Reading the Comics, October 8, 2016: Split Week Edition Part 2


And now I can finish off last week’s comics. It was a busy week. The first few days of this week have been pretty busy too. Meanwhile, Dave Kingsbury has recently read a biography of Lewis Carroll, and been inspired to form a haiku/tanka project. You might enjoy.

Susan Camilleri Konar is a new cartoonist for the Six Chix collective. Her first strip to get mentioned around these parts is from the 5th. It’s a casual mention of the Fibonacci sequence, which is one of the few sequences that a normal audience would recognize as something going on forever. And yes, I noticed the spiral in the background. That’s one of the common visual representations of the Fibonacci sequence: it starts from the center. The rectangles inside have dimensions 1 by 2, then 2 by 3, then 3 by 5, then 5 by 8, and so on; the spiral connects vertices of these rectangles. It’s an attractive spiral and you can derive the overrated Golden Ratio from the dimensions of larger rectangles. This doesn’t make the Golden Ratio important or anything, but it is there.

'It seems like Fibonacci's been entering his password for days now.'
Susan Camilleri Konar ‘s Six Chix for the 5th of October, 2016. And yet what distracts me is both how much food Fibonacci has on his desk and how much of it is hidden behind his computer where he can’t get at it. He’s going to end up spilling his coffee on something important fiddling around like that. And that’s not even getting at his computer being this weird angle relative to the walls.

Ryan North’s Dinosaur Comics for the 6th is part of a story about T-Rex looking for certain truth. Mathematics could hardly avoid coming up. And it does offer what look like universal truths: given the way deductive logic works, and some starting axioms, various things must follow. “1 + 1 = 2” is among them. But there are limits to how much that tells us. If we accept the rules of Monopoly, then owning four railroads means the rent for landing on one is a game-useful $200. But if nobody around you cares about Monopoly, so what? And so it is with mathematics. Utahraptor and Dromiceiomimus point out that the mathematics we know is built on premises we have selected because we find them interesting or useful. We can’t know that the mathematics we’ve deduced has any particular relevance to reality. Indeed, it’s worse than North points out: How do we know whether an argument is valid? Because we believe that its conclusions follow from its premises according to our rules of deduction. We rely on our possibly deceptive senses to tell us what the argument even was. We rely on a mind possibly upset by an undigested bit of beef, a crumb of cheese, or a fragment of an underdone potato to tell us the rules are satisfied. Mathematics seems to offer us absolute truths, but it’s hard to see how we can get there.

Rick Stromoskis Soup to Nutz for the 6th has a mathematics cameo in a student-resisting-class-questions problem. But the teacher’s question is related to the figure that made my first fame around these parts.

Mark Anderson’s Andertoons for the 7th is the long-awaited Andertoon for last week. It is hard getting education in through all the overhead.

Bill Watterson’s Calvin and Hobbes rerun for the 7th is a basic joke about Calvin’s lousy student work. Fun enough. Calvin does show off one of those important skills mathematicians learn, though. He does do a sanity check. He may not know what 12 + 7 and 3 + 4 are, but he does notice that 12 + 7 has to be something larger than 3 + 4. That’s a starting point. It’s often helpful before starting work on a problem to have some idea of what you think the answer should be.

What Is True Almost Everywhere?


I was reading a thermodynamics book (C Truesdell and S Bharatha’s The Concepts and Logic of Classical Thermodynamics as a Theory of Heat Engines, which is a fascinating read, for the field, and includes a number of entertaining, for the field, snipes at the stuff textbook writers put in because they’re just passing on stuff without rethinking it carefully), and ran across a couple proofs which mentioned equations that were true “almost everywhere”. That’s a construction it might be surprising to know even exists in mathematics, so, let me take a couple hundred words to talk about it.

The idea isn’t really exotic. You’ve seen a kind of version of it when you see an equation containing the note that there’s an exception, such as, \frac{\left(x - 1\right)^2}{\left(x - 1\right)} = x \mbox{ for } x \neq 1 . If the exceptions are tedious to list — because there are many of them to write down, or because they’re wordy to describe (the thermodynamics book mentioned the exceptions were where a particular set of conditions on several differential equations happened simultaneously, if it ever happened) — and if they’re unlikely to come up, then, we might just write whatever it is we want to say and add an “almost everywhere”, or for shorthand, put an “ae” after the line. This “almost everywhere” will, except in freak cases, propagate through the rest of the proof, but I only see people writing that when they’re students working through the concept. In publications, the “almost everywhere” gets put in where the condition first stops being true everywhere-everywhere and becomes only almost-everywhere, and taken as read after that.

I introduced this with an equation, but it can apply to any relationship: something is greater than something else, something is less than or equal to something else, even something is not equal to something else. (After all, “x \neq -x is true almost everywhere, but there is that nagging exception.) A mathematical proof is normally about things which are true. Whether one thing is equal to another is often incidental to that.

What’s meant by “unlikely to come up” is actually rigorously defined, which is why we can get away with this. It’s otherwise a bit daft to think we can just talk about things that are true except where they aren’t and not even post warnings about where they’re not true. If we say something is true “almost everywhere” on the real number line, for example, that means that the set of exceptions has a total length of zero. So if the only exception is where x equals 1, sure enough, that’s a set with no length. Similarly if the exceptions are where x equals positive 1 or negative 1, that’s still a total length of zero. But if the set of exceptions were all values of x from 0 to 4, well, that’s a set of total length 4 and we can’t say “almost everywhere” for that.

This is all quite like saying that it can’t happen that if you flip a fair coin infinitely many times it will come up tails every single time. It won’t, even though properly speaking there’s no reason that it couldn’t. If something is true almost everywhere, then your chance of picking an exception out of all the possibilities is about like your chance of flipping that fair coin and getting tails infinitely many times over.

Why You Failed Your Logic Test


An interesting parallel’s struck me between nonexistent things and the dead: you can say anything you want about them. At least in United States law it’s not possible to libel the dead, since they can’t be hurt by any loss of reputation. That parallel doesn’t lead me anywhere obviously interesting, but I’ll take it anyway. At least it lets me start this discussion without too closely recapitulating the previous essay. The important thing is that at least in a logic class, if I say, “all the coins in this purse are my property”, as Lewis Carroll suggested, I’m asserting something I say is true without claiming that there are any coins in there. Further, I could also just as easily said “all the coins in this purse are not my property” and made as true a statement, as long as there aren’t any coins there.

Continue reading “Why You Failed Your Logic Test”

%d bloggers like this: