 right now that puts me on track to hit 16,000 somewhere around the 13th.
As with April, the blog’s felt pretty good to me. I think I’m hitting a pretty good mixture of writing about stuff that interest me and finding readers who’re interested to read it. I’m hoping I can keep that up another month.
The most popular articles of the month — well, I suspect someone was archive-binging on the mathematics comics ones because, here goes:
Where Does A Plane Touch A Sphere? is a nicely popular bit motivated by the realization that a tangent point is an important calculus concept and nevertheless a subtler thing than one might realize.
I think without actually checking this is the first month I’ve noticed with seven countries sending me twenty or more visitors each — the United States (438), Canada (39), Australia (38), Sweden (31), Denmark (21), and Singapore and the United Kingdom (20 each). Austria came in at 19, too. Sixteen countries sent me one visitor each: Antigua and Barbuda, Colombia, Guernsey, Hong Kong, Ireland, Italy, Jamaica, Japan, Kuwait, Lebanon, Mexico, Morocco, Norway, Peru, Poland, Swaziland, and Switzerland. Morocco’s the only one to have been there last month.
And while I lack for search term poetry, some of the interesting searches that brought people here include:
Another month’s gone by and the statistics about viewership were pretty gratifying for April 2014. But I’m feeling awfully good about the place, because I’ve felt more gratified by the mathematics blog lately. It’s felt to me like there’ve been more comments and more interaction the past couple weeks, and it’s felt like it’s getting closer to supporting a community, which is thrilling, if not exactly measurable given what WordPress shares with me.
In March 2014, according to last month’s statistics survey, there were 453 views from 257 distinct viewers. That jumped pretty noticeably this month to 565 views, albeit from 235 distinct viewers, a views-per-visitor jump from 1.76 to 2.40. I suspect there’s some archive-bingers, and I’m happy to give anyone that thrill. It’s my greatest viewer count since June 2013, and the fourth-highest since December 2012 when WordPress started sharing statistics on unique visitors. I also noted at the start of April that while I’d reached 14,000 visitors in March I’d need a stroke of luck to reach 15,000 in April. I came close: the month topped out with my 14,931st view.
The most popular articles of the past thirty days were:
How Dirac Made Every Number, the answer to that puzzle of how to construct any counting number using precisely four 2’s and ordinary operations (it’s a forehead slapper once you’ve seen it)
The countries sending me the most viewers were the United States (294), Canada (65), Denmark (29), Austria (27), and the United kingdom (26), and I count nine countries sending me at least ten views each, which I think is a record but I haven’t been keeping track of that number. Sending me a single viewer each were Belgium, Brazil, Ecuador, Finland, Greece, Hungary, Malaysia, Morocco, Oman, Sweden, and Venezuela. Belgium, Brazil, Hungary, and Sweden were single-country viewers last month, and Hungary’s got a three-month single-viewer streak going. So, ah, hi, whoever that is in Hungary. Apparently nobody has ever visited me from Honduras.
Once again there’s a shortage of search term poetry, but there were some fair queries the past month, including:
http://wp.me/p1ryhy-yf — and I don’t know; the URL isn’t quite resolving for me just now. Sorry, the many people who’ve gone looking for it for some reason.
It’s the start of a fresh month, so let me carry on my blog statistics reporting. In February 2014, apparently, there were a mere 423 pages viewed around here, with 209 unique visitors. That’s increased a bit, to 453 views from 257 visitors, my second-highest number of views since last June and second-highest number of visitors since last April. I can make that depressing, though: it means views per visitor dropped from 2.02 to 1.76, but then, they were at 1.76 in January anyway. And I reached my 14,000th page view, which is fun, but I’d need an extraordinary bit of luck to get to 15,000 this month.
March’s most popular articles were a mix of the evergreens — trapezoids and comics — with a bit of talk about March Madness serving as obviously successful clickbait:
What Are The Chances Of An Upset, which introduces some of the interesting quirks of the bracket and seed system of playoffs, such as the apparent advantage an eleventh seed has over an eighth seed.
There’s a familiar set of countries sending me the most readers: as ever the United States up top (277), with Denmark in second (26) and Canada in third (17). That’s almost a tie, though, as the United Kingdom (16), Austria (15), and the Philippines (13) could have taken third easily. I don’t want to explicitly encourage international rivalries to drive up my page count here, I’m just pointing it out. Singapore is in range too. The single-visitor countries this past month were the Bahamas, Belgium, Brazil, Colombia, Hungary, Mexico, Peru, Rwanda, Saudi Arabia, Spain, Sri Lanka, Sweden, Syria, and Taiwan. Hungary, Peru, and Saudi Arabia are the only repeat visitors from February, and nobody’s got a three-month streak going.
There wasn’t any good search-term poetry this month; mostly it was questions about trapezoids, but there were a couple interesting ones:
“first [basketball] team to 100 wins what percent of the time” (it’s near 90 percent)
“john venn interests that don’t have to do with math or science” (according to his biography at the School of Mathematics and Statistics, University of Saint Andrews, Scotland, he had interests in history and wrote a Biographical History of Gonville and Caius College as well as a treaties on the life of John Caius, one of the founders of his college; he also had a knack for building machines, including an automated cricket bowler that apparently clean bowled one of the Australian cricket team’s top stars four times, which I take to be impressive to people who speak cricket)
“what’s the gag in the name of the counselor in the wife of pi cartoon” as well as “scot hiburn wife of pi meaning of counselors name” (the joke is that he’s named “Hugh Jripov”, when he could have been named “Obelus” and let people know what the name of the division symbol there is)
Sometime on Thursday, the 6th of March, it appears I registered my 14,000th visitor to the math blog here. WordPress believes it to be someone from either the United States, France, Germany, Canada, or Australia, which at least covers a respectable number of possible time zones. The number’s a nice, big, round one, which I admit is about all I can think of that’s particularly interesting about it; even Wikipedia figures the most likely things you’re looking for if you look for 14,000 anything is either the ISO specification or an asteroid discovered in March of 1993 and apparently not even named yet. (It’s designated 1993 FZ_{55}.) Well, at least asteroid 15,000 has a name.
Stare too hard at any one statistic, though, and you’ll start to wonder how reliable it is; I know for example that multiple of those 14,000 page views were me, testing neurotically to see whether the WordPress statistics counter was actually registering page views (particularly in the earliest days, when I was less self-confident and was using tags worse). Surely my just loading a page to see if it registers shouldn’t count as an actual page view, but, how can WordPress tell the difference?
Taking the WordPress statistics as if they meant what they purport to mean, though, indicates that apparently the most interesting thing I ever did was forget how to show why the area of a trapezoid was the trapezoid formula. My most-read article of all time is How Many Trapezoids I Can Draw, which is still standing at six by the way; some of the other articles which went into that (like Setting Out to Trap A Zoid and How Do You Make A Trapezoid Right) are also in the top five. All that’s based around working out how to work out a formula for the area of a trapezoid and convince yourself it’s right. For some reason the Reading the Comics post from September 11, 2012 also made the cut (I suppose the date is boosting it there). The early post How Many Numbers Have We Named is also fairly reliably popular.
Some of the most popular from the past year have included Something Neat About Triangles — since that post is only two months old I figure it’s got a good future ahead of it — and Solving The Price Is Right’s “Any Number” Game, which maybe solves the game less than explains why it’s usually a pretty good one to watch. Also popular is Counting From 52 to 11,108, and Inder J Taneja’s fascinating project in producing numbers using the digits one through nine in ascending or descending order.
So how does the first month of 2014 compare to the last month of 2013, in terms of popularity? The raw numbers are looking up: I went from 176 unique visitors looking at 352 pages in December up to 283 unique visitors looking at 498 pages. If WordPress’s statistics are to be believed that’s my greatest number of page views since June of 2013, and the greatest number of visitors since February. This hurt the ratio of views per visitor a little, which dropped from 2.00 to 1.76, but we can’t have everything unless I write stuff that lots of people want to read and they figure they want to read a lot more based on that, which is just crazy talk. The most popular articles, though, were:
How Many Trapezoids I Can Draw, with my best guess for how many different kinds of trapezoids there are (and despite its popularity I haven’t seen a kind not listed here, which surprises me).
Factor Finding, linking over to IvaSallay’s quite interesting blog with a great recreational mathematics puzzle (or educational puzzle, depending on how you came into it) that drove me and a friend crazy with this week’s puzzles.
What’s The Worst Way To Pack? in which I go looking for the least-efficient packing of spheres and show off these neat Mystery Science Theater 3000 foam balls I got.
The countries sending me readers the most often were the United States (281), Canada (52), the United Kingdom (25), and Austria (23). Sending me just a single reader each this past month were a pretty good list:
Bulgaria, France, Greece, Israel, Morocco, the Netherlands, Norway, Portugal, Romania, Russia, Serbia, Singapore, South Korea, Spain, and Viet Nam. Returning on that list from last month are Norway, Romania, Spain, and Viet Nam, and none of those were single-country viewers back in November 2013.
There’s a hopeful trend in my readership statistics for December 2013 around these parts: according to WordPress, my number of readers grew from 308 in November to 352 and the number of unique visitors grew from 158 to 176. Even the number of views per visitor grew, from 1.95 to 2.00. None of these are records, but the fact of improvement is a good one.
I can’t figure exactly how to get the report on most popular articles for the exact month of December, and was too busy with other things to check the past-30-day report on New Year’s Eve, but at least the most popular articles for the 30 days ending today were:
The countries sending me the most readers were the United States, Canada, Denmark and Austria (tied, and hi again, Elke), and the United Kingdom. Sending me just one viewer each were a slew of nations: Bangladesh, Cambodia, India, Japan, Jordan, Malaysia, Norway, Romania, Slovenia, South Africa, Spain, Sweden, Turkey, and Viet Nam. On that list last month were Jordan and Slovenia, so I’m also marginally interesting to a different group of people this time around.
And as it’s the start of the month I have a fresh round of reviewing the statistics for readership around here. I have seen a nice increase in both views — from 367 to about 466 total views — and in visitors — from 175 to 236 — which maybe reflects the resumption of the school year (in the United States, anyway) and some more reliable posting (of original articles and of links to other people’s) on my part. (Maybe. If I’m reading this rightly I actually only posted nine new things in September, which is the same as in August. I’m surprised that WordPress’s statistics page doesn’t seem to report how many new articles there were in the month, though.) My contrarian nature forces me to note this means my views-per-reader ratio has dropped to 1.97, down from 2.10. I suppose as long as the views-per-reader statistic stays above 1.00 I’m not doing too badly.
How Many Trapezoids I Can Draw, which is a persistent favorite and makes me suspect that I’ve hit on something that teachers ask students about. If I could think of a couple other nice little how-many-of-these-things problems there are I’d post them gladly, although that might screw up some people’s homework assignments;
What Is Calculus I Like?, about my own realization that I never took a Calculus I course in the conditions that most people who take it do. I’d like more answers to the question of what experiences in intro-to-calculus courses are like, since I’m assuming that I will someday teach it again and while I think I can empathize with students, I would surely do better at understanding what they don’t understand if I knew better what people in similar courses went through;
Some Difficult Math Problems That You Understand, which is again pointing to another blog — here, Maths In A Minute — with a couple of mathematics problems that pretty much anyone can understand on their first reading. The problems are hard ones, each of which has challenged the mathematical community for generations, so you aren’t going to solve them; but, thinking about them and trying to solve them is probably a great exercise and likely to lead you to discovering something you didn’t know.
I got the greatest number of readers from the United States again (271), with Canada (31) once more in second place. The United Kingdom’s climbed back into the top three (21), while August’s number-three, Denmark, dropped out of the top ten and behind both Singapore and the Philippines. I got a mass of single-reader countries this time, too: Azerbaijan, Bangladesh, Belgium, Cambodia, the Czech Republic, Indonesia, Israel, Italy, Mexico, Norway, Poland, Qatar, Spain, Sri Lanka, Switzerland, and Thailand. Bangladesh and Sri Lanka are repeats from last month, but my Estonian readership seems to have fled entirely. At least India and New Zealand still like me.
As promised I’m keeping and publicizing my statistics, as WordPress makes them out, the better I hope to understand what I do well and what the rest is. I’ve had a modest uptick in views from July — 341 to 367 — as well as in unique visitors — 156 to 175 — although this means my views-per-visitor count has dropped from 2.19 to 2.10. That’s still my third-highest views-per-visitor count since WordPress started revealing that data to us.
The most popular articles of the past month were:
Reading the Comics, September 11, 2012 (which I suspect reflects the date turning up high in Google searches, though there are many comics mentioned in it so perhaps it just casts a wide net);
Augustin-Louis Cauchy’s birthday (a little biographical post which drew some comments because Cauchy was at the center of a really interesting time in mathematics)
The countries sending me the most readers were the United States (202), Canada (30), and Denmark (19). Sending me just one each were Argentina, Bangladesh, Estonia, Finland, the Netherlands, Portugal, Singapore, Sri Lanka, Taiwan, and Viet Nam. Argentina, Estonia, and the Netherlands did the same last month; clearly I’m holding steady. And my readership in Slovenia doubled from last month’s lone reader.
I don’t understand why, but an awful lot of the advice I see about blogging says that it’s important not just to keep track of how your blog is doing, but also to share it, so that … numbers will like you more? I don’t know. But I can give it a try, anyway.
For June 2013, according to WordPress, I had some 713 page views, out of 246 unique visitors. That’s the second-highest number of page views I’ve had in any month this year (January had 831 views), and the third-highest I’ve had for all time (there were 790 in March 2012). The number of unique visitors isn’t so impressive; since WordPress started giving me that information in December 2012, I’ve had more unique visitors … actually, in every month but May 2013. On the other hand, the pages-per-viewer count of 2.90 is the best I’ve had; the implication seems to be that I’m engaging my audience.
My most frequent commenters, “recent”, whatever that means, are Chiaroscuro and BunnyHugger (virtually tied), with fluffy, elkelement, MJ Howard, and Geoffrey Brent rounding out the top six.
The most common source of page clicks the past month was from the United States (468), with Brazil (51) and Canada (23) taking silver and bronze. And WordPress recorded one click each from Portugal, Serbia, Hungary, Macedonia (the Former Yugoslav Republic), Indonesia, Argentina, Poland, Slovenia, and Viet Nam. I’ve been to just one of those countries.
[ We didn’t break 3,100 yet, and too bad that. But over the day I did get my first readers from Turkey and the second from the United Arab Emirates that I’ve noticed. Also while my many posts about trapezoids are drawing search engine results, “frazz sequins” comes up a lot. ]
I think I’ve managed, more or less, acceptance that a piecewise constant interpolation makes the simplest way to estimate the population of Charlotte, North Carolina, when all I had to work with was the population data from the 1970 and the 1980 censuses. In 1970 the city had 840,347 people; in 1980 it had 971,391, and therefore the easiest guess to the population in 1975 would be the 1970 value, of 840,347. We suppose that on the 1st of April, 1970 — that Census Day — the population was the lower value, and then sometime before the 1st of April, 1980, it leapt up at once by the 131,044-person difference. Only … how do I know the population jumped up sometime after 1975?